
Introduction to Number Theory
CS1800 Discrete Math; notes by Virgil Pavlu; updated November 5, 2018

1 modulo arithmetic

All numbers here are integers. The integer division of a at n > 1 means
finding the unique quotient q and remainder r ∈ Zn such that
a = nq + r
where Zn is the set of all possible remainders at n : Zn = {0, 1, 2, 3, ..., n−1}.

“mod n” = remainder at division with n for n > 1 (n it has to be at least 2)
“a mod n = r” means mathematically all of the following :

· r is the remainder of integer division a to n
· a = n ∗ q + r for some integer q
· a, r have same remainder when divided by n
· a− r = nq is a multiple of n
· n | a− r, a.k.a n divides a− r

EXAMPLES
21 mod 5 = 1, because 21 = 5*4 +1
same as saying 5 | (21− 1)

24 = 10 = 3 = -39 mod 7 , because 24 = 7*3 +3; 10=7*1+3; 3=7*0 +3;
-39=7*(-6)+3. Same as saying
7 | (24− 10) or
7 | (3− 10) or
7 | (10− (−39)) etc

LEMMA two numbers a, b have the same remainder mod n if and only
if n divides their difference.
We can write this in several equivalent ways:
· a mod n = b mod n, saying a, b have the same remainder (or modulo)
· a = b( mod n)
· n | a− b saying n divides a− b
· a− b = nk saying a− b is a multiple of n (k is integer but its value doesnt
matter)
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EXAMPLES
21 = 11 (mod 5) = 1 ⇔ 5 | (21− 11)⇔ 21 mod 5 = 11 mod 5
86 mod 10 = 1126 mod 10 ⇔ 10 | (86− 1126)⇔ 86− 1126 = 10k
proof: EXERCISE. Write “a mod n = r” as equation a = nq + r, and
similar for b

modulo addition (a + b) mod n = (a mod n + b mod n) mod n
EXAMPLES
17 + 4 mod 3 = (17 mod 3) + (4 mod 3) mod 3 = 2 + 1 mod 3 = 0

modulo multiplication (a · b) mod n = (a mod n · b mod n)modn
EXAMPLES
17 * 4 mod 3 = (17 mod 3) * (4 mod 3) mod 3 = 2 * 1 mod 3 = 2

modulo power is simply a repetition of multiplications
ak mod n = (a mod n * a mod n ... * a mod n ) mod n

EXAMPLE: 13100 mod 11 =?
13 mod 11 = 2
132 mod 11 = 22 mod 11 = 4
134 mod 11 = (132 mod 11)2 mod 11 = 42 mod 11 = 16 mod 11 = 5
138 mod 11 = (134 mod 11)2 mod 11 = 52 mod 11 = 25 mod 11 = 3
1316 mod 11 = (138 mod 11)2 mod 11 = 32 mod 11 = 9
1332 mod 11 = (1316 mod 11)2 mod 11 = 92 mod 11 = 4
1364 mod 11 = (1332 mod 11)2 mod 11 = 42 mod 11 = 5
13100 = 1364 · 1332 · 134 mod 11 = (5 ∗ 4 ∗ 5) mod 11 = 25 ∗ 4 mod 11 = 25
mod 11 ∗ 4 mod 11 = 3 ∗ 4 mod 11 = 1
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2 factorization into primes

Any integer n ≥ 2 can be uniquely factorized into prime numbers
n = p1 · p2 · p3 · ... · pt
12 = 2 · 2 · 3
48 = 2 · 2 · 2 · 2 · 3

In this product we prefer to group the same primes together, so we usu-
ally write each prime only once with an exponent indicating how many times
it appears: n = pe11 · pe22 · pe33 · ... · pett

12 = 22 · 3
48 = 24 · 3
36 = 22 · 32

50 = 2 · 52

1452 = 22 · 3 · 112

1 is not a prime number, the primes start at 2
primes sequence: 2,3,5,7,11,13,17,19...

OBSERVATION The product ab factorization is simply enumerating all the
primes in a an b with proper counts. If there are exponents or common
primes, we can simply write in ab factorization each prime with the expo-
nent made of the sum of exponents of that prime in a and b
300 = 22 · 3 · 52

126 = 2 · 32 · 7
300 · 126 = 23 · 33 · 52 · 7 = 37800

THEOREM 1 if a prime divides a product of integers, then it divides
one of the factors. In other words p | ab⇒ p | a ∨ p | b
proof by contradiction assume p - a ∧ p - b. Then neither a nor b contain
p in their respective factorizations, thus p cannot appear in the product ab

NOTE This is not true for non-primes, for example p = 4 :
4 | 6 · 10, but 4 - 6 and 4 - 10
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One can obtain the sequence of primes using the Sieve of Eratosthenes. Start
with a sequence of all positive integers bigger than 1: 2,3,4,5,6,7,8,9,10,...
* the first available number (2) is prime. Remove from the sequence all mul-
tiples of 2, so the sequence now is 3,5,7,9,11,13,15...
* repeat: the first available number (3) is prime. remove all multiples of 3;
now the sequence of remaining numbers is 5,7,11,13,17,19,23,25,29...
* repeat. We get 5 as prime and after removal of 5 multiples the remaining
sequence is 7,11,13,17,19,23,29,...49,..
NOTE that each step gives the next prime number and removes from the
sequence its multiples. The next number available is a prime, because it was
not removed as a multiple of smaller prime numbers extracted previously.

EXERCISE When the next prime p is extracted, what is the smallest number
(other than p) that is removed because it is a p-multiple?

LEMMA There are infinitely many primes.
proof by contradiction. Assume prime set is finite P = {p1, p2, p3, ..., pt}.
Then the number n = p1 · p2 · p3 · ... · pt + 1 cannot have any prime factors,
so it is another prime. But n is not in set P , contradiction.
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3 gcd

Greatest Common Divisor between integers a and b is made of
the common primes of a and b.
If they have exponents, each prime in gcd has the lowest exponent between a
and b (that is, each exponent gives how many of that prime are in a respec-
tively b. The lowest exponent corresponds to the common number of that
prime)
48 = 24 · 3
36 = 22 · 32

gcd(48,36) = 22 · 3 = 12 (two “2” and one “3” )

8918 = 2 · 73 · 13
9800 = 23 · 52 · 72

gcd(8918,9800) = 2 · 72 = 98 (one “2”, two “7” )

60 = 22 · 3 · 5
50 = 2 · 52

gcd(60,50) = 2 · 5 = 10

60 = 22 · 3 · 5
637 = 13 · 72

no common primes, so gcd(60,637) = 1

LEMMA if q divides both a and b, then q | gcd(a, b)
proof idea. If q divides both a and b then q can only be made of (factorizes
into) the common primes between a and b. Since d = gcd(a, b) contains all
the common primes, then d will include the entire factorization of q, thus d
is a multiple of q, or q | d = gcd(a, b).

LEMMA gcd(a, b) is the largest integer who divides both a and b
proof by contradiction Say gcd(a, b) is not the largest divisor, but instead
f > gcd(a, b) is the largest integer that divides both a and b. From previous
theorem, f | gcd(a, b)⇒ f ≤ gcd(a, b), contradiction.

THEOREM 2 EUCLID Let gcd(a, b) = gcd(b, a mod b). If a = bq + r
(usually the integer division of a to b). Then d = gcd(a, b) = gcd(b, a
mod b) = gcd(b, r)
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Its easy to see how gcd applies to a = bq + r as q subtractions of one from
the other:
gcd(a, b) = gcd(a− b, b) = gcd(a− b− b, b) = ... = gcd(a− qb, b) = gcd(r, b)

A masonry contractor has to tile a rectangular patio size a = 22 × b = 6.
There is a strict requirement that the tiles have to be squares, and they have to
be as big as possible. What size tile will be used? Answer: d=gcd(22, 6) = 2
To see this visually, the contractor draws the patio on a square grid 22 x 6.

1

6

1 226 12 18

1

6

1 226 12 18

Figure 1: a rectangular patio of size (a = 22 × b = 6) can be tiled with
squares of maximum size d = gcd(22, 6) = gcd(4, 6) = 2.

