
part A, Satisfiability Intro [easy]. A boolean formula is satisfiable if there
exists some variable assignment that makes the formula evaluate to true. Namely, a
boolean formula is satisfiable if there is some row of the truth table that comes out
true. Determining whether an arbitrary boolean formula is satisfiable is called the
Satisfiability Problem. There is no known e�cient solution to this problem, in fact,
an e�cient solution would earn you a million dollar prize. While this is hard problem
in computer science, not all instances of the problem are hard, in fact, determining
satisfiability for some types of boolean formulae is easy.

i. First, let’s consider why this would be hard. If you knew nothing about a given
boolean formula other than that it had n variables, how large is the truth table
you would need to construct? Please indicate the number of columns and rows
as a function of n

ii. Now consider the following 100 variable formula.

x1 ^ (¬x1 _ x2) ^ (¬x2 _ x3) ^ (¬x3 _ x4) ^ . . . ^ (¬x99 _ x100)

Without constructing a truth table, how many satisfying assignments does this
formula have, explain your answer.

iii Now consider an arbitrary 3-DNF formula with 100 variables and 200 clauses.
3-DNF means that the formula is in disjunctive normal form and each clause
has three literals. (A literal is the instantiation of the variable in the formula,
so for x, ¬x or x.) An example might be something like:

(¬x1^x3^x10)_(¬x3^x15^¬x84)_(x17^¬x37^x48)_ . . ._(¬x87^¬x95^x100)

What is the largest size truth table needed to solve this problem. What is the
maximum number of such truth tables needed to determine satisfiabilty.

1

HWZPBG

C-⇒ B)=BV7A
4B⇒Y¥-

0 7✗kV✗kH→partggf¥
(4--7112)^42=7×311 . - -4×99--7×100)

part B: 2CNF-SAT [hard]. The 2CNF-SAT instance is a boolean CNF formula
with 2 variables in each clause, ”OR” inside clauses, ”AND” between clauses. There
are m boolean variables x1, x2, ..., xm) and n clauses C1, C2, ..., Cn). Every variable
and its negation appears in at least one clause. Such formula is given as input in
format redundantly :
- for each variable there is a list of clauses containing it
- for each clause there there are 2 variables
For example the formula (x1 _ ¬x2) ^ (x2 _ x3) ^ (¬x1 _ x3) ^ (¬x2 _ ¬x3) will be
given as:
m = 3, n = 4
x1 : C1

¬x1 : C3

x2 : C2

¬x2 : C1, C4

x3 : C2, C3

¬x3 : C4

C1 : x1,¬x2

C2 : x2, x2

C3 : ¬x1, x3

C4 : ¬x2,¬x3

Your task is to design a strategy that determines, for a given formula, the boolean
assignments for the variables such that all clauses are satisfied, thus the formula is
true (if more such assignments are possible, you only need to output one). If no such
assignment is possible, output ”FALSE”.

As established inpart A, there are 2m possible assignments for the variable set.
So if one were to build the truth table and ”brute force” search all rows/assignments
until one works, it would take exponential time — not good! Instead: do trial and
error, but in a smart way that only tries at most 2 ⇤m2 boolean assignments.

Your strategy can be pseudocode, or you can informally describe a procedure with
bullets and English statements. You can write in your procedure statements like
* x = x1

* foreach C containing variable x {
- - - -
}
* C= next clause, or C = next clause containing x

* loop C through all clauses that contain x or ¬x

* for each x 2 C {
- - - -
}
* y = the other variable in clause C, other than x or ¬x

2

HON PB2i general 2-CNF Formula
find ✗ bool assignment .

ZCNF

general

to transform each clause
✗2=>14 into I implications
7/4=>7×2

want

-1
emphasize : procedure

crape)

lecture9-Advanadcounhnp.aeBinomial Th recap , binomial . coef .

• BEE (m sets) proof .
• Derangement : permutations

with no fixed point

• Balls into bins • •foe • • µ • • • (ex : 8
balls into 3 bins)

• Catalan number on= (Mn) - th:) is answer to many
counting problems .

