
Searching, Sorting
part 1



Week 3 Objectives

• Searching: binary search

• Comparison-based search: running time bound

• Sorting: bubble, selection, insertion, merge

• Sorting: Heapsort

• Comparison-based sorting time bound



Brute force/linear search

• Linear search: look through all values of the array 
until the desired value/event/condition found

• Running Time: linear in the number of elements, call 
it O(n)

• Advantage: in most situations, array does not have to 
be sorted



Binary Search

• Array must be sorted

• Search array A from index b to index e for value V

• Look for value V in the middle index m = (b+e)/2
- That is compare V with A[m]; if equal return index m
- If V<A[m] search the first half of the array
- If V>A[m] search the second half of the array

-4 -1 0 0 1 1 3 19 29 47
b m e

A[m]=1 < V=3 => search moves to the right half

V=3



Binary Search Efficiency

• every iteration/recursion
- ends the procedure if value is found
- if not, reduces the problem size (search space) by half

• worst case : value is not found until problem size=1
- how many reductions have been done?
- n / 2 / 2 / 2 / . . . . / 2 = 1. How many 2-s do I need ?
- if k 2-s, then n= 2k, so k is about log(n)
- worst running time is O(log n)



Search: tree of comparisons
compare

comparecompare

comparecompare comparecompare

comparecompare comparecompare

comparecompare

tree of comparisons : essentially what the algorithm does

•



Search: tree of comparisons

• tree of comparisons : essentially what the 
algorithm does
- each program execution follows a certain path

compare

comparecompare

comparecompare comparecompare

comparecompare comparecompare

comparecompare



Search: tree of comparisons

• tree of comparisons : essentially what the 
algorithm does
- each program execution follows a certain path
- red nodes are terminal / output
- the algorithm has to have at least n output nodes... why ?
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Search: tree of comparisons

• tree of comparisons : essentially what the 
algorithm does
- each program execution follows a certain path
- red nodes are terminal / output
- the algorithm has to have n output nodes... why ?
- if tree is balanced, longest path = tree depth = log(n)

compare

comparecompare

comparecompare comparecompare

comparecompare comparecompare

comparecompare

tree 
depth=5



Bubble Sort

• Simple idea: as long as there is an inversion, swap 
the bubble 
- inversion = a pair of indices i<j with A[i]>A[j]
- swap A[i]<->A[j]

- directly swap (A[i], A[j]);

- code it yourself: aux = A[i]; A[i]=A[j];A[j]=aux;

• how long does it take?
- worst case : how many inversions have to be swapped?
- O(n2)



Insertion Sort
• partial array is sorted

• get a new element V=9
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Insertion Sort
• partial array is sorted

• get a new element V=9

• find correct position with binary search i=3

• move elements to make space for the new element 

• insert into the existing array at correct position
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Insertion Sort - variant
• partial array is sorted
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Insertion Sort - variant
• partial array is sorted

• get a new element V=9; put it at the end of 
the array

• Move in V=9 from the back until reaches 
correct position 

1 5 8 20 49

1 5 8 9 20 49
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Insertion Sort Running Time

• For one element, there might be required to move 
O(n) elements (worst case Θ(n)) 
- O(n) insertion time

• Repeat insertion for each element of the n elements 
gives n*O(n) = O(n2) running time



Selection Sort

• sort array A[] into a new 
array C[]

• while (condition)
- find minimum element x in A at 

index i, ignore "used" elements
- write x in next available position 

in C
- mark index i in A as "used" so it 

doesn't get picked up again

• Insertion/Selection 
Running Time = O(n2)
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Merge two sorted arrays
• two sorted arrays
- A[] = { 1, 5, 10, 100, 200, 300};  B[] = {2, 5, 6, 10};

• merge them into a new array C
‣ index i for array A[], j for B[], k for C[]
‣ init i=j=k=0; 
‣ while (what_condition_?)

‣ if (A[i] <= B[j]) { C[k]=A[i], i++ } //advance i 
in A

‣ else {C[k]=B[j], j++} // advance j in B

‣ advance k
‣ end_while



Merge two sorted arrays

• complete pseudocode
‣ index i for array A[], j for B[], k for C[]
‣ init i=j=k=0; 
‣ while (k < size(A)+size(B)+1)

‣ if(i>size(A) {C[k]=B[j], j++} // copy elem from B

‣ else if (j>size(B) {C[k]=A[i], i++} // copy elem from A

‣ else if (A[i] <= B[j]) { C[k]=A[i], i++ } //advance i 

‣ else {C[k]=B[j], j++} // advance j 

‣ k++ //advance k

‣ end_while



MergeSort

• divide and conquer strategy

• MergeSort array A
- divide array A into two halves A-left,  A-right
- MergeSort A-left (recursive call)
- MergeSort A-right (recursive call)
- Merge (A-left, A-right) into a fully sorted array

• running time : O(nlog(n))



MergeSort running time

• T(n) = 2T(n/2) + Θ(n)
- 2 sub-problems of size n/2 each, and a linear time to combine 

results
- Master Theorem case 2 (a=2, b=2, c=1)
- Running time T(n) = Θ(n logn)



Heap DataStructure

• binary tree

• max-heap property : parent > children

152 Chapter 6 Heapsort

(a)
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Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle
at each node in the tree is the value stored at that node. The number above a node is the corresponding
index in the array. Above and below the array are lines showing parent-child relationships; parents
are always to the left of their children. The tree has height three; the node at index 4 (with value 8)
has height one.