He knows that whatever d is the biggest tile, it can certainly cover 6 x 6, so
he chops that square off (figure, vertical red line at column 6). That is
d = gcd(22, 6) = gcd(22− 6, 6) = gcd(16, 6)
Next the contractor chops off the next 6 x 6 square, and he gets
d = gcd(16, 6) = gcd(16− 6, 6) = gcd(10, 6)
Then the last full 6 x 6 is chopped to get
d = gcd(10 − 6, 6) = gcd(4, 6) = gcd(r, b) (since a=22, b=6, q=3, r=4 in
equation a = bq + r)
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EXAMPLE a=51; b=9; d=gcd(51,9)=3
51 division to 9 yields 51=9*5 + 6 (q = 5 and r = 6)
The theorem states that gcd(51,9) = 3 = gcd(9,6)

proof Let d = gcd(a, b) and d1 = gcd(b, r)
d | a and d | b⇒ d | (a− bq)⇒ d | r ⇒ d | gcd(b, r) = d1
d1 | b and d1 | r ⇒ d1 | (bq + r)⇒ d1 | a⇒ d1 | gcd(b, a) = d
Thus d | d1 and d1 | d⇒ d = d1

Euclid Algorithm finds gcd(a, b) by reducing the problem (a, b) to a smaller
problem (b, r) repeatedly until its trivial.

d = PROCEDURE-EUCLID (a, b) : given a > b ≥ 1, find d = gcd(a, b)
1) divide a by b obtain a = bq + r
2) if r = 0 then b=gcd(a,b), RETURN b, DONE
3) if r 6= 0 we have b > r ≥ 1 and theorem says gcd(a, b) = gcd(b, r)

Call d = PROCEDURE-EUCLID(b, r)
4) RETURN d

EXAMPLE
gcd(22,6) = gcd(6*3+4, 6)
. (a=22,b=6,q=3,r=4 reduction to b=6 r=4)
= gcd(6,4) = gcd( 4*1 +2, 4)
. (a=6,b=4,q=1,r=2 reduction to b=4 r=2)
= gcd(4,2) = gcd( 2*2 +0, 2)
. (r = 0, return b=2 as gcd)
=2

EXAMPLE
gcd(51,9) = gcd(9*5+6, 9)
. (a=51,b=9,q=5,r=6 reduction to b=9 r=6)
= gcd(9,6) = gcd( 6*1 +3, 6)
. (a=9,b=6,q=1,r=3 reduction to b=6 r=3)
= gcd(6,3) = gcd( 3*2 +0, 3)
. (r = 0, return b as gcd)
=3
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NOTE that the problem is always reduced to a smaller one: by reducing
(a, b) to (b, r) both values are smaller (closer to 0); thus eventually we are
going to hit a trivial problem where r = 0.

lcm(a, b) is Least Common Multiple of a and b. It is the opposite
of gcd regarding a and b prime factorizations:
gcd = intersection of prime factors (smallest counts each prime)
lcm = union of prime factors (largest count for each prime)

48 = 24 · 3
36 = 22 · 32

gcd(48,36) = 22 · 3 = 12 (two “2” and one “3” )
lcm(48,36) = 24 · 32 = 144 (four “2” and two “3” )

8918 = 2 · 73 · 13
9800 = 23 · 52 · 72

gcd(8918,9800) = 2 · 72 = 98 (one “2”, two “7” )
lcm(8918,9800) = 23 · 52 · 73 · 13 = 891800 (three “2”, two “5”, three “7”, one
“13” )

LEMMA a · b = gcd(a, b) · lcm(a, b)
EXAMPLES

36*48 = gcd(36,48) * lcm (36,48) = 12 * 144
8918* 9800 = gcd(8918,9800) * lcm(8918,9800) = 98 * 891800

proof idea ab has the same factorization as gcd*lcm, just organized dif-
ferently. Take any prime pe in factorization ab. Say u of these e times the
prime p comes from a, the other v = e− u times it must come from b.
Then pmin(u,v) appears in gcd(a, b) factorization and pmax(u,v) appears in
lcm(a, b). The theorem states that overall we have the same number of
p occurrences in ab is the same as in gcd · lcm, which is same as saying
u + v = min(u, v) + max(u, v); easy to verify.
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4 relative prime (“coprime”)

Integers a, b are coprime if they have no common prime factors. In other
words gcd(a,b)=1
Note: a or b or both can be non prime individually, and still be coprime to
each other: neither 12 or 25 is prime but
12 = 22 · 3
25 = 52

gcd(12,25) =1 so they are coprime

Also an integer a can be coprime with b but not with c : 12 is coprime
with 25, but not with 16 because gcd(12,16) =4

THEOREM 3 if n divides a product of integers, and it is coprime with
one of them, then it divides the other. In other words
n | ab; gcd(n, a) = 1⇒ n | b
proof idea if n factorizes into prime factors n = pe11 · pe22 · pe33 · ... · pett , then
none of these primes appear in factorization of a (because gcd(n, a) = 1 there
are no common primes between n and a ).
But ab = k · n = k · pe11 · pe22 · pe33 · ... · pett
so each prime with its exponent like pe11 must appear in b factorization. Thus
n | b

LEMMA If d = gcd(a, b) then u = a
d

and v = b
d

are coprime integers,
i.e. gcd(u, v) = 1
EXAMPLE a = 6, b = 9, gcd(a, b) = 3. Then u = 6

3
= 2; v = 9

3
= 3 and

gcd(6
3
, 9
3
) = gcd(2, 3) = 1

proof idea. Assume gcd(u, v) contains prime p > 1. Then a and b both
contain d · p in their respective factorizations. That means d = gcd(a, b)
should have included d · p, since gcd includes all common factors. Thus
dp|d⇒ p = 1 contradiction.

formal proof by contradiction. Assume gcd(u, v) contains prime p > 1.
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Then u = pf ; v = pg ⇒ a = du = dpf ; b = dv = dpg ⇒ dp | a; dp | b ⇒ dp |
gcd(a, b)⇒ dp|d⇒ p = 1 contradiction.

APPLICATION: reduction of rational fractions. Say we want to simplify
a fraction of two integers f = a

b
as much as possible, i.e until no simplifica-

tion is possible. That is achieved by dividing both numerator a and denom-
inator b by their gcd; after that the new fraction cannot be simplified further.

f =
72

132

We compute gcd(72, 132) = gcd(23 · 32, 22 · 3 · 11) = 22 · 3 = 12 and simplify
by dividing both numbers by 12

f =
72

132
=

12 · 6
12 · 11

=
6

11

which is irreductible (not simplifiable)

THEOREM 4 if two coprimes divide a number, then their product also
divides that number. In other words
n | a;m | a; gcd(n,m) = 1⇒ nm | a
EXAMPLE : 6 | 120; 5 | 120; gcd(5, 6) = 1. Then 5 · 6 | 120

This is not necessarily true if gcd(m,n) > 1, for example:
6 | 72; 9 | 72. But 6·9 - 72; the theorem doesnt hold here because gcd(6, 9) 6= 1

proof 1. n | a⇒ a = nk.
Then m | nk; gcd(m,n) = 1⇒ m | k ⇒ k = mt
We now can write a = kn = tmn⇒ mn | a

proof 2. Lets consider factorization into primes
nm = pe11 · pe22 · pe33 · ... · pett .
Take one of these factors, say pe11 . Since gcd(n,m) = 1 all e1 occurrences of
prime p1 must be in n or all in m; in other words we cannot have some of p1
in n and the rest of them (up to e1) in m because that would cause p1 to be
part of gcd(n,m).
Suppose they are in n, then since a is multiple of n we have that pe11 appears
in a factorization. This is true for all primes in nm factorization, so a is a
multiple of all of them, thus a multiple of nm.
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5 modulo multiplicative inverse

In Zn some elements have a multiplicative inverse: multiplying with the in-
verse gives 1 mod n. We write a’s inverse in Zn as a−1 mod n
DEFINITION a ∈ Zn has (multiplicative) inverse b = a−1 ∈ Zn iff ab = 1
mod n.
If b exists, then a = b−1 is b’s inverse mod n, since ba=ab = 1 mod n

EXAMPLES :
2 has inverse 3=2−1 mod 5, because 2 · 3 = 6 = 1 mod 5
9 has inverse 3=9−1 mod 13, because 9 · 3 = 27 = 1 mod 13

NOTE: Do not confuse (multiplicative) inverse with “additive inverse” (some-
times also called “opposite”). The additive inverse always exists, it is −a =
n− a which added to a gives 0 : −a + a = 0 mod nİn general inverse refers
to “multiplicative inverse” unless otherwise specified.
Not all elements in Zn have an inverse. Examples:
* 2 ∈ Z8 has no inverse because gcd(2,8)6= 1. An inverse b = 2−1 would mean
2b = 1 mod 8 ⇔ ∃k ∈ Z, 2b = 8k + 1
which is impossible because 2 | 2b but 2 - 8k + 1

* 3 ∈ Z12 has no inverse in Z12 because gcd(3,12)6= 1. An inverse b = 3−1

would mean
3 · b = 12k + 1⇒ 3 | 12k + 1⇒ 3 | 1 contradiction !

