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What is an Algorithm?
• An algorithm is a procedure for producing outputs from inputs. 

• A chocolate chip cookie recipe technically qualifies. 

• An algorithm taught in a CS class is typically: 

• Correct/optimal - Produces correct or best possible output. 

• Time-efficient - Takes few steps. 

• Abstract - Doesn’t depend on a particular computer architecture 
or data format. 

• For example, you will learn several ways to sort things in this class - 
independent of programming language or data



Searching an Unordered List 
(“Linear Search”)

• Suppose we have a list of N items 

• Like ‘(45 90 2 1000 -3 7) if we’re programming in Racket 

• We also have a target number, like “1000,” that we are looking for 

• We can iterate down a list starting from the beginning to end 

• If there are N items in the list, we can analyze the following… 

• Best case:  what is the smallest number of items we might need to examine? 

• Worst case: what is the maximum number of items we might need to 
examine? 

• Average case: what is the average number of items we might need to 
examine (let’s assume all orderings are equally likely)?



Best, Worst, Average 
for Unordered Linear Search
• Searching through a list like (45 90 2 1000 -3 7) for a 

particular value, like 1000… 

• Best case is, it’s the item in front.  Then we just have 
to look at 1 item! 

• Worst case is, the item isn’t even in the list.  Then we 
need to look at all N items. 

• Average case if all positions are equally likely (and 
it’s in there) is (1 + 2 + … + N)/N = N(N+1)/2N =  
(N+1)/2



Notice Two Things About The Average 
Case for Unordered Linear Search

• (1) We had to make assumptions about the distribution 
of data.  There’s no reason to think all positions are 
equally likely, and we didn’t even think about the 
possibility that the item wasn’t there. 

• (2) It grew linearly (directly proportionally) with the size 
of the input, just like the worst case.  If all we cared 
about was the kind of function (linear vs quadratic vs 
exponential), the worst case gave us the right 
answer with less work & fewer assumptions.

While the average case may seem more accurate, the worst case 
requires fewer assumptions and is our default tool of analysis



Ordered Linear Search
• Suppose now that the input was already sorted.  Does 

that improve the running time of linear search? 

• Recall that we’re still going from left to right down the 
list 

• What is the best case? 

• What is the worst case? 

• What is the average case if we’re equally likely to 
need any position in the list?

(-3 20 82 104 150 1000 1500)



Ordered Linear Search

• The best case is still that we happen to need the 
item at the beginning of the list.  1 operation. 

• The worst case is still that the item is not in the list 
at all (or that it’s last).  N operations. 

• The average case is again the average over all the 
positions, (N+1)/2

(-3 20 82 104 150 1000 1500)



Binary Search
• Binary search is genuinely faster than linear search 

• It must be performed on a sorted array (like a list but slightly 
different) 

• The idea is to “throw out” half the values with each iteration, 
instead of “throwing out” one. 

• If there are N values to start, after one round N/2 remain, then N/
4, then N/8 … 

• The total rounds in the worst case are roughly log2 N - the power 
of 2 you would need to hit N  (e.g. log2 256 = 8).  This is much 
better than linear



Recall:  Logarithms are 
Exponentiation in Reverse

23
log2 23 = 3



Logarithmic Growth is Great 
for Algorithm Running Time

• Taking the log of gigantic numbers like log2 1,000,000, we 
get reasonable numbers like ~20 

• In fact, compared to any linear function (y = an + b), a 
logarithmic function will “cost less in the long run”



Arrays versus Linked Lists
• In analyzing algorithms, it matters how the underlying 

data is stored.  Some operations are fast for one data 
structure, slow for another. 

• Linked lists are composed of pieces of data that each 
“point” to the next piece in memory, which could be far 
away.  The middle of a list is accessed by following these 
pointers around - meaning, no fast access for the middle.

‘(1  2  3) 1
2

3

myList



Arrays versus Linked Lists
• In analyzing algorithms, it matters how the underlying data is 

stored.  Some operations are fast for one data structure, slow for 
another. 

