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Key to all mathematics is the notion of proof. We wish to be able to say with absolute
certainty that a property holds for all numbers or all cases, not just those we've tried, and
not just because it sounds convincing or would be quite nice if it were so. Certain types of
proof come up again and again in all areas of mathematics, one of which is proof by
contradiction.

To prove something by contradiction, we assume that what we want to prove is not true,
and then show that the consequences of this are not possible. That is, the consequences
contradict either what we have just assumed, or something we already know to be true (or,
indeed, both) - we call this a contradiction.

A simple example of this principle can be seen by considering Sally and her parking ticket.
We know that if Sally did not pay her parking ticket, she would have got a nasty letter from
the council. We also know that she did not get any nasty letters. Either she paid her
parking ticket or she didn't, and if she didn't then, from our original information, we know
that she would have got a nasty letter. Since she didn't get a nasty letter, she must
therefore have paid her ticket.

If we were formally proving by contradiction that Sally had paid her ticket, we would
assume that she did not pay her ticket and deduce that therefore she should have got a
nasty letter from the council. However, we know her post was particularly pleasant this
week, and contained no nasty letters whatsoever. This is a contradiction, and therefore
our assumption is wrong. In this example it all seems a bit long winded to prove something
so obvious, but in more complicated examples it is useful to state exactly what we are
assuming and where our contradiction is found.

One well-known use of this method is in the proof that  is irrational.

Rational numbers are those which can be written in fractions, that is as one integer
divided by another ( ). They can be put into what is called
irreducible form , which is where the numerator (top number) and denominator (bottom
number) have no common factors other than 1, i.e. are coprime. Irrational numbers are
those which cannot be put into such a form, such as  and - as we are about to see - .

Let us start by proving (by contradiction) that if  is even then  is even, as this is a result
we will wish to use in the main proof. We do this by considering a number  whose
square, , is even, and assuming that this  is not even. Then we try to arrive at a
contradiction.

If  is not even, it is odd, and therefore of the form , where  is a whole number.
Then . But  is clearly even, so 

 is odd. This means  is not even, so since we are only considering 
because  is even, we have a contradiction here. Therefore our assumption that  is not
even must be wrong, i.e.  is even.
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Now we are ready to start our proof that  is irrational, which of course we begin by
assuming that it is not (i.e. that it is rational), and then trying to arrive at a contradiction.

Suppose  is rational. Then it can be written as , where  and  are coprime
integers.

Thus if  then squaring both sides gives .

Then  and so  is clearly even. If  is even then we know from above that 
must be even, and so can be written as  where  is an integer. Thus 

 and so .

Dividing  through by  gives us that  is also even, and so  must be even.

If  and  are both even then they have  as a common factor, which contradicts the
assumption that they are coprime. Thus our assumption is incorrect, and  is not
rational.
You may like to try this challenge http://nrich.maths.org/public/viewer.php?
obj_id=1404&part=index which involves a slightly different proof by contradiction to prove
the same result.
This alternative proof can be generalised to show that  is irrational when  is not a
square number.

Proving something by contradiction can be a very nice method when it works, and there
are many proofs in mathematics made easier or, indeed, possible by it. However, it is not
always the best way of approaching a problem.

For instance, say for some reason we wish to prove that (positive)  is rational.
Encouraged by our success with , we could suppose for a contradiction that  is not
rational. Then it cannot be written as  where  and  are positive integers. However, if
we let  and  then . Also, both  and  are
positive, so  is positive. Thus  so we have contradicted our
assumption that  cannot be written as an integer divided by an integer. Therefore 
is not irrational, i.e. it is rational.

All we really needed to do was point out that , which is a perfectly good rational
number in its own right. This would have been much quicker than going through the whole
proof by contradiction. Even more importantly it was, in fact, a step in the above proof.

Having just warned you of the dangers of blindly trying to prove things by contradiction, we
end with one of the nicest proofs - by contradiction or otherwise - I know. This is Euclid's
proof that there are infinitely many prime numbers, and does indeed work by contradiction.

Before we begin this proof, we need to know that any natural number greater than 1 (so 
) has a prime factor.

We can prove this by, in fact, contradiction. Take the usual definition of a prime as a
natural number greater than 1 divisible only by itself and 1. Suppose it is not the case that
any natural number greater than 1 has a prime factor. Then there must be a least natural
number greater than 1 which does not have a prime factor. Let us call this . Then  is
clearly not prime so it must have a factor  that is neither  nor 1. But m < n so  has a
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prime factor  by assumption. Thus  is a factor of , which is a factor of , so  is a
prime factor of . Thus  has a prime factor, and this means it is not the case that there is
a least natural number greater than 1 that does not have a prime factor. This therefore
contradicts our assumption that not every natural number greater than 1 has a prime
factor. So every natural number greater than 1 does have a prime factor.

Having proved this, we can now go on to our main proof.

We wish to prove there are infinitely many primes, so of course we suppose for
contradiction that there are only finitely many, say  of them.

This means that we can list them: . Consider their product, 
. Now  is a natural number (as it is the

sum of two natural numbers) and it is clearly greater than . Thus as was noted earlier, it
has a prime factor. Can you see where we need to go from here?

* * * * * * * * *

The answer is that  has a prime factor, . Since we are assuming that there
are finitely many primes,  is one of . Thus  divides , too.
Now,  cannot divide both  and , or else it would divide their
difference, .

Thus  is not in our complete list of primes, and so we have arrived at a contradiction.
There are therefore infinitely many primes.

At the time of writing this article Katherine was a third year undergraduate mathematician
at Balliol College, Oxford.
Vicky had just finished a degree in Maths at Cambridge and was doing a fourth year
course studying Combinatorics, Number Theory and Algebra, still at Trinity College,
Cambridge.
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