* 0 does not have an inverse in Zn (for any n), because 0 · b = 0 6= 1,∀b ∈ Zn

Z∗n = Zn\{0} = {1, 2, 3, ...n − 1} is the set of all remainders mod n ex-
cept 0.

THEOREM 5 MULTIPLICATIVE INVERSE Multiplicative inverse
b = a−1 mod n exists if and only if a, n are coprime, i.e. gcd(a, n) = 1
The inverse, when exists, is a power (v − 1) of a mod n: a−1 = av−1, or
av = 1 mod n; v is called the multiplicative order of a mod n.
The set of powers of a modulo n, Pa = {a, a2, a3, ..., av = 1} mod n, is a
critical set in number theory and cryptography. Note that Pa contains the
inverse of a in element av−1.
proof (⇒) if a has inverse b mod n then ab = nk + 1. Let d = gcd(a, n),
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then
d | ab; d | nk ⇒ d | ab− nk ⇒ d | 1⇒ d = 1

proof (⇐) if gcd(a,n)=1, consider the sequence of powers of a in Zn :
a1, a2, a3...( mod n). This is an infinite sequence but Zn is finite, so sooner
or later some of these powers are have to be the same value in Zn (pigeonhole
principle); in other words there will be different exponents u, u+ v such that
au = au+v mod n. That means n | au+v − au ⇒ n|au(av − 1)
but gcd(n, a) = 1 ⇒ gcd(n, au) = 1. So a previous theorem says n has to
divide the other factor, or
n | (av − 1)⇒ av = nk + 1⇒ a · av−1 mod n =1
So we found the inverse of a, it is a−1 = av−1 mod n. It is inefficient for a
large n to try consecutive powers to find the order; but for a known v one
can use fast exponentiation (repeated squaring) to get the inverse quickly.

EXAMPLE: a = 4 should have an inverse mod n = 9 in Z9 because gcd(4,9)=1.
We can find it by enumerating P4 the set powers of 4 modulo 9:
42 mod 9 = 16 mod 9 = 7
43 mod 9 = 64 mod 9 = 1; order=3
So 4 ∗ 42 = 1 mod 9, or 42 mod 9 is the inverse of 4 in Z9. That inverse
value is 42 mod 9 = 7.
Thus P4 mod 9 = {4, 42 = 7, 43 = 1}; order v = 3 and inverse 4v−1 = 42 = 7
mod 9.

EXAMPLE: a = 5 should have an inverse mod n = 26 in Z26 because
gcd(5,26)=1. We can find it by building the set P5 of powers of 5 modulo 26
until we get 1:
52 mod 26 = 25 mod 26 = −1 mod 26
53 = (52)5 = (−1) ∗ 5 = −5 = 21 mod 26
54 = (52)2 = (−1)2 = 1 mod 26 order =4
So 5 ∗ 53 = 1 mod 26, or 53 mod 26 = 21 is the inverse of 5 in Z26.
Verify: 5*21 = 105 = 1 mod 26
Thus P5 mod 26 = {5, 52 = 25 = −1, 53 = 125 = 21 = −5, 54 = (−1)2 = 1};
order v = 4 and inverse 5v−1 = 53 = 21 mod 26.

EXAMPLE: a = 9 should have an inverse mod n = 26 in Z26 because
gcd(9,26)=1. We can find it by building the set P9 of powers of 9 modulo 26
until we get 1:
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92 mod 26 = 81 mod 26 = 3
93 = (92)9 = 3 ∗ 9 = 27 = 1 mod 26
So 9 ∗ 92 = 1 mod 26, or 92 mod 26 = 3 is the inverse of 9 in Z26.
Verify: 9*3 = 27 = 1 mod 26
Thus P9 mod 26 = {9, 92 = 3, 93 = 1}; order v = 3 and inverse 9v−1 = 92 = 3
mod 26.

EXAMPLE: a = 5 should have an inverse mod n = 15 in Z15 because
gcd(5,15)=5. We can still build the set P5 of powers of 5 modulo 15. We
wont get 1, so we check to see when the values are repeating:
52 mod 15 = 25 mod 15 = 10
53 = (52)5 = 10 ∗ 5 = 50 = 5 mod 15 repeating
Thus P5 mod 15 = {5, 52 = 10}; there is no order order, and no inverse.

second proof (⇐)-optional . We’ll need the following lemma:
LEMMA if a, n coprime gcd(a, n) = 1, then multiplying all non-zero re-
mainders (mod n) with a gives back the set of non-zero remainders.
{1a, 2a, 3a, ..., (n− 1)a} mod n = {1, 2, 3, ...n− 1}.
In other words:
S = a · Z∗n mod n = {1a, 2a, 3a, ..., (n− 1)a} mod n = Z∗n

EXAMPLE n=9, a=4 coprime
{1 · 4, 2 · 4, 3 · 4, 4 · 4, 5 · 4, 6 · 4, 7 · 4, 8 · 4} mod 9 =
{4, 8, 12, 16, 20, 24, 28, 32} mod 9 = {4, 8, 3, 7, 2, 6, 1, 5} = Z∗9

Lemma proof First, the left set S is a subset of Zn, and does not con-
tain the remainder 0 : if 0 would be in it, thats saying there is a t ∈ Z∗n with
a · t = 0 mod n⇒ n | at. Since (a, n) are coprime, n must divide the other
factor, so n|t; but this is impossible for 0 < t < n
Second, S enumerates n − 1 elements, and all of them are distinct remain-
ders mod n. Suppose there are two distinct u, v ∈ Z∗p such that au = av
mod n ⇒ n | a(u − v) ⇒ n | a(u − v). Since (a, n) are coprime, n must
divide the other factor, n | (u − v) ⇒ u = v (because −n < u − v < n)
contradiction.
So S is a subset of Z∗n with all its n− 1 elements. It means S = Z∗n.

Now to the main proof: Lemma showed that {1a, 2a, 3a, ..., (n−1)a} mod n =
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{1, 2, 3, ...n− 1}
Note that 1 is in the set on the right side, so there must be on the left set.
Thus there is some value b ∈ {1, 2, ..., n− 1} such that ab = 1 mod n
NOTE: this proof gives no idea how to actually find the inverse other than
trying all possibilities.

The first way to get the inverse (when exists) is to use the modulo power
until we get remainder 1. The second way is to find the linear coefficients
that give the gcd, recursively from problem (a,b) to smaller problem (b,r)
similarly with the strategy in Euclid algorithm.

THEOREM 6 GCD COEF, EXTENDED EUCLID For any integers
a, b there exists integer coefficients x, y such that

ay + by = gcd(a, b) (“gcd equation”)
x, y are called “gcd-coefficients” or “Bézout coefficients” for (a, b).