• Arrays are blocks of memory where pieces of data sit side-by-
side.  The program can compute quickly exactly where each piece 
of data is, because it’s not scattered across memory.  Accessing 
the middle doesn’t require following links - it is “constant time.”

1 2 3

myArray[2]
myArray address “24” 
each integer is 4 bytes 

24 + 4*2 = 32 
for [2] look at byte 32

myArray

byte 
24

byte 
28

byte 
32

[0] [1] [2]



“Constant Time”
• Any number that does not scale with the size of the input (or other 

parameters of the problem) is a constant.  2, 0.5, 10 … 

• If an operation takes “constant time,” that means the operation 
takes the same amount of time no matter how much input there is. 

• Array access is constant time.  No matter how much input 
there is, it’s multiply, add, access. 

• An algorithm can’t really get better than constant time. 

• One reason we don’t get more specific than “constant” is that 
without a specific architecture, we don’t really know how long a 
particular operation will take anyway



Binary Search, 
Pictoral Version

2 5 16 32 40 50 50

low highmiddle
We keep track of the “low” and “high” ends of the search. 

Suppose we’re looking for 5. 
We first ask, “Is the middle 5?” 

It is not. 
Is 5 less than or greater than the middle, 32? 

It is less.



Binary Search, 
Pictoral Version

2 5 16 32 40 50 50

low high old 
middle

The new highest possible value is left of the old middle. 
Is the middle what we’re looking for now? 

In this case, it is - we’re done.

middle



Binary Search, 
Pictoral Version

2 5 16 32 40 50 50

low high old 
middle

Suppose we had been looking for 7 instead. 
The first step is the same,  

but now, we want to look right of the 5.

middle



Binary Search, 
Pictoral Version

2 5 16 32 40 50 50

low/ 
high/ 

middle

old 
middle

Now low == high, so there’s just one more place to look. 
But 16 isn’t 7.



Binary Search, 
Pictoral Version

2 5 16 32 40 50 50

low/ 
old 

middle
Since 7 < 16, we move “high” left of “middle.” 

But now “high” is left of “low.” 
This is how we know the value isn’t here.

high



“Pseudocode”
• When thinking about algorithms, we want to focus on big ideas, not 

get bogged down in syntax 

• “Pseudocode” refers to sketches of programs, that aren’t in any real 
language 

• There are common conventions for pseudocode, but we’ll defer to 
your algorithms class for those 

• Be aware that pseudocode is usually written in an “imperative” style 
similar to Java, Python, or C, where commands are written one after 
the other (as opposed to Racket’s “functional” style that likes to 
nest and recur). 

• // indicates a comment until end of line (C/Java style)



Binary Search (Recursive)
BINARY-SEARCH(A, key, low, middle, high): 

if low > high: 

    return NOT_FOUND 

else if A[middle] == key: 

    return middle 

else if A[middle] > key: 

    return BINARY-SEARCH(A, key, low, floor(low+middle)/2, middle-1)  // recur on 1st half 

else: // A[middle] < key 

    return BINARY-SEARCH(A,key,middle+1,floor(middle+high)/2, high) // recur on 2nd half 

A is an array, 
key is what we’re looking for, 
“low” init to first place in array, 
“high” init to last place in array, 
“middle” init to (low+high)/2



Try some binary search

• How many rounds to discover “40” is in the array?

2 5 16 32 40 50 50

low highmiddle



Linear Search vs  
Binary Search

• We tried fiddling with linear search a little to try to 
make it more efficient (by sorting it), but it took a 
very different approach to make big speed gains. 

• This is typically how algorithms work - a clever 
different approach will produce better results than 
minor optimizations to the existing algorithm



Sorting
• There are many ways to sort things, but only a few are popular 

• Two of the methods that we will see, insertion sort and selection sort, 
are similar to what you might try to implement yourself if you had to invent 
something 

• But we will try to convince you they’re not great 

• A third way we’ll cover, mergesort, is more efficient than the other two, 
and is elegant in a way. 

