1 Summary: Probability

- if Ω is a set of outcome/events and $A \subset \Omega$ then uniform probability $\operatorname{Pr}[x \in A]=|A| /|\Omega|$. There are 2 options here for each outcome, either $x \in A$ or $x \notin A$
- random variables X, Y, X each partition the space Ω by a certain criteria (for example $\mathrm{X}=$ object color, $\mathrm{Y}=$ object price, $\mathrm{Z}=$ object shape). They are called "random" because any object pulled at random can have any of the values of X as color, any value of Y as price, and any Z as shape. For short notation we say $\operatorname{Pr}(X, Y)=\operatorname{Pr}(x=X, y=Y)$ is the probability that a random object has color x and price y
- Bayes Theorem $\operatorname{Pr}(Y \mid X) * P(X)=\operatorname{Pr}(X, Y)=\operatorname{Pr}(X \mid Y) * P(Y)$ which means probability to have a particular $(X=r e d, Y=100)$ object is the probability to have $(X=r e d)$ times probability to have $(Y=100$, given that $X=r e d)$ or vice versa. The equality is the same as saying $\operatorname{Pr}(Y \mid X)=\frac{\operatorname{Pr}(X \mid Y) * P(Y)}{P(X)}$
- marginalization of variable Y over variable
$X: \operatorname{Pr}(Y)=\sum_{x} \operatorname{Pr}(x=X) * \operatorname{Pr}(X, Y)=\sum_{x} \operatorname{Pr}(x=X) * \operatorname{Pr}(Y \mid X)$.
If X is binary with only two possible values $(X ; \bar{X})$ (for example "pass" vs "fail") then we have $\operatorname{Pr}(Y)=\operatorname{Pr}(X) * \operatorname{Pr}(Y \mid X)+\operatorname{Pr}(\bar{X}) * \operatorname{Pr}(Y \mid \bar{X})$
- with marginalization of Y over binary random variable X we can write Bayes as $\operatorname{Pr}(X \mid Y)=\frac{\operatorname{Pr}(Y \mid X) * P(X)}{P(Y)}=\frac{\operatorname{Pr}(Y \mid X) * P(X)}{\operatorname{Pr}(X) * \operatorname{Pr}(Y \mid X)+\operatorname{Pr}(\bar{X}) * \operatorname{Pr}(Y \mid \bar{X})}$
- Independent variables X, Y means $P(Y \mid X)=P(Y)$ which is to say Y does not depend on X (price does not depend on color). From Bayes this means also $P(X \mid Y)=P(X)$ and $P(X, Y)=P(X) * P(Y)$
- expected value (or mean) for a numeric-value random variable is the average of values weighted by probabilities:
$E[X]=\sum_{x} x * \operatorname{Pr}(x=X)=\sum_{x} x * \operatorname{Pr}(x)$
- expectation ALWAYS distributes over sum, even if variables are not independent. But they have to have numeric values
$E[X+Y+Z]=E[X]+E[Y]+E[Z]$
- variance $=$ avg distance-to-mean ${ }^{2}$ weighted by probabilities
$\operatorname{var}[X]=\sum_{x}(x-\text { mean })^{2} * \operatorname{Pr}(x=X)=E\left[(X-E[X])^{2}\right]=$
$E\left[X^{2}+E^{2}[X]-2 X E[X]\right]=E\left[X^{2}\right]+2 E^{2}[X]-2 E^{2}[X]=E\left[X^{2}\right]-E^{2}[X]$
- variance distributes over sum ONLY IF X, Y are indenpendent
X, Y independent $\Rightarrow \operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$
- entropy $=$ randomness of X (the more random, the higher the entropy)
$H[X]=\sum_{x} \operatorname{Pr}(x) \log \left(\frac{1}{\operatorname{Pr}(x)}\right)$
- Markov Chains