Further, any integer coefficients x, y produce a linear combination of ax+ by
that is a multiple of d = gcd(a, b). In particular, such linear combinations
cannot produce positive integers smaller than d. In fact these two sets are
the same:
{ax + by|∀x, y ∈ Z} = multiples of d = {...,−3d,−2d,−d, 0, d, 2d, 3d, 4d...}

EXAMPLE: a = 60, b = 36, gcd(60, 36) = 12
We can pick x = −1, y = 2 to get
ax + by = 60 · (−1) + 36 · 2 = −60 + 72 = 12
The coefficients are not unique; we could pick instead x = 2, y = −3 to get
ax + by = 60 · 2 + 36 · (−3) = 120− 108 = 12
The second part of the theorem states that for any x, y the integer ax + by
has to be a multiple of 12, thus at least 12 (if positive) or at most -12 (if
negative) or 0.

EXAMPLE: a = 51, b = 9, gcd(51, 9) = 3
For x = 11, y = −62 we get ax + by = 51 · (11) + 9 · (−62) = 561− 558 = 3

EXAMPLE: a = 22, b = 6, gcd(22, 6) = 2
For x = −1, y = 4 we get ax + by = 22 · (−1) + 6 · (4) = −22 + 24 = 2

proof Say d = gcd(a, b). We know from previous theorem gcd(a
d
, b
d
) = 1,
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and then from another previous theorem that in this case a
d

should have an
inverse modulo b

d
. Lets call that inverse x:

a

d
· x = 1 mod

b

d

thats same as saying is an integer t such that

ax

d
=

b

d
· t + 1

Then ax = bt+d⇒ ax−bt = d. Let y = −t to obtain ax+by = d = gcd(a, b).

INVERSE FROM GCD-COEFFICIENTS. If gcd(a, b) = 1, a has an
inverse in Zb and viceversa. In this particular case of coprimes a, b gcd-
coefficients theorem guarantees the coefficients x, y such that
ax + by = 1
These are indeed the inverses we are looking for:
x = a−1 mod b ; y = b−1 mod a

EXERCISE explain why x is the inverse of a in Zb ( ax = 1 mod b)

The finding-inverse problem then comes down to finding these coefficients
x, y. Euclid-Extended Algorithm does just this, by reducing the problem to
a smaller one until its easy to solve.
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Euclid Extended Algorithm finds gcd-coefficients x and y for the given
integers a,b, such that ax + by = d = gcd(a, b). It works recursively by re-
ducing the problem(a, b) to a smaller problem until it becomes trivial.

x, y = PROCEDURE-EUCLID-EXTENDED (a, b) : given a > b ≥ 1, return
coefficients x, y such that ax + by = gcd(a, b)

1) divide a by b obtain a = bq + r
2) if r = 0, b = gcd(a, b) and coefficients are x = 1, y = 1− q

exercise: x = 0, y = 1 also work
RETURN 1, 1− q. DONE

3) If r > 0 then b > r ≥ 1
Call x1, y1 = PROCEDURE-EUCLID-EXTENDED (b,r) to obtain
bx1 + ry1 = gcd(b, r) = gcd(a, b)

4) compute x, y from a, b, q, r, x1, y1
x = y1; y = x1 − qy1

exercise: verify these x, y calculations
5) RETURN x, y

EXAMPLE a = 51, b = 9
x, y=gcd-coef(51,9) = gcd-coef(9*5+6, 9)
. (a=51,b=9,q=5,r=6 call on b=9 r=6)

x1, y1=gcd-coef(9,6) = gcd-coef( 6*1 +3, 6)
. (a=9,b=6,q1=1,r=3 call on b=6 r=3)

x2, y2=gcd-coef(6,3) = gcd-coef( 3*2 +0, 3)
. (r = 0,q2=2 return coef 1, 1-q2)

compute x2 = 1; y2 = 1− q2 = −1
RETURN x2, y2 for a=6,b=3

. verify 6 ∗ x2 + 3 ∗ y2 = gcd
compute x1 = y2 = −1; y1 = x2 − q1y2 = 2
RETURN x1, y1 for a=9,b=6

. verify 9 ∗ x1 + 6 ∗ y1 = gcd
compute x = y1 = 2; y = x1 − qy1 = −11
RETURN x, y for a=51,b=9
. verify 51 ∗ x + 9 ∗ y = gcd
OBSERVATION: x, y are not unique. The procedure found x = 2, y = −11,
but x = −1, y = 6 would have worked too: 51*-1 + 9*6 = 3 = gcd(51,9)
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EXAMPLE a = 22, b = 6
x, y=gcd-coef(22,6) = gcd-coef(6*3*+4, 6)
. (a=22,b=6,q=3,r=4 call on b=6 r=4)

x1, y1=gcd-coef(6,4) = gcd-coef( 4*1 +2, 4)
. (a=6,b=4,q1=1,r=2 call on b=4 r=2)

x2, y2=gcd-coef(4,2) = gcd-coef( 2*2 +0, 2)
. (r = 0,q2=2 return coef 1, 1-q2)

gcd = ”last b” = 2
x2 = 1; y2 = 1− q2 = −1
RETURN x2, y2 for a=4,b=2

. verify 4 ∗ x2 + 2 ∗ y2 = gcd
compute x1 = y2 = −1; y1 = x2 − q1y2 = 2
RETURN x1, y1 for a=6,b=4

. verify 6 ∗ x1 + 4 ∗ y1 = gcd
compute x = y1 = 2; y = x1 − qy1 = −7
RETURN x, y for a=22,b=6
. verify 22 ∗ x + 6 ∗ y = gcd

EXERCISE. Say a, b are given positive integers. How many distinct pairs
of gcd coefficients (x, y) are there with x ∈ Zb?
hint: In particular if gcd(a, b) = 1, there is only one with x the inverse of a
in Zb. In general case, apply this fact for (a/gcd, b/gcd)
For example say a = 22; b = 6; gcd(a, b) = 2. Then x in Z6 can be one of two
possibilities: (x = 2, y = −7) or (x = 5, y = −18)
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6 The Set of Coprimes, Euler’s totient

We now know that when a has an inverse mod n, that inverse is a power of a
related to the multiplicative order: ∃ order v, av = 1 mod n ⇒ a−1 = av−1

mod n. We would like to get our hands on the order v such that av = 1
mod n. This is like solving a modulo-order equation but for the exponent.
The good: if v is such a power that produces av = 1 mod n, then any
multiple of v has the same property : avk = (av)k = 1k = 1 mod n
So in general we dont need the smallest order v to get av = 1 — any multiple
of v would do the same. We show here that there is such a multiple common
for all orders v (works for all a); we call this multiplicative order-for-all ϕ(n)
and show it is the size of the coprime set.

Cn = coprimes-with-n in Zn ={a ∈ Zn|gcd(a, n) = 1}
ϕ(n) = number of coprimes with n in Zn =|Cn| .

n set Cn ϕ(n)
prime 2 1 1= n− 1
prime 3 1,2 2= n− 1

4 1,3 2
prime 5 1,2,3,4 4= n− 1

6 1,5 2
prime 7 1:6 6= n− 1

8 1,3,5,7 4
9 1,2,4,5,7,8 6

10 1,3,7,9 4
prime 11 1:10 10= n− 1

15 1,2,4,7,8,11,13,14 8
16 1,3,5,7,9,11,13,15 8

prime 17 1:16 16= n− 1
18 1,5,7,11,13,17 6

prime 19 1:18 18= n− 1
20 1,3,7,9,11,13,17,19 8

prime 23 1:22 22= n− 1
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THEOREM 7 (Lagrange) COPRIMES SET FACTORIZATION if

gcd(a, n) = 1 then the multiplicative order of a v = |Pa| divides ϕ(n) = |Cn|
In fact, we can factorize the set of coprimes Cn into a set-product Pa ×Qa

where Pa is the set of a-powers like before, and Qa is a set of quotients
coprime/a-power as defined below. Once we prove everything, we conclude
that the set sizes satisfy |Cn| = |Pa| ∗ |Qa|, which concludes the theorem
since v = |Pa|.
proof idea. We define formally the quotient set Qa as follows: We start
with Qa = {1}. For each coprime c ∈ Cn, we consider the smallest quotient
qc ∈ Zn such that c = ak ∗ qc for some power k. We add qc to Qa, if its
not already there. So in the end Qa is the set of these smallest quotients
obtained as ”coprime”/”a-power”