TBIT.AE#ooef)⇒ Pascal A. ✗ , y c-☒

*Txt-45=1×2+02×-1 + y2 = (G)it (7)✗y +(E) ya

City 13=1×3+30×71 +30*1-+143=(81×717)×4431×-1713143

G)4--10×4 +④By +60×474×43+014
" £1 --z?÷§¥

(f) ✗"+ (4)My +(17×4711)*13+19,744
(4) I
"

y
' (E) ✗

""

y
'

(f) $-3 y3

(xtffff-ixt-hykty-lbkrms-iudoepetonqtact.rs"
→ ✗4- I may : ✗ ✗ ✗ ✗

91) @ *it -D ¥5k ✗
4

←

how go.gg
out Kwon distinct '¥¥¥¥¥i%☒

tensity>

Ctztschoosz4¥
choice in j - para C)

✗ choice in n-j pam C)
"":¥(*É×④y⑤=É xiymi

i=°¥¥¥F it

I terms kith repetitions (f) = # sussetsofsizek

✗=L 4--1 n

ja ja
""

-

#m¥¥¥¥;ts!¥
11--0

✗= -11,4=-1

4=(1-1)"=É(I)',¥i=l1)-fY)*1t-÷⑦%j-0

n=4 l -41-6-4+1=-0

not 1-51-10 -10+5-1=0

PIE general proof \AnUAzUAzU - - -UAMI =

,¥
=/All +1×-21 - - Html ✗ lone set

Aj / Ann Azl . -

- I Aintljl . - -

- 1AM
.
,nAm|- In • fzl

y.tl/-4AAznA3I---tlAinAjnAiel----t/Am-zAm-iAm1c-
+ In of31

Am H-C-DMYA.in/Azn---AAm/ .

- - Ho ful

select# in AWAN . -Am . Its going to
'

part of some sets
.

without loose of generality assume *c- Arnaz .
.
- nah Cukm)

P¥utt on RHS
*4- Anti U Antz . .

- Am

tf (f) 1AM 1AM .
.
.

1AM

- (1) 114111-21
, 1AM Asl . .

-

l Arun Ant

1- (F) 1AM Artist . .

-
I Amnthnnttnl

:

•

G)
""

(1) / Annika .
- Ant

BinomialTh : Cf)- (F) + It . - -
+ C-11Th) -0÷:÷:÷::÷:÷÷::÷:-.

counted-1 ✓

PIE application : Derangement__permutation without fix pants
A-5 (index sits on its

23 1 54 Derange - .

own spot)

Pos 1 2 34 5

3☒ 4 51 NOT DEP (post)-2)

#¥=? Ai :={permit a- fixed
)②_l}

Az__{pen
12 feat -2 - - - y

Hall penn - all -pen
tired pants /

*
3 ⇒Perm 13 fixed) -

- s - - ,

Aq=lpem (4 free) -- - a-
}

4! Asalpem A- fired) - - --5}
=n ! - 1A,!¥Y¥¥-_

.

AnnAelita?s
=

- 1A,1s !- - -

tA@AzA.Z.! - -
AHAHA>4123¥}

exercise : (YL) = (Lk) choose subset of K " in "

⇐s choose H-K stay out

-

(E) + (¥-1) cased include Castelan
"
n
"

ka
n }

pint 4123 . .
-

no} so} h-Ñy¥ ,)
(Fe)=#ways to those

=

RN
case dont iudue " n "a subset of K out

442,3, -
-
n} Kelani_ññ:)verify cexaru.se) with
factoids .

BALLS INTO BINS 1 STARS AND BARS)
#ways

to place n identical balls in K bins

(not,gih6Cdistnapuiih@exi.nTo candies distribute to kbidnldem
(identical) 9- , cz, - - Ck

throw
was EMETI 0 be

ajtadm
B, B2 B3

K-1 separators

÷••µ.pµg
TÉ£patoÑÉ separator

132,3
12

ntk-1-ikmsfball.sn , separators k-1)

2,7 , I
• • I • o • . un . I • .

⇒ #ways

HE 1,1¥)
choose Kt spots

"
I
"

4,96 •a÷,up µ • • • o e •

B2 ↳
d / a • a o o e e u - /1,90

070110 yµ e n e • o n n n n •

Rules for props counting .

- ITEMS are distinguishable / Not

- REPETIONS / NOT CRED

__ ORDER / NOT ORDER

How many shortest paths from A to B do not pass above

the diagonal?

