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The Inclusion-Exclusion Principle

1. The probability that at least one of two events happens

Consider a discrete sample space Ω. We define an event A to be any subset of Ω,
which in set notation is written as A ⊂ Ω. Then, Boas asserts in eq. (3.6) on p. 732 that1

P (A ∪B) = P (A) + P (B)− P (A ∩B) , (1)

for any two events A,B ⊂ Ω. This is equivalent to the set theory result,

|A ∪B| = |A|+ |B| − |A ∩ B| , (2)

where the notation |A| means the number of elements contained in the set A, etc. In
writing eq. (2), we have assumed that A and B are two finite discrete sets, so the number
of elements in A and B are finite.

 

The proof of eq. (2) is immediate after considering the Venn diagram shown above. In
particular, adding the number of elements of A and B overcounts the number of elements
in A ∪ B, since the events in A ∩ B have been double counted. Thus, we correct this
double counting by subtracting the number of elements in A ∩ B, which yields eq. (2).
The corresponding result in probability theory is given by eq. (1).

1Boas uses a nonstandard notation by writing A+B for A ∪B. The latter is standard in set theory

and we shall use it in these notes. A ∪B means the union of the sets A and B and is equivalent to the

“inclusive or,” i.e. ”either A or B or both.” Likewise, Boas uses a nonstandard notation by writing AB

for A ∩ B. Again, the latter is standard in set theory and we shall use it in these notes. A ∩ B means

the intersection of the sets A and B, or equivalently “both A and B.”
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2. The probability that at least one of three events happens

It is straightforward to generalize the result of eq. (1) to the case of three events.2

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C) , (3)

for any three events A,B,C ⊂ Ω. This is equivalent to the set theory result,

|A ∪ B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩ B ∩ C| . (4)

 

Once again, the proof of eq. (4) is immediate after considering the Venn diagram
shown above.3 In particular, adding the number of elements of A, B and C counts
elements in A∩B ∩C three times, and counts elements of A∩B, A∩C and B ∩C not
contained in A∩B∩C twice. Thus, |A∪B∪C| = |A|+|B|+|C|−|A∩B|−|A∩C|−|B∩C|
will include all events in A, B and C once except for the events in A∩B ∩C, which were
all subtracted off. Thus, to include all events in A ∪ B ∪ C exactly once, we must add
back the number of events in A∩B ∩C. Thus, eq. (4) is established. The corresponding
result in probability theory is given by eq. (3).

3. The Inclusion-Exclusion principle

The inclusion-exclusion principle is the generalization of eqs. (1) and (2) to n sets.
Let A1, A2, . . . , An be a sequence of n events. Then,

P (A1 ∪ A2 ∪ · · · ∪ An) =
n

∑

i=1

P (Ai)−
∑

i<j

P (Ai ∩ Aj) +
∑

i<j<k

P (Ai ∩Aj ∩ Ak)

−
∑

i<j<k<ℓ

P (Ai ∩ Aj ∩Ak ∩ Aℓ) + . . .+ (−1)n+1P (A1 ∩A2 ∩ · · · ∩ An) , (5)

2This is problem 15–3.8 on p. 734 of Boas.
3The Venn diagram above is taken from the Wikipedia webpage on the inclusion-exclusion principle.

Check it out at http://en.wikipedia.org/wiki/Inclusion%E2%80%93exclusion principle.
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where A1, A2, . . .An ⊂ Ω. This is equivalent to the set theory result,

|A1 ∪A2 ∪ · · · ∪ An| =

n
∑

i=1

|Ai| −
∑

i<j

|Ai ∩ Aj|+
∑

i<j<k

|Ai ∩Aj ∩Ak|

−
∑

i<j<k<ℓ

|Ai ∩ Aj ∩Ak ∩ Aℓ|+ . . .+ (−1)n+1|A1 ∩ A2 ∩ · · · ∩ An| . (6)

The proof of eq. (6) is an exercise in counting. Suppose a point is contained in exactly
m of the sets, A1, A2, . . .An, where m is a number between 1 and n. Then, the point is
counted m times in

∑n

i=1
|Ai|, it is counted C(m, 2) times in

∑

i<j |Ai∩Aj |, it is counted
C(m, 3) times in

∑

i<j<k |Ai∩Aj∩Ak|, etc., where C(m, k) is the number of combinations
of m objects taken k at a time. After reaching

∑

i1<i2<···im
|Ai1 ∩Ai2 ∩ · · · ∩Aim |, where

the point is counted once [since C(m,m) = 1], one finds that the point is not counted
at all in any of the terms that involve the intersection of more than m sets. The net
result is that a point that is contained in exactly m of the sets will be counted S times
in |A1 ∪ A2 ∪ · · · ∪ An| given by eq. (6), where

S ≡ C(m, 1)− C(m, 2) + C(m, 3)− C(m, 4) + · · ·+ (−1)m+1C(m,m) , (7)

after noting that C(m, 1) = m.
To compute S, we recall the binomial theorem,

(x+ y)m =
m
∑

k=0

C(m, k)xkym−k , (8)

where

C(m, k) ≡

(

m

k

)

≡
m!

k!(m− k)!

is the number of combinations of m objects taken k at a time. Setting x = 1 and y = −1
in eq. (8) yields,

m
∑

k=0

(−1)kC(m, k) = 0 .