EXAMPLE: n = 26, a = 9,Pa = {9, 92 = 3, 93 = 1}, order = v = 3.
We now calculate the smallest quotient of every coprime in C26 against P9:

coprime /9 /92 = 3 /93 = 1 smallest goes to Q9

1 3 9 1 1
3 9 1 3 1
9 1 3 9 1

5 15 19 5 5
15 19 5 15 5
19 5 15 19 5

7 21 11 7 7
21 11 7 21 7
11 7 21 11 7

17 25 23 17 17
25 23 17 25 17
23 17 25 23 17

Q9 = {1, 5, 7, 17}

NOTE: different coprimes c1 6= c2 might have the same smallest quotient
qc1 = qc2, because they use different powers of a

EXAMPLE: n = 26, a = 5,Pa = {5, 52 = −1, 53 = −5, 54 = −25 =
1}, order = v = 4. We now calculate the smallest quotient (as positive
remainder) of every coprime in C26 against P5:
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coprime /5 /52 = −1 /53 = −5 /54 = 1 smallest goes to Q5

1 -5 -1 5 1 1
21=-5 -1 5 1 21 1
25=-1 5 1 21 -1 1

5 1 21 -1 5 1

3 11 -3=23 15 3 3
-15=11 23 15 3 11 3
-3=23 15 3 11 23 3

15 3 11 23 15 3

7 17 19 9 7 7
-9=17 19 9 7 17 7
19=-7 9 7 17 19 7

9 7 17 19 9 7
Q5 = {1, 3, 7}

proof idea. To show |Cn| = |Pa| ∗ |Qa| we need three pieces.
Proof part 1: any element in Cn is also in Pa ∗ Qa. This is obvious: we
constructed Qa such that every coprime has a quotient, that is every c ∈ Cn

can be written as a power of a times an element in Qa

Proof part 2: any product obtained from Pa ∗ Qa is also in Cn. That is,
if q ∈ Qa then q ∗ ak is coprime with n. This is true because both q and
ak ∈ Pa are coprime with n so Theorem 1 can be used to prove the contra-
positive of part 2.

Proof part 3: So far we have proved that as sets these two are the same
Cn = Pa ∗Qa. The only remaining issue is to show that the set sizes work
out as we want : |Pa ∗Qa| = |Pa| ∗ |Qa|. In other words, the issue is to make
sure that making all products Pa ∗Qa does not repeat any value. It can be
shown by contradiction: lets assume that two of these products are the same
value mod n : q ∗ ak = t ∗ ah for q, t ∈ Qa with q < t. Then q = t ∗ ah−k
which means only one (the smallest) of q, t belongs to Qa; this contradicts
the construction of quotient set Qa, as the larger of the two (t) would never
be added to Qa.
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These parts allows us to conclude that the set sizes satisfy |Cn| = |Pa| ∗ |Qa|
or ϕ(n) = order(a) ∗ |Qa|. Thus v = order(a) divides ϕ(n)

EXAMPLE: n = 9, a = 4,Pa = {4, 42 = 7, 43 = 64 = 1}, order = v = 3. We
now calculate the smallest quotient (as positive remainder) of every coprime
in C9 against P4:

coprime /4 /42 = 7 /43 = 1 smallest goes to Q4

1 7 4 1 1
7 4 1 7 1
4 1 7 4 1

2 5 8 2 2
5 8 2 5 2
8 2 5 8 2

Q4 = {1, 2}

EXAMPLE: n = 15, a = 2,P2 = {2, 22 = 4, 23 = 8, 24 = 1}, order = v = 4.
We now calculate the smallest quotient (as positive remainder) of every co-
prime in C15 against P2:

coprime /2 /22 = 4 /23 = 8 /24 = 1 smallest goes to Q2

1 8 4 2 1 1
8 4 2 1 8 1
4 2 1 8 4 1
2 1 8 4 2 1

13 14 7 11 13 7
14 7 11 13 14 7
7 11 13 14 7 7
11 13 14 7 11 7

Q2 = {1, 7}
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THEOREM 8 (Euler) if gcd(a, n) = 1 then aϕ(n) = 1 mod n
proof This is simply a corollary of Lagrange theorem: if v is the multiplica-
tive order of a (there must be one since a is coprime) and ϕ(n) = v ∗ k then
aϕ(n) = avk = (av)k = 1k = 1 mod n

INVERSE FROM TOTIENT . The critical consequence is that ϕ(n)
acts like an order for any coprime a. The theorem also gives a quick way
to compute the inverse a−1, when the totient ϕ(n) is known: a−1 = aϕ(n)−1

mod n

second proof with modulo arithmetic - optional. We have a theo-
rem that says if a, n coprime gcd(a, n) = 1, then multiplying all non-zero
remainders (mod n) with a gives back the set of non-zero remainders.
{1a, 2a, 3a, ..., (n− 1)a} mod n = {1, 2, 3, ...n− 1}.
In other words:S = a · Z∗n mod n = {1a, 2a, 3a, ..., (n− 1)a} mod n = Z∗n
Now we need a version of this theorem, for the coprime remainders set:

Lemma. if a, n coprime gcd(a, n) = 1, then multiplying all coprime re-
mainders Cn = {u1, u2, u3, ..., uϕ(n)} with a gives back the set of coprime
remainders: {au1, au2, au3, ..., auϕ(n)} mod n = {u1, u2, u3, ..., uϕ(n)}.
In other words
S = a ·Cn mod n = {ua|u ∈ Cn} mod n = Cn

proof for lemma. To show this result we make a similar argument with
the one in the original theorem:
• the left set S is a subset of Cn, because every element in uv ∈ S is a
product of two coprimes with n (u and a), thus certainly a coprime: we can
immediately show that if u−1, a−1 are u and a inverses mod n, then u−1a−1

is the inverse of ua, so ua ∈ Cn.
• Second, S enumerates ϕ(n) elements, and all of them are distinct remain-
ders mod n. Suppose there are two distinct u1, u2 ∈ Cn such that au1 = au2

mod n ⇒ n | a(u1 − u2) ⇒ n | a(u1 − u2). Since (a, n) are coprime, n must
divide the other factor, n | (u1− u2)⇒ u1 = u2 (because −n < u1− u2 < n)
contradiction.
So S is a subset of Cn with all its ϕ(n) elements. It means S = Cn.

The rest of the proof follows the derivation used to prove Fermat’s theo-
rem: if S and Cn are the same set, then the product of all elements in S
mod n is the same as the product of all elements in Cn mod n:
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a|Cn|
∏
{Cn} =

∏
{Cn} mod n

aϕ(n)
∏
{Cn} −

∏
{Cn} = 0 mod n

(aϕ(n) − 1)
∏
{Cn} = 0 mod n

n | (aϕ(n) − 1)
∏
{Cn}

Since gcd(n,
∏
{Cn}) = 1, n must divide the other factor, n | (aϕ(n) − 1) ⇒

aϕ(n) = 1 mod n.
EXAMPLE n = 15
coprime set is C15 = {1, 2, 4, 7, 8, 11, 13, 14} ; ϕ(15) = |C15| = 8
Then for every a ∈ C15 we have a8 = 1 mod 15:
18 = 1 mod 15
28 = (24)2 = 162 = 12 = 1 mod 15
48 = (42)4 = (24)4 = 14 mod 15
78 = (72)4 = 494 = 44 = 28 = 1 mod 15
88 = (−7)8 = 78 = 1 mod 15
118 = (−4)8 = 48 = 1 mod 15
138 = (−2)8 = 28 = 1 mod 15
148 = (−1)8 = 1 mod 15

EXERCISE(difficulty F) if n is a power of prime, n = pk, then
ϕ(n) = pk−1(p− 1)
hint: think of the coprimes as the elements in Zn that are not composite, in
other words the ones that are not multiples of p. How many multiples of p
are there?
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7 Fermat’s Little Theorem n=p prime

