
Intro to Algorithms
Professor Kevin Gold

What is an Algorithm?
• An algorithm is a procedure for producing outputs from inputs.

• A chocolate chip cookie recipe technically qualifies.

• An algorithm taught in a CS class is typically:

• Correct/optimal - Produces correct or best possible output.

• Time-efficient - Takes few steps.

• Abstract - Doesn’t depend on a particular computer architecture
or data format.

• For example, you will learn several ways to sort things in this class -
independent of programming language or data

Searching an Unordered List
(“Linear Search”)

• Suppose we have a list of N items

• Like ‘(45 90 2 1000 -3 7) if we’re programming in Racket

• We also have a target number, like “1000,” that we are looking for

• We can iterate down a list starting from the beginning to end

• If there are N items in the list, we can analyze the following…

• Best case: what is the smallest number of items we might need to examine?

• Worst case: what is the maximum number of items we might need to
examine?

• Average case: what is the average number of items we might need to
examine (let’s assume all orderings are equally likely)?

Best, Worst, Average
for Unordered Linear Search
• Searching through a list like (45 90 2 1000 -3 7) for a

particular value, like 1000…

• Best case is, it’s the item in front. Then we just have
to look at 1 item!

• Worst case is, the item isn’t even in the list. Then we
need to look at all N items.

• Average case if all positions are equally likely (and
it’s in there) is (1 + 2 + … + N)/N = N(N+1)/2N =  
(N+1)/2

Notice Two Things About The Average
Case for Unordered Linear Search

• (1) We had to make assumptions about the distribution
of data. There’s no reason to think all positions are
equally likely, and we didn’t even think about the
possibility that the item wasn’t there.

• (2) It grew linearly (directly proportionally) with the size
of the input, just like the worst case. If all we cared
about was the kind of function (linear vs quadratic vs
exponential), the worst case gave us the right
answer with less work & fewer assumptions.

While the average case may seem more accurate, the worst case
requires fewer assumptions and is our default tool of analysis

Ordered Linear Search
• Suppose now that the input was already sorted. Does

that improve the running time of linear search?

• Recall that we’re still going from left to right down the
list

• What is the best case?

• What is the worst case?

• What is the average case if we’re equally likely to
need any position in the list?

(-3 20 82 104 150 1000 1500)

Ordered Linear Search

• The best case is still that we happen to need the
item at the beginning of the list. 1 operation.

• The worst case is still that the item is not in the list
at all (or that it’s last). N operations.

• The average case is again the average over all the
positions, (N+1)/2

(-3 20 82 104 150 1000 1500)

Binary Search
• Binary search is genuinely faster than linear search

• It must be performed on a sorted array (like a list but slightly
different)

• The idea is to “throw out” half the values with each iteration,
instead of “throwing out” one.

• If there are N values to start, after one round N/2 remain, then N/
4, then N/8 …

• The total rounds in the worst case are roughly log2 N - the power
of 2 you would need to hit N (e.g. log2 256 = 8). This is much
better than linear

Recall: Logarithms are
Exponentiation in Reverse

23
log2 23 = 3

Logarithmic Growth is Great
for Algorithm Running Time

• Taking the log of gigantic numbers like log2 1,000,000, we
get reasonable numbers like ~20

• In fact, compared to any linear function (y = an + b), a
logarithmic function will “cost less in the long run”

Arrays versus Linked Lists
• In analyzing algorithms, it matters how the underlying

data is stored. Some operations are fast for one data
structure, slow for another.

• Linked lists are composed of pieces of data that each
“point” to the next piece in memory, which could be far
away. The middle of a list is accessed by following these
pointers around - meaning, no fast access for the middle.

‘(1 2 3) 1
2

3

myList

Arrays versus Linked Lists
• In analyzing algorithms, it matters how the underlying data is

stored. Some operations are fast for one data structure, slow for
another.

• Arrays are blocks of memory where pieces of data sit side-by-
side. The program can compute quickly exactly where each piece
of data is, because it’s not scattered across memory. Accessing
the middle doesn’t require following links - it is “constant time.”

1 2 3

myArray[2]
myArray address “24”
each integer is 4 bytes

24 + 4*2 = 32
for [2] look at byte 32

myArray

byte
24

byte
28

byte
32

[0] [1] [2]

“Constant Time”
• Any number that does not scale with the size of the input (or other

parameters of the problem) is a constant. 2, 0.5, 10 …

• If an operation takes “constant time,” that means the operation
takes the same amount of time no matter how much input there is.

• Array access is constant time. No matter how much input
there is, it’s multiply, add, access.

• An algorithm can’t really get better than constant time.

• One reason we don’t get more specific than “constant” is that
without a specific architecture, we don’t really know how long a
particular operation will take anyway

Binary Search,
Pictoral Version

2 5 16 32 40 50 50

low highmiddle
We keep track of the “low” and “high” ends of the search.

Suppose we’re looking for 5.
We first ask, “Is the middle 5?”