• But it can also be tricky to wrap your head around it 

• Other famous sorts include bubblesort (concise to code but not great) 
and quicksort (popular and efficient, similar to mergesort but more 
complex)



Some Efficiency Notes for 
Sorts

• Often, comparisons of elements are the most time-consuming 
operations in practice for a sort, so we just count those. 

• For example, string comparisons may require looking at all the 
characters. 

• Assigning values to particular spots, accessing particular 
values, and swaps of two elements are very efficient for arrays, 
but not for linked lists.  Array-based sorts usually use swaps. 

• Insertion of an element between other elements is fast for 
linked lists, but slow for arrays (all items past that point must be 
scooted down to make room).  Linked list-based sorts insert 
efficiently.



Insertion Sort Notes
• Insertion sort works similarly to how you 

might sort a hand of cards 

• Maintain a “sorted” part and 
“unsorted” part 

• One-by-one, stick an unsorted card 
into the right place in the “sorted” part 

• But since we’re dealing with arrays, 
there’s no quick visual scan of where an 
item ought to go - so we shift the item left 
until its neighbor to the left isn’t bigger

sorted

unsorted



FROM LEFT TO RIGHT, SWAP EACH ELEMENT LEFT 
INTO SORTED ORDER 

(I.E. STOP WHEN LEFT NEIGHBOR IS < OR ==)

86 753

= line of sortedness; stuff to its left is sorted

We are INSERTING each item between the already  
sorted items

Insertion Sort



8 7 6 5 4 1…

1
2

3
4

N-1

1+2+…+N-1 = (N-1)N/2  ≈ N2 

Insertion Sort Worst Case: 
Reverse Order



1 2 3 4 5 N…

1

1*(N-1) = N-1 ≈ N 

1
1

1
1

1

…

Insertion Sort Best Case: 
Already Sorted



Is Insertion Sort Better 
With Linked Lists?

• We might wonder whether insertion sort is more efficient with 
linked lists (no need to swap things down) 

• For each item in original list,  
       Insert in sorted order in target list T 

• Inserting in the correct place in T still requires iterating down the 
list - in the worst case, we iterate down to the end of the growing 
list every time 

• First insert is free, then one comparison, two, three … 

• (1 + 2 + … + (N-1)) comparisons is still about N2 operations 



Try An Insertion Sort
• Run on the array 1 2 4 3 9 3.  How many swaps?  

Could we figure out the number of comparisons 
from that?

1 2 34 9 3



Try An Insertion Sort
• Run on the array 1 2 4 3 9 3.  How many swaps? 

Could we figure out the number of comparisons from that? 

• 3 swaps, and each of the n-1 items to the right also has one 
comparison where nothing happens.  8 comparisons.

1 2 34 9 3

1 2 3 4 93



Selection Sort 
Overview

• You may have scanned a list or array for a minimum 
before - for each item, compare it to bestMinSoFar 

• Selection sort extends this idea to a whole sort.  
Find the minimum, then find the minimum of what’s 
left, then find the 3rd smallest … 

• We’ll see an array-based selection sort, where 
swaps are efficient  



SEARCH FOR MIN, SWAP INTO PLACE, 
REPEAT WITH 2ND SMALLEST, 3RD SMALLEST…

86 753

= line of sortedness; stuff to its left is sorted

We are SELECTING the item we want next in the order

Selection Sort



8 7 6 5 4 1…

N+(N-1)+(N-2)+…+2= (N-1)(N+2)/2  ≈ N2 

…

scan for min :  N elements
scan for 2nd smallest:  N-1 elements

scan for 2nd largest: 2 elements

Selection Sort Analysis 
(Worst, Best, & Average)



Mergesort 
Overview

• Mergesort is our first recursive sort - it calls mergesort itself to sort 
smaller parts of the list, then merges the results into one big sorted list. 