In here we look at the particular case where n = p is prime. In this case the
problem is easier: a known multiple for any order v (for a) is p− 1. So p− 1
acts as an order for every a (mod p).
THEOREM 9 Fermat Let p prime. For any 0 6= a ∈ Zp, we have
ap−1 = 1 mod p

EXAMPLES
p = 7, a = 5
ap−1 = 56 = 15625 = 7 ∗ 2232 + 1 = 1( mod 7)
The smallest order v for a = 5 is p − 1 = 6: none of the previous powers of
a = 5 gives 1 mod 7 : 5, 52, 53, 54, 55 6= 1 mod 7

p = 7, a = 4
ap−1 = 46 = (42)3 = 163 = 23 = 1( mod 7)
The smallest order v for a = 4 is actually v = 3, not p− 1 = 6, but of course
p− 1 must be a multiple of v:
43 = 16 · 4 = 2 · 4 = 1( mod 7)

p = 5, a = 3
ap−1 = 34 = 81 = 1( mod 5)
It turns out that modulo 5, p−1 = 4 is the smallest order v for any a to give
av = 1 mod p

p = 11, a = 3
ap−1 = 310 = (34)2 · 32 = 812 · 9 = 42 · 9 = 5 · 9 = 1( mod 11)
For a = 3, smallest order v mod 11 is actually not p − 1 = 10, but 5 (a
divisor of p− 1):
35 = 243 = 1( mod 11)

proof For p=prime, we have ϕ(p) = p − 1. Thus applying Euler’s the-
orem for a 6= 0 in Zp gives the theorem:
aϕ(p) = ap−1 = 1 mod p
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second proof. A previous theorem stated that if (a,p) are coprime then
these two sets are the same
S = {1a, 2a, 3a, ..., (p− 1)a} = Z∗p = {1, 2, 3, ..., p− 1}
Then the product of all elements in S mod p is the same as the product of
all elements in Z∗p mod p:
ap−1 · 1 · 2 · ... · (p− 1) = 1 · 2 · ... · (p− 1) mod p
ap−1(p− 1)! = (p− 1)! mod p
⇒ p | (p− 1)!(ap−1 − 1)
Since gcd(p, (p − 1)!) = 1, p must divide the other factor, p | (ap−1 − 1) ⇒
ap−1 = 1 mod p

EXERCISE: Given the theorem, show that for any integer a and prime p, we
have ap = a (mod p).

EXERCISE: Explain why p and (p − 1)! are coprime, a critical fact used
to prove the theorem.

7.1 Primality test

OBSERVATION Fermat’s Theorem statement holds sometimes when p is not
prime, only for carefully chosen a. For example p = 15, a = 4 we have
415−1 = 414 = (42)7 = 167 = 17 = 1( mod 15)
Surprisingly for very special non-prime “Carmichael numbers” Fermat’s theo-
rem holds entirely (for any a). So its converse its not true. Try it for p = 561.

Fermat’s Primality Test for number p works like this : pick several ran-
dom positive integers a < p and check for each a if ap−1 = 1 mod p.
• if at least one test (for a particular a) gives “NO” then we know for sure p
is not prime
• if all tests (for all a) give “YES”, we are not sure, but with high probability
p is prime.
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Carmichael numbers are the numbers n with the following two properties:
· n is “square free”, meaning factorization into primes n = p1 · p2 · ... · pt
contains each prime exactly once (no exponents e > 1)
· for every prime factor p of n, p− 1 | n− 1

EXAMPLES First few Carmichael numbers are
561= 3*11*17; because 2, 10, 16 divide 560
1105= 5*13*17; because 4, 12, 16 divide 1104
1729 = 7*13*19 ; because 6, 12, 18 divide 1728

Carmichael numbers pass all Fermat’s-primality tests but they are
not primes! But Carmichael numbers are so rare, that we are OK with
them passing incorrectly at “primes”.

EXERCISE(difficulty F) Show that a Carmichael number n that satisfies
the definiton properties above, while not prime, passes all Fermat’s tests: for
every 0 < a < n we get an−1 = 1 mod n.

EXERCISE(difficulty FF) A number n passes all Fermat’s tests: for ev-
ery 0 < a < n we get an−1 = 1 mod n. Show that either it is prime, or it is
a Carmichael number.
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8 RSA : n=p*q product of two primes

EXERCISE Show that if n is a prime square n = p2, then
ϕ(n) = p(p− 1)

EXERCISE: THEOREM 10 RSA EQUATION if n is a product of
two primes, n = pq, show that
ϕ(n) = (p− 1)(q − 1) = pq − p− q + 1
by counting the non-coprimes in Zn \Cn

NOTE that in this case Euler’s theorem says that for any a < n, and any
integer k
aϕ(n)k+1 = a(p−1)(q−1)k+1 = a mod pq.
This is the equation that makes RSA cryptosystem work. It uses two prime
numbers p, q very large (2048 bits each ≈ 10600 magnitude) to avoid factor-
ization by brute force with present computational ability (as of year 2016).

EXERCISE. Ff n is a product of three primes, n = pqr, show that
ϕ(n) = (p− 1)(q − 1)(q − 1)
by counting the non-coprimes in Zn \Cn

EXERCISE(difficulty F, done in textbook) if n is a product of two primes,
n = pq, then we know from previous exercise that ϕ(n) = (p− 1)(q − 1)
Prove Euler’s theorem in this particular case

a(p−1)(q−1) = 1 mod pq; for any a, n coprimes
by following these two steps:
· use Fermat’s theorem for a, separately mod p and then mod q
· use the Chinese remainder theorem to get the result of a(p−1)(q−1) mod pq

EXERCISE (RSA-1-factor). RSA is hard to break because breaking it comes
down to one of the following notoriously difficult problems:
• Given n = pq (p, q unknown), find p and q; or
• Given n = pq (p, q unknown) and e, find e’s inverse modulo (p− 1)(q − 1)
without finding p and q
Suppose one wants to implement an RSA-like cryptosystem based on Fer-
mat’s theorem with only one prime n = p. The equation is
a(p−1)k+1 = a mod p.
and so encoding and decoding would work correctly with two keys e(public)
and e−1 mod p− 1 (private). What is wrong with this encryption schema?
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Hint: Finding private key is easy.

EXERCISE(difficulty F RSA-3-factors). Suppose one wants to implement
an RSA-like cryptosystem with three primes n = pqr instead of two. The
equation becomes
a(p−1)(q−1(r−1)k+1 = a mod pqr.
• Is it correct ? So that encoding and decoding work correctly with two keys
e(public) and e−1 mod (p− 1)(q − 1)(r − 1) (private).
• Is this encryption schema weaker or stronger than the two-factor RSA?
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9 Chinese Reminder Theorem

If N = p · q · r (or more factors) then there is a matching of sizes between
(Zp × Zq × Zr) and ZN .

THEOREM 11 of Chinese Reminder If the factors are pairwise co-
prime, i.e. gcd(p, q) = gcd(p, r) = gcd(q, r) = 1,
The following is a one to one mapping : take any triplet of remainders
(a ∈ Zp, b ∈ Zq, c ∈ Zr) into a unique x ∈ ZN , such that x mod p = a;x
mod q = b;x mod r = c
This mapping function h : Zpqr → Zp × Zq × Zr, given by
h(x) = (x mod p, x mod q, x mod r)
is called the Chines-Reminder bijection between Zpqr and (Zp × Zq × Zr)

EXAMPLE p = 3, q = 4, r = 5;N = 3 · 4 · 5 = 60
a = 1, b = 2, c = 1⇔ x = 46
a = 1, b = 2, c = 0⇔ x = 10
a = 1, b = 1, c = 3⇔ x = 13
a = 1, b = 0, c = 2⇔ x = 52
a = 2, b = 2, c = 2⇔ x = 2
a = 0, b = 0, c = 0⇔ x = 0
a = 1, b = 1, c = 1⇔ x = 1
a = 2, b = 1, c = 2⇔ x = 17

NOTE it is critical that gcd(p, q) = 1. For example if p = 4 and q = 6,
picking a = 2, b = 1 it would be impossible to find x with these remainders
mod p and mod q