It is not. 
Is 5 less than or greater than the middle, 32?

It is less.

Binary Search,
Pictoral Version

2 5 16 32 40 50 50

low high old
middle

The new highest possible value is left of the old middle.
Is the middle what we’re looking for now?

In this case, it is - we’re done.

middle

Binary Search,
Pictoral Version

2 5 16 32 40 50 50

low high old
middle

Suppose we had been looking for 7 instead.
The first step is the same,  

but now, we want to look right of the 5.

middle

Binary Search,
Pictoral Version

2 5 16 32 40 50 50

low/
high/

middle

old
middle

Now low == high, so there’s just one more place to look.
But 16 isn’t 7.

Binary Search,
Pictoral Version

2 5 16 32 40 50 50

low/ 
old

middle
Since 7 < 16, we move “high” left of “middle.”

But now “high” is left of “low.”
This is how we know the value isn’t here.

high

“Pseudocode”
• When thinking about algorithms, we want to focus on big ideas, not

get bogged down in syntax

• “Pseudocode” refers to sketches of programs, that aren’t in any real
language

• There are common conventions for pseudocode, but we’ll defer to
your algorithms class for those

• Be aware that pseudocode is usually written in an “imperative” style
similar to Java, Python, or C, where commands are written one after
the other (as opposed to Racket’s “functional” style that likes to
nest and recur).

• // indicates a comment until end of line (C/Java style)

Binary Search (Recursive)
BINARY-SEARCH(A, key, low, middle, high):

if low > high:

 return NOT_FOUND

else if A[middle] == key:

 return middle

else if A[middle] > key:

 return BINARY-SEARCH(A, key, low, floor(low+middle)/2, middle-1) // recur on 1st half

else: // A[middle] < key

 return BINARY-SEARCH(A,key,middle+1,floor(middle+high)/2, high) // recur on 2nd half

A is an array,
key is what we’re looking for,
“low” init to first place in array,
“high” init to last place in array,
“middle” init to (low+high)/2

Try some binary search

• How many rounds to discover “40” is in the array?

2 5 16 32 40 50 50

low highmiddle

Linear Search vs  
Binary Search

• We tried fiddling with linear search a little to try to
make it more efficient (by sorting it), but it took a
very different approach to make big speed gains.

• This is typically how algorithms work - a clever
different approach will produce better results than
minor optimizations to the existing algorithm

Sorting
• There are many ways to sort things, but only a few are popular

• Two of the methods that we will see, insertion sort and selection sort,
are similar to what you might try to implement yourself if you had to invent
something

• But we will try to convince you they’re not great

• A third way we’ll cover, mergesort, is more efficient than the other two,
and is elegant in a way.

• But it can also be tricky to wrap your head around it

• Other famous sorts include bubblesort (concise to code but not great)
and quicksort (popular and efficient, similar to mergesort but more
complex)

Some Efficiency Notes for
Sorts

• Often, comparisons of elements are the most time-consuming
operations in practice for a sort, so we just count those.

• For example, string comparisons may require looking at all the
characters.

• Assigning values to particular spots, accessing particular
values, and swaps of two elements are very efficient for arrays,
but not for linked lists. Array-based sorts usually use swaps.

• Insertion of an element between other elements is fast for
linked lists, but slow for arrays (all items past that point must be
scooted down to make room). Linked list-based sorts insert
efficiently.

Insertion Sort Notes
• Insertion sort works similarly to how you

might sort a hand of cards

• Maintain a “sorted” part and
“unsorted” part

• One-by-one, stick an unsorted card
into the right place in the “sorted” part

• But since we’re dealing with arrays,
there’s no quick visual scan of where an
item ought to go - so we shift the item left
until its neighbor to the left isn’t bigger

sorted

unsorted

FROM LEFT TO RIGHT, SWAP EACH ELEMENT LEFT
INTO SORTED ORDER

(I.E. STOP WHEN LEFT NEIGHBOR IS < OR ==)

86 753

= line of sortedness; stuff to its left is sorted

We are INSERTING each item between the already  
sorted items

Insertion Sort

8 7 6 5 4 1…

1
2

3
4

N-1

1+2+…+N-1 = (N-1)N/2 ≈ N2

Insertion Sort Worst Case:
Reverse Order

1 2 3 4 5 N…

1

1*(N-1) = N-1 ≈ N

1
1

1
1

1

…

Insertion Sort Best Case:
Already Sorted

Is Insertion Sort Better
With Linked Lists?

• We might wonder whether insertion sort is more efficient with
linked lists (no need to swap things down)

• For each item in original list,  
 Insert in sorted order in target list T

• Inserting in the correct place in T still requires iterating down the
list - in the worst case, we iterate down to the end of the growing
list every time

• First insert is free, then one comparison, two, three …

• (1 + 2 + … + (N-1)) comparisons is still about N2 operations 

Try An Insertion Sort
• Run on the array 1 2 4 3 9 3. How many swaps?  

Could we figure out the number of comparisons
from that?