• A “merge” takes two sorted lists and combines them into a single 
sorted list. 

• The pseudocode is therefore pretty concise: 
 
Mergesort(L): 
If length(L) <= 1: 
   return L  // nothing to sort 
Else: 
   A = Mergesort(first half of L) 
   B = Mergesort(second half of L) 
   return merge(A,B)

sorted
sorted merge

sorted

split

sort x2



Merge
Input:  2 sorted lists 
Output:  One sorted list containing all elements  
Running time:  Linear in number of all elements 

While elements in both lists remain, 
Compare the smallest elements of both lists.  
Remove the smaller and append it to the output. 

If elements of one list remain, 
Append them to the end. 

Return the output.

8
6

7
532



Mergesort
If the list is has fewer than two elements, return it.  Otherwise: 
Mergesort the first half of the list. 
Mergesort the second half of the list. 
Merge the sorted halves.

Recursion 
Level 1

Recursion 
Level 2

Recursion 
Level 3

7 9631 850



Mergesort Analysis With 
Recursion Tree

• Since the work done is 
in the form of “work at 
this level plus work at 
lower levels” we can 
visualize the work as a 
tree 

• With a bound of cN 
work per level and log2 
N levels, the total work 
is cN log N, where c is 
some constant.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

1
…

…1

… … …

…[n nodes]…

lo
g 2

 n



N log N is as Good as We Get 
for Comparison-Based Sorts

• All three of these algorithms are comparison-based, 
meaning they determine the final ordering through pairwise 
comparisons of elements 

• It’s possible to prove that you can’t do better than 
mergesort’s N log N time using a comparison-based sort 

• Proof sketch:  There are N! possible correct orders, so 
fewer comparisons wouldn’t be able to tell the difference 
between some of them 

• However, sorts that can tell where data should go just by 
looking at it (not comparing) can achieve better times



Example of a  
Linear Time Sort

• Suppose I have an array of N unordered values - the integers 1 through N, inclusive 

• In a single pass, through the N values, I can assign them to the correct places in the 
target array 

• That’s time on the order of N, not N log N - it was because I was able to put items 
directly where they need to go 

• Bucket Sort, Counting Sort, and Radix Sort are all sorts that are not comparison-
based, but put things where they go in linear time - but the data must be “special”

3 2 1 7 4 6 5



How We Approximate 
Running Times

• It is typical to approximate algorithm running times to just use Nd, 
where d is the highest exponent of N in the running time. 

• Thus Insertion Sort and Selection Sort are both “about N2” 

• Linear search is “about N” 

• We pay attention to additional log factors, but don’t care about their 
base 

• Thus binary search is “about log N” and Mergesort is “about 
N log N” 

• You will often see these approximations written as O(N2) or  
O(N log N), which we will define more specifically later



Why Approximate? 
Reason 1:  Architectures Vary
• It may seem strange that we treat 2N as roughly the 

same running time as N or N/2.  Why ignore these 
“constant factors” of 2 or 1/2? 

• Reason #1:  Our analysis can’t be that precise 
because of differences in machines and languages.  
We’re just counting “operations” but that lumps together 
addition, multiplication, requesting memory … lots of 
stuff that all takes a different amount of time.  That means 
there are really a bunch of unknown constants we don’t 
know lurking in our analysis:  a the time to add, m the 
time to request more memory…



Why Approximate? 
Reason 2: We Care About the Long Run
• It may seem strange that we treat 2N as roughly the 

same running time as N or N/2.  Why ignore these 
“constant factors” of 2 or 1/2? 

• Reason #2:  The constants don’t matter in the 
long run.  Comparing two linear functions like N or 
2N, you might see a practical difference.  But 
comparing different orders like 2N vs N2/2 … the 
one with N2 will always be worse if there’s enough 
data.  We’ll explore this more when we talk about 
running times and big-O.