PARENT.i/

1 return bi=2c

LEFT.i/

1 return 2i

RIGHT.i/

1 return 2i C 1

On most computers, the LEFT procedure can compute 2i in one instruction by
simply shifting the binary representation of i left by one bit position. Similarly, the
RIGHT procedure can quickly compute 2iC1 by shifting the binary representation
of i left by one bit position and then adding in a 1 as the low-order bit. The
PARENT procedure can compute bi=2c by shifting i right one bit position. Good
implementations of heapsort often implement these procedures as “macros” or “in-
line” procedures.

There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds,
the values in the nodes satisfy a heap property, the specifics of which depend on
the kind of heap. In a max-heap, the max-heap property is that for every node i
other than the root,
AŒPARENT.i/! ! AŒi ! ;

that is, the value of a node is at most the value of its parent. Thus, the largest
element in a max-heap is stored at the root, and the subtree rooted at a node contains



Max Heap property

• Assume the Left and 
Right subtrees 
satisfy the Max-
Heap property, but 
the top node does 
not

• Float down the node 
by consecutively 
swapping it with 
higher nodes below 
it.

6.2 Maintaining the heap property 155
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Figure 6.2 The action of MAX-HEAPIFY.A; 2/, where A:heap-size D 10. (a) The initial con-
figuration, with AŒ2! at node i D 2 violating the max-heap property since it is not larger than
both children. The max-heap property is restored for node 2 in (b) by exchanging AŒ2! with AŒ4!,
which destroys the max-heap property for node 4. The recursive call MAX-HEAPIFY.A; 4/ now
has i D 4. After swapping AŒ4! with AŒ9!, as shown in (c), node 4 is fixed up, and the recursive call
MAX-HEAPIFY.A; 9/ yields no further change to the data structure.

children to satisfy the max-heap property. The node indexed by largest, however,
now has the original value AŒi !, and thus the subtree rooted at largest might violate
the max-heap property. Consequently, we call MAX-HEAPIFY recursively on that
subtree.

The running time of MAX-HEAPIFY on a subtree of size n rooted at a given
node i is the ‚.1/ time to fix up the relationships among the elements AŒi !,
AŒLEFT.i/!, and AŒRIGHT.i/!, plus the time to run MAX-HEAPIFY on a subtree
rooted at one of the children of node i (assuming that the recursive call occurs).
The children’s subtrees each have size at most 2n=3—the worst case occurs when
the bottom level of the tree is exactly half full—and therefore we can describe the
running time of MAX-HEAPIFY by the recurrence
T .n/ ! T .2n=3/C‚.1/ :
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Building a heap

• Representing the heap as array datastructure
- Parent(i) = i/2
- Left_child(i)=2i
- Right_child(i) = 2i+1

• A = input array has the last half elements leafs

• MAX-HEAPIFY the first half of A, reverse order

‣for i=size(A)/2 downto 1
‣ MAX-HEAPIFY (A,i)



Heapsort

• Build a Max-Heap from input array

• LOOP
- swap heap_root (max) with a leaf
- output (take out) the max element; reduce size
- MAX-HEAPIFY from the root to maintain the heap property

• END LOOP

• the output is in order



HeapSort running time

• Max-Heapify procedure time is given by recurrence
- T(n)≤T(2n/3) + Θ(1) 

- master Theorem T(n)=O(logn)

• Build Max-Heap : running n times the Max-Heapify 
procedure gives the running time O(nlogn)

• Extracting values: again run n times the Max-
Heapify procedure gives the running time O(nlogn)

• Total O(nlogn)



Sorting : tree of comparisons

• tree of comparisons : essentially what the 
algorithm does
- each program execution follows a certain path
- red nodes are terminal / output
- the algorithm has to have n! output nodes... why ?
- if tree is balanced, longest path = tree depth = n log(n)

compare

comparecompare

comparecompare comparecompare

comparecompare comparecompare

comparecompare

tree 
depth



QuickSort - pseudocode

• QuickSort(A,b,e) //array%A%,%sort%between%indices%b%and%e
- q = Partition(A,b,e) //%returns%pivot%q,%b<=q<=e-                       %//%Partition%also%rearranges%A%so%that%if%i<q then A[i]<=A[q]-                        //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%and%if%i>q then A[i]>=A[q]%
- if(b<q-1) QuickSort(A,b,q-1)  
- if(q+1<e) QuickSort(A,q+1,e)