A

B

Discrete Mathematics Catalan Numbers

any patter red-_ cross diagonal an)
Algol→ Blum) pµ→F→→ atones"→"

vitrines "R"

t (*±g
,

walk moves
"
→

"
or f

"
pie q→→

Q°•→T→
n

A

B

Blue path is good

Discrete Mathematics Catalan Numbers

restriction Catalan

µw°
"
""
"

number

(µuchdiaP°k
)

an

3
anywhere•=woes→

a >
#more 9

path
3 (so far)

→,→ , F)→ in >
th

.-9,1^5971^7,154

¥+4.111111 ; (C) C)) ; (C)7C) ; c) CC)); c) c)
Wed #

"
C
" 7 #

")
" at any point in sequence

stackspush → atthe top (LIFO)
pop
→ from the top

vali@um6piPushpop-pushypushspop.C) (C) . - .

f. same property
*histories = #

valid paths under dvagwwe
A-3 m¥p4-I.EE?hns

¥:÷÷¥t÷÷;%÷÷f÷÷¥÷¥-
•) • • 1)

replace
"
•

" with
"C
"

e) cc)) C) C) C) (CHC) (C) f)) ((C)D)

or=3 =) polygon h-12--5 sides

¥EI¥#E¥E¥¥
④a b) c) d) ⑨ Gcpd) ((ab) (ed)) Cafcbc)d)) lacked))

-TÉesÉÉ2children for leaf)

⇒

÷¥y÷÷f÷÷|÷÷÷j:*:#tYees-5abLaCbCcd171f@b.c.d) ④b) (ed)) @¢b⇒ @Gcpd

A

B

Blue path is good

Discrete Mathematics Catalan Numbers

Back to first problem :
Lets compute
Cn=#paths that
dont cross diagonal .

A

B

Red path is bad

Discrete Mathematics Catalan Numbers

paths •
all paths
(Tn)paths

_iwdid¥Ég.no)
b#ad ones?Cpalhscnoss

→→→Ñ

A

B

Red path is bad

Discrete Mathematics Catalan Numbers

→

q→→tt

Number of good paths = Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� Number of bad paths

So it is su�cient to count the number of bad paths.

Discrete Mathematics Catalan Numbers

Number of good paths = Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� Number of bad paths

So it is su�cient to count the number of bad paths.

Discrete Mathematics Catalan Numbers

How to count the number of bad paths?

A

B

Discrete Mathematics Catalan Numbers

7
d→→a >

9 ^

first# & > >

illegality; •••••→-
reverse path
startup at
first illegal point

K

A

B

(n, n+ 1)

Discrete Mathematics Catalan Numbers

(night)
• •

q→→t•nm
A lheoerersed

path startsfirst _•→T atccgktljeand"¥:* :-. ends affrights)

ia (exercise : proof)

→→
K

A

B

(n, n+ 1)

Discrete Mathematics Catalan Numbers

actually any path n-egnt.im
⑨ 10)→ln-hhH) so

corresponds ¥14 ,pq→→tnmbadtoaniltepaepath that 's paths
seen reversed ! Eallpaths

•→ cap)toC-tM↳

• =-⇒ile§¥pian+%Ñ%
answer:É⇐⇐iFinal

A

B

Discrete Mathematics Catalan Numbers

A

B

(n, n+ 1)

Discrete Mathematics Catalan Numbers

A

B

(n, n+ 1)

Discrete Mathematics Catalan Numbers

A

B

(n, n+ 1)

A

B

(n, n+ 1)

In fact, reflection turns every bad path into a path reaching (n�1, n+1).

Discrete Mathematics Catalan Numbers

Moreover, every path reaching (n� 1, n + 1) is obtained from a bad path.

Discrete Mathematics Catalan Numbers

Moreover, every path reaching (n� 1, n + 1) is obtained from a bad path.

A

B

(n, n+ 1)

Discrete Mathematics Catalan Numbers

Moreover, every path reaching (n� 1, n + 1) is obtained from a bad path.

A

B

(n, n+ 1)

A

B

(n, n+ 1)

Discrete Mathematics Catalan Numbers

Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of paths reaching (n� 1, n + 1).

Therefore the number of bad paths must equal the number of paths
reaching (n� 1, n + 1), which is (2n)!

(n�1)!(n+1)! .

Finally,

Number of good paths = Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� (2n)!
(n� 1)!(n + 1)!

=
1

n + 1

✓
2n

n

◆

The number Cn = 1
n+1

�2n
n

�
is called the nth Catalan number and has a

lot of applications.

Discrete Mathematics Catalan Numbers

Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of paths reaching (n� 1, n + 1).

Therefore the number of bad paths must equal the number of paths
reaching (n� 1, n + 1)