Further, the function h maps the coprimes in Zpqr to triplets of coprimes
in (Zp×Zq×Zr) with respective factors, same as saying that h is a bijection
between
Cpqr and (Cp ×Cq ×Cr)

EXERCISE. it is enough to proof the theorem for only 2 factors N = pq.
Once we have that proof we can extend it to 3 factors, then to 4, then 5, and
so on.
From 2 to 3 factors: Say N = pqr = (pq)r. Since gcd(pq, r) = 1 the the-
orem for two factors gives us the mapping h1(x) = (y, c) between Zpqr and
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(Zpq × Zr); with y ∈ Zpq and c ∈ Zr.
Applying the 2-factor theorem again for p, q we get a second mapping Zpq

and (Zp × Zq) : h2(y) = (a, b) with a ∈ Zp, b ∈ Zq. Since both h1, h2 are
bijective (one to one) then we can compound them to obtain the 3-factor
theorem
x − h1 → (y, c) − h2 → (a, b, c)

proof based on uniqness (no construction of x) for three-factor (works for
any number of coprime factors). We want to show that h(x) = (x mod p, x
mod q, x mod r) is a bijection (one-to-one) between Zpqr and (Zp×Zq×Zr).
First h is an injection because for any x 6= y we have h(x) 6= h(y):
h(x) = h(y)⇒ x = y mod p⇒ p | x− y. Similarly q | x− y, and r | x− y
But p, q, r are pairwise coprime, so then pqr | x− y ⇒ x = y
Second, |Zpqr| = pqr = |Zp × Zq × Zr| (same number of elements). An in-
jection like h between finite sets of equal sizes must be surjective (cover all
elements in the result set). Then h is bijective, or one-to-one.

second proof : construction of x for two factor. Given a ∈ Zp and
b ∈ Zq we want to find x ∈ Zpq such that x mod p = a;x mod q = b.
gcd(p, q) = 1 ⇒ ∃k, h : pk − qh = 1 ⇒ (pk − qh)(b − a) = b − a ⇒
pk(b − a) − qh(b − a) = b − a ⇒ pk(b − a) + a = qh(b − a) + b. This is the
integer we are looking for x = pk(b− a) + a = qh(b− a) + b mod pq because
it gives precisely a mod p and b mod q.

EXERCISE(difficulty F) if n is a product of two coprimes n = ab with
gcd(a, b) = 1 , then ϕ(n) = ϕ(a)ϕ(b)
hint: We’ll have to apply the Chinese Reminder to argue that each coprime
in Cab maps (corresponds one-to-one) to a pair of coprimes from Ca ×Cb

THEOREM 12 ϕ(n) formula . If n factorizes into primes as

n = pe11 · pe22 · pe33 · ... · pett
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then

ϕ(n) = pe1−11 (p1 − 1) · pe2−12 (p2 − 1) · pe3−13 (p3 − 1) · ... · pet−1t (pt − 1)

= n · (1− 1/p1) · (1− 1/p2) · (1− 1/p3) · ... · (1− 1/pt)

proof. Since each prime factor pe in n is coprime with the other factors, we
can apply repeatedly the previous exercise factorization of ϕ(n) to get
ϕ(n) = ϕ(pe11 ) · ϕ(pe22 )... · ϕ(pett )
Now we recall an exercise from Euler’s Theorem in chapter 6 that stated ϕ()
formula for prime powers: ϕ(pk) = pk−1(p− 1)
Applying to each factor above we get
ϕ(n) = pe1−11 (p1 − 1) · pe2−12 (p2 − 1) · pe3−13 (p3 − 1) · ... · pet−1t (pt − 1)

EXAMPLE: n = 48 = 24 ∗ 3. Verify that
ϕ(48) = 23(2− 1) ∗ 30(3− 1)

EXAMPLE: n = 100 = 22 ∗ 52. Verify that
ϕ(100) = 21(2− 1) ∗ 51(5− 1)

EXAMPLE: n = 540 = 33 ∗ 22 ∗ 5. Verify that
ϕ(540) = 32(3− 1) ∗ 21(2− 1) ∗ 50(5− 1)
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10 Group Theory & Lagrange Th - optional

In here we show that Euler’s totient theorem is a particular application of
Lagrange theorem which states that the order of a subgroup divides the
order of the group. It is applied with for the group of coprimes Cn and the
subgroup of powers of a Pa

DEFINITION A set and an operand like (Zn, mod +) form a group be-
cause the following are satisfied:
1) the operand result is always in the set : a, b ∈ Zn ⇒ a + b mod n ∈ Zn

2) there is a neutral element, 0 + a = a + 0 = a,∀a ∈ Zn

3) associativity holds (a + b) + c = a + (b + c),∀a, b, c ∈ Zn

4) every element has an inverse ∀a,∃ − a, a + (−a) = −a + a = 0

OBSERVATION (Zn, mod ×) is not a group with multiplicative-mod, be-
cause 1 would be the neutral element, and then 0 has no inverse.
But how about (Z∗n, mod ×) - that is, the set of all remainders except 0,
with multiplicative-mod as operand? Certainly not a group for all n: for
example n = 10 gives Z∗10 = {1, 2, 3, 4, 5, 6, 7, 8, 9} where 5 has no inverse
(there is no element that multiplied with 5 gives 1 mod 10).

EXERCISE Show that conditions 2 and 3 are satisfied for (Z∗n, mod ×)
to be a group.

EXERCISE Show that conditions 1 and 4 for (Z∗n, mod ×) are very related
in the following sense: for any x ∈ Z∗n, either there is an inverse (satis-
fies condition 4) or there is a particular element y ∈ Z∗n such that x × y
mod n = 0 /∈ Z∗n (breaks condition 1), but not both.

THEOREM (Z∗n, mod ×) is a group if and only if n is prime.
proof EXERCISE
EXAMPLE Z∗5 = {1, 2, 3, 4} with operand multiplication modulo 5 forms a
group:
1) a× b mod 5 ∈ Z∗5,∀a, b ∈ Z∗5
2) 1 is the neutral element
3) (a× b)× c mod 5 = a× (b× c) mod 5 in general
4) 1 is its own inverse, 4 is its own inverse, 2 and 3 are eachother’s inverse.
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THEOREM Let Cn be the set of coprimes n from Zn (listed in the ta-
ble above for few n). Then (Cn, mod ×) is a group.
proof Lets look at each of the four rules.
1) if a, b ∈ Cn then we know ab mod n ∈ Zn, the only question is if ab is co-
prime with n. Since gcd(a, n) = gcd(b, n) = 1, we must have gcd(ab, n) = 1;
otherwise any prime p | gcd(ab, n) will have to be a common prime between
(a, n) or common between (b, n) contradicting the premise. So ab ∈ Cn.
2) 1 ∈ Cn is neutral element
3) associativity holds
4) a ∈ Cn means a has an inverse mod n, a−1 ∈ Zn. But this means a−1 has
inverse a, so a−1 is coprime with n, or a−1 ∈ Cn.

Subgroup. A group (G,+) has a subgroup (S,+) if the operand + is the
same, S ⊂ G, and the (S,+) is a group in itself, a.k.a. the four group-
properties hold for (S,+).
Then |G| is a multiple of |S| (the size of a subgroup divides the size of the
group).

EXAMPLE (Z6,mod+) has a subgroup formed by elements S = {0, 2, 4};
we can check the four rules:
1) a, b ∈ S ⇒ a + b ∈ S: 2+2 mod 6 =4, 2+4 mod 6=0; 4+4 mod 6 =2 etc
2) 0 is the neutral element
3) associativity holds
4) the inverse of every element in S is also in S, because 2 and 4 are ea-
chother’s inverse (addition opposite) mod 6.

EXAMPLE (Z∗7,mod×) is a group with modulo-multiplication operand, and
has a subgroup formed by elements S = {1, 2, 4} :
1) a, b ∈ S ⇒ a · b ∈ S : 2 · 2 mod 7 = 4; 4 · 4 mod 7 = 2; 2 · 4 mod 7 = 1
2) 1 is the neutral element
3) associativity holds
4) the inverse of every element in S is also in S, because 2 and 4 are ea-
chother’s inverse (multiplication opposite) mod 7.

EXERCISE Another subgroup of (Z6,mod+) is given by elements S = {0, 3}
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EXERCISE (Z8,mod+) has subgroups S = {0, 2, 4, 6} and S = {0, 4}

EXERCISE (Z12,mod+) has subgroups S = {0, 2, 4, 6, 8, 10}, S = {0, 4, 8},
S = {0, 3, 6, 9}

THEOREM (Lagrange). A group (G,+) has a subgroup (S,+); we use
here “+” as generic operand, can be either addition or multiplication in Zn.
Then |G| is a multiple of |S| (the size of a subgroup divides the size of the
group).
proof if S = {a, b, c, d, ...} is a subgroup of (G,+) then we’ll prove that G can
be partitioned into several sets that look like h+S = {h+a, h+b, h+c, h+d...}
each corresponding to a key element h ∈ G.
• For h1 = 0 we get the set S1 = h1 + S = S
• Consider an h2 that is not in the first set h1 + S. Then S2 = h2 + S will
have all brand new elements from G, none of them in h1 + S.
Proof by contradiction: suppose ∃a, b ∈ S and S2 3 h2 + a = h1 + b ∈ S.
Then h2 = h1+b−a. But S is a group so b−a ∈ S, which means h2 ∈ h1+S,
contradiction.
Note that |S2| = |S|
• repeat : if the sets generated so far S1, S2, S3... do not fully cover G, pick
next hk in G \S1 ∪S2 ∪S3 and repeat the argument from before. The newly
generated set Sk will have elements different than the ones in previous sets,
and its size will be the same |Sk| = |S|
At some point the finite G will be covered by these subsets G = S1 ∪ S2 ∪
S3 ∪ ... ∪ Sk, all disjoint but all of the same size |S|. Then |G| = k|S|

EXAMPLE (G = Z12, mod +) with S = {0, 3, 6, 9}. The sets that par-
tion G are
h1 = 0(neutral element); S1 = h1 + S = {0, 3, 6, 9}
h2 = 1 ∈ G \ S1; S2 = h2 + S = {1, 4, 7, 10}
h2 = 5 ∈ G \ S1 \ S2; S2 = h2 + S = {5, 8, 11, 2}

EXAMPLE (G = Z∗7 = {1, 2, 3, 4, 5, 6}, mod ×) has subgroup S = {1, 2, 4}.
The sets that partion G are
h1 = 1 (neutral element); S1 = h1 · S = {1, 2, 4}
h2 = 5 ∈ G \ S1; S2 = h2 · S = {5, 3, 6}
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THEOREM (Euler) if gcd(a, n) = 1 then aϕ(n) = 1 mod n
proof with group theory. Let Cn be the set of coprimes-with-n from Zn,
and we know that (Cn, mod ×) is a group. By definition ϕ(n) = |Cn|.
Now consider the set of elements in Zn that are powers of a mod n, A =
{a1, a2, a3...}. This set A is finite, and the last non-repeated value is av = 1
(because the next power would be a). Then
· |A| = v
· A ⊂ Cn (all elements in A are coprime with n)
· (A, mod ×) is a group, thus a subgroup of (Cn, mod ×).
The previous theorem says |A| divides |Cn|, or equivalently v | ϕ(n) or
ϕ(n) = vk which implies
aϕ(n) mod n = (av)k mod n = 1k mod n = 1

EXAMPLE n = 12,Cn = {1, 5, 7, 11} ⇒ ϕ(n) = 4.
14 mod 12 = 1
54 mod 12 = 252 mod 12 = 12 mod 12 = 1
74 mod 12 = 492 mod 12 = 12 mod 12 = 1
114 mod 12 = (−1)4 mod 12 = 1
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11 Summary

• division a to b ≥ 2 : r = a mod b ⇔ a = bq + r; with quotient q and
remainder r ∈ Zb = {0, 1, 2, ..., b− 1}

• n = pe
1

1 · pe
1

1 · pe
1

1 ...pe
t

t unique decomposition in to primes

• gcd(a, b) = all common (intersection) primes (each with min exponent)
lcm(a, b) = union of primes (each with max exponent)
ab = all primes together (with sum of exponents)

• gcm(a, b) · lcm(a, b) = ab

• a | b means ‘‘a divides b’’ same as ‘‘a is factor of b’’ same as
‘‘b is multiple of a’’ same as b = ak for some integer k

• a, b have the same remainder mod n if and only if n divides their dif-
ference : a mod n = b mod n⇔ n | a− b

• if prime p | ab; then p | a ∨ p | b

• a, b are ‘‘coprimes’’ (or relatively prime) if they have no common prime
factors; then gcd(a, b) = 1

• if n | ab and a, n coprimes gcd(a, n) = 1; then n | b

• if n | a and m | a and gcd(n,m) = 1; then nm | a

• after dividing a, b by their d = gcd(a, b), one gets coprime numbers:
gcd(a

d
, b
d
) = 1

• a has multiplicative inverse b = a−1 mod n means ab mod n = 1. Thats
possible if and only if gcd(a, n) = 1

• a inverse mod n (if exists) can be found as av−1 for integer v with property
av = 1 mod n (v = order of a). Trying powers to obtain the order is ineffi-
cient, not practical for large n.
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• gcd-coefficient (k, h) for (a, b) always exist to give the gcd(a, b) = ak + bh.

• if a, b coprime, 1 = gcd(a, b) = ak + bh. Then k, h are the two inverses
k = a−1 mod b and h = b−1 mod a

• Euclid-Extended finds k, h coefficients by transforming the problem(a, b)
into problem(b, r) recursively, and then recursively-back computing the coef-
ficients. It is efficient, even for large a, b.

• Euler totient ϕ(n) is the size of the set Cn={remainders coprime with
n}; in other words ϕ(n) = number of coprimes smaller than n.
Euler’s theorem : aϕ(n) = 1 mod n for any a ∈ Cn.

• So we have four ways to find a−1, the inverse of a mod n:
1) Brute force. Try different values b < n until one works (ab = 1 mod n)
2) Best in practice. k, h = EuclidExtend(a, n). Then k = a−1 is the inverse.
3) Find order v for a, so av = 1 mod n then av−1 mod n is the inverse of a.
Cant do fast exponentiation(v unknown); still usually faster than method 1)
4) Best if ϕ(n) known. ϕ(n) order for a (aϕ(n) = 1), so the inverse is
a−1 = aϕ(n)−1. Power modulo n is efficient with fast exponentiation.

• For primes p, ϕ(p) = p − 1 so that theorem becomes Fermats theorem
ap−1 = 1 mod p when (a, p) coprimes

• Primality Test for n. Try for several a < n to see if an−1 mod n = 1.
if any of the tests(a) gives “NO”, then n certainly not prime
if all tests(a) gives “YES”, n is likely prime (rare exceptions: Carmichael

numbers)

• n = pq (two primes) then ϕ(n) = (p − 1(q − 1); so if a coprime with
n then aϕ(n) = a(p−1)(q−1) = 1 mod n or a(p−1)(q−1)k+1 = a mod n for any k

• RSA. if n = pq (two large primes); e and d = e−1 are eachother inverse
mod (p− 1)(q − 1) means ed = 1 mod (p− 1)(q − 1).
Then aed = a(p−1)(q−1)k+1 = a mod n.
· n is known but the prime factors p, q are not —and hard to find.
· RSA public key for encryption is e. ENCRYPT(a) = ae mod n
· RSA secret key for decryption is d. DECRYPT(ae) = (ae)d mod n = a
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· RSA signature: verify that one has the correct secret key, by receiving
(a, b = ad) and decrypting b with public key be = (ad)e mod n = a

• Chinese Reminder : if p, q are coprime, any pair of remainders (a ∈ Zp, b ∈
Zq) corresponds uniquely to a remainder x ∈ Zpq such that x mod p = a
and x mod q = b
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