• After Partition the pivot index contains the right value:

-3 0 5 7 18 8 7 29 21 10

b=0 q=3 e=9



QuickSort Partition

• TASK: rearrange A and find pivot q, such that 
- all elements before q are smaller than A[q]
- all elements after q are bigger than A[q]

• Partition (A, b, e)
- x=A[e]//pivot value
- i=b-1
- for j=b TO e-1

• if A[j]<=x then

•     i++; swap A[i]<->A[j]
- swap A[i+1]<->A[e]
- q=i+1; return q



Partition Example
• set pivot value x = A[e], // x=4
- i =index of last value < x
- i+1 = index of first value > x 

• run j through array indices b to 
e-1
- if A[j] <= x  //see steps (d),(e)

- swap (A[j] , A[i+1]); 
- i++; //advance i

• move pivot in the right place
- swap (pivot=A[e] , A[i+1])

• return pivot index
- return i+1



QuickSort time

• Partition runs in linear time
- If pivot position is q, the QuickSort recurrence is T(n) = n + T(q) + T

(n-q)

• Best case q is always in the middle 
- T(n)=n+2T(n/2), overall Θ(n*logn)

• Worst case: q is always at extreme, 1 or n 
- T(n) =n + T(1) + T(n-1), overall Θ(n2)



QuickSort Running Time

• Depends on the Partition balance
• Worst case: Partition produces unbalanced split n = 

(1, n-1) most of the time
- results in O(n2) running time

• Average case: most of the time split balance is not 
worse than n = (cn, (1-c)n) for a fixed c
- for example c=0.99 means balance not worse than (1/100*n, 

99/100*n)
- results in O(n*logn) running time
- can prove that on expectation (average), if pivot value is chosen 

randomly, running time is Θ(n*logn), see book.



Median Stats

• Task: find k-th element
- k=n is same as “find MAX”, or “find highest”
- k=2 means “find second-smalles”
- k=1 is same as “finding MIN”

• naive approach, based on selection sort:
- find first smallest (MIN)
- then find second smallest, third smallest, etc; until the k-th smallest 

element
- Running Time: average case k=Θ(n), and each “finding” min takes Θ

(n) time, so total Θ(n2)



Median Stats
• “find k-th element”
• better approach, based on QuickSort
• Median(A,b,e,k) //%find%k>th%greatest%in%array%A%,%sort%between%indices%b=1%and%e=n
- q = Partition(A,b,e) //%returns%pivot%index%q,%b<=q<=e-                       %//%Partition%also%rearranges%A%so%that%if%i<q then A[i]<=A[q]-                        //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%and%if%i>q then A[i]>=A[q]%
- if(q==k) return A[q] //%found%the%k>th%greatest
- if(q>k) Median(A,b,q-1,k)  
- else Median(A,q+1,e,q-k)

• Not like Quiksort, Median recursion goes only on one 
side, depending on the pivot

• why the second Median call has k(new)=q-k(old)  ?



Median Stats

• Running Time of Median
• the recursive calls makes T(n) =n + max( T(q), T(n-q))
- “max” : assuming the recursion has to call the longer side
- just like QuickSort, average case is when q is “balanced”, i.e. cn<q<

(1-c)n for some constant 0<c<1
- balanced case: T(n) = n + T(cn); Master Theorem gives linear time Θ

(n)
- expected (average) case can be proven linear time (see book); 

worst case Θ(n2)

• worst case can run in linear time with a rather 
complicated choice of the pivot value before each 
partition call (see book)



Linear-time Sorting: Counting Sort

• Counting Sort (A[]) : count values, NO comparisons 
• STEP 1 : build array C that counts A values
- init C[]=0 ; - run index i through A- value = A[i]- C[value] ++; //counts each value occurrence

• STEP 2: assign values to counted positions‣ init position=0;

‣ for value=0:RANGE

‣ for i=1:C[value]‣ position = position+1;

‣ OUTPUT[position]=value;



Counting Sort

• n elements with values in k-range of {v1,v2,...vk}
- for example: 100,000 people sorted by age: n=100,000; k = 

{1,2,3,...170} since 170 is maximum reasonable age in years.

• Linear Time Θ(n+k)
- Beats the bound? YES, linear Θ(n), not Θ(n*logn), if k is a constant
- Definitely appropriate when k is constant or increases very slowly
- Not good when k can be large. Example: sort pictures by their size; 

n=10000 (typical picture collection), size range k can be any number 
from 200Bytes to 40MBytes.

• Stable (equal input elements preserve original order)