1 2 34 9 3

Try An Insertion Sort
• Run on the array 1 2 4 3 9 3. How many swaps? 

Could we figure out the number of comparisons from that?

• 3 swaps, and each of the n-1 items to the right also has one
comparison where nothing happens. 8 comparisons.

1 2 34 9 3

1 2 3 4 93

Selection Sort
Overview

• You may have scanned a list or array for a minimum
before - for each item, compare it to bestMinSoFar

• Selection sort extends this idea to a whole sort.
Find the minimum, then find the minimum of what’s
left, then find the 3rd smallest …

• We’ll see an array-based selection sort, where
swaps are efficient  

SEARCH FOR MIN, SWAP INTO PLACE,
REPEAT WITH 2ND SMALLEST, 3RD SMALLEST…

86 753

= line of sortedness; stuff to its left is sorted

We are SELECTING the item we want next in the order

Selection Sort

8 7 6 5 4 1…

N+(N-1)+(N-2)+…+2= (N-1)(N+2)/2 ≈ N2

…

scan for min : N elements
scan for 2nd smallest: N-1 elements

scan for 2nd largest: 2 elements

Selection Sort Analysis
(Worst, Best, & Average)

Mergesort
Overview

• Mergesort is our first recursive sort - it calls mergesort itself to sort
smaller parts of the list, then merges the results into one big sorted list.

• A “merge” takes two sorted lists and combines them into a single
sorted list.

• The pseudocode is therefore pretty concise: 
 
Mergesort(L): 
If length(L) <= 1: 
 return L // nothing to sort 
Else: 
 A = Mergesort(first half of L) 
 B = Mergesort(second half of L) 
 return merge(A,B)

sorted
sorted merge

sorted

split

sort x2

Merge
Input: 2 sorted lists
Output: One sorted list containing all elements  
Running time: Linear in number of all elements

While elements in both lists remain,
Compare the smallest elements of both lists.  
Remove the smaller and append it to the output.

If elements of one list remain,
Append them to the end.

Return the output.

8
6

7
532

Mergesort
If the list is has fewer than two elements, return it. Otherwise:
Mergesort the first half of the list.
Mergesort the second half of the list.
Merge the sorted halves.

Recursion
Level 1

Recursion
Level 2

Recursion
Level 3

7 9631 850

Mergesort Analysis With
Recursion Tree

• Since the work done is
in the form of “work at
this level plus work at
lower levels” we can
visualize the work as a
tree

• With a bound of cN
work per level and log2
N levels, the total work
is cN log N, where c is
some constant.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

1
…

…1

… … …

…[n nodes]…

lo
g 2

 n

N log N is as Good as We Get
for Comparison-Based Sorts

• All three of these algorithms are comparison-based,
meaning they determine the final ordering through pairwise
comparisons of elements

• It’s possible to prove that you can’t do better than
mergesort’s N log N time using a comparison-based sort

• Proof sketch: There are N! possible correct orders, so
fewer comparisons wouldn’t be able to tell the difference
between some of them

• However, sorts that can tell where data should go just by
looking at it (not comparing) can achieve better times

Example of a  
Linear Time Sort

• Suppose I have an array of N unordered values - the integers 1 through N, inclusive

• In a single pass, through the N values, I can assign them to the correct places in the
target array

• That’s time on the order of N, not N log N - it was because I was able to put items
directly where they need to go

• Bucket Sort, Counting Sort, and Radix Sort are all sorts that are not comparison-
based, but put things where they go in linear time - but the data must be “special”

3 2 1 7 4 6 5

How We Approximate
Running Times

• It is typical to approximate algorithm running times to just use Nd,
where d is the highest exponent of N in the running time.

• Thus Insertion Sort and Selection Sort are both “about N2”

• Linear search is “about N”

• We pay attention to additional log factors, but don’t care about their
base

• Thus binary search is “about log N” and Mergesort is “about
N log N”

• You will often see these approximations written as O(N2) or  
O(N log N), which we will define more specifically later

Why Approximate?
Reason 1: Architectures Vary
• It may seem strange that we treat 2N as roughly the

same running time as N or N/2. Why ignore these
“constant factors” of 2 or 1/2?

• Reason #1: Our analysis can’t be that precise
because of differences in machines and languages.
We’re just counting “operations” but that lumps together
addition, multiplication, requesting memory … lots of
stuff that all takes a different amount of time. That means
there are really a bunch of unknown constants we don’t
know lurking in our analysis: a the time to add, m the
time to request more memory…

Why Approximate?
Reason 2: We Care About the Long Run
• It may seem strange that we treat 2N as roughly the

same running time as N or N/2. Why ignore these
“constant factors” of 2 or 1/2?

• Reason #2: The constants don’t matter in the
long run. Comparing two linear functions like N or
2N, you might see a practical difference. But
comparing different orders like 2N vs N2/2 … the
one with N2 will always be worse if there’s enough
data. We’ll explore this more when we talk about
running times and big-O.