Using C(m, 0) = 1, it follows that

1− C(m, 1) + C(m, 2)− C(m, 3) + . . .+ (−1)mC(m,m) = 0 ,

which implies that S = 1 [cf. eq. (7)]. Thus, we have shown that there is no multiple
counting of points in eq. (6). That is, every point contained in the union of A1, A2, . . . An

is counted exactly one time. Thus, eq. (6) is established. The corresponding result in
probability theory is given by eq. (5). We have therefore verified the inclusion-exclusion
principle.

There are numerous applications of the inclusion-exclusion principle, both in set the-
ory and in probability theory. In particular, it provides a powerful tool for certain types
of counting problems. An example is provided in the next section of these notes.
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4. Derangements

Starting with n objects, how many different permutations are there such that none of
the objects end up in their original positions? Such permutations are called derangements

or permutations with no fixed points. In general, there are n! possible permutations of
n objects. In this section, we shall count the number of possible derangements of n
objects, which we shall denote by the symbol Dn. The derivation of Dn will be based on
the inclusion-exclusion principle.

Let Ai be the subset of the set of permutations of n objects such that the ith object
alone ends up in its original position under the permutation. Then |A1 ∪ A2 ∪ · · · ∪ An|
counts the number of permutations in which at least one of the n objects ends up in its
original position. Since there are n! possible permutations of n objects, it follows that the
number of permutations such that none of the objects end up in their original positions,
i.e. the total number of derangements of n objects, is given by

Dn = n!− |A1 ∪ A2 ∪ · · · ∪ An| . (9)

One can compute |A1∪A2∪· · ·∪An| using the inclusive-exclusive principle [cf. eq. (6)].
First,

|Ai| = (n− 1)! ,

since if exactly one of the n objects ends up in its original position, that leaves the other
n− 1 objects to be freely permuted in (n− 1)! possible ways. Hence,

n
∑

i=1

|Ai| = n · (n− 1)! = n! ,

since there are n terms in the sum. Second,

|Ai ∩ Aj| = (n− 2)! ,

since if exactly two of the n objects end up in their original positions, that leaves the
other n− 2 objects to be freely permuted in (n− 2)! possible ways. Hence,

∑

i<j

|Ai ∩ Aj | = (n− 2)!C(n, 2) = (n− 2)! ·
n(n− 1)

2!
=

n!

2!
,

since there are C(n, 2) terms in the sum above. Third,

|Ai ∩ Aj ∩ Ak| = (n− 3)! ,

since if exactly three of the n objects end up in their original positions, that leaves the
other n− 3 objects to be freely permuted in (n− 3)! possible ways. Hence,

∑

i<j<k

P (Ai ∩ Aj ∩Ak) = (n− 3)!C(n, 3) = (n− 3)! ·
n(n− 1)(n− 2)

3!
=

n!

3!
,

since there are C(n, 3) terms in the sum above.
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The pattern should be clear. When we reach the final term in eq. (6), we have

|A1 ∩ A2 ∩ · · · ∩ An| = 1 ,

which corresponds to all objects ending up in their original position.4 Hence, eq. (6)
yields

|A1 ∪A2 ∪ · · · ∪ An| = n!

[

1−
1

2!
+

1

3!
−

1

4!
+ · · ·+ (−1)n+1

1

n!

]

= n!

n
∑

k=1

(−1)k+1

k!
.

Inserting this result into eq. (9) yields the number of derangements of n objects,

Dn = n!
n

∑

k=0

(−1)k

k!
. (10)

The probability that a permutation of n objects is a derangement is given by Dn/n!
since there are Dn possible derangements and n! possible permutations. It is amusing to
note that as n → ∞, the probability that a permutation of n objects is a derangement
is given by

lim
n→∞

P (derangement) = lim
n→∞

Dn

n!
=

∞
∑

k=0

(−1)k

k!
=

1

e
.

Moreover, if n is large (in practical applications, any n greater than about 10 can be
considered to be large), then the probability that the permutation of the n objects is a
derangement is approximately 1/e almost independently of the precise value of n.

An example of derangements arises in a very famous problem called the hat check
problem in which n hats are checked by customers at a restaurant. Unfortunately the
hat checkers fail to do their jobs, and the hats are hopelessly scrambled during storage.
What is the probability that no customer gets his or her own hat back? This is equivalent
to asking for the probability of a derangement of n objects. If the number of customers
involved is large, then the probability is approximately 1/e ≃ 0.367879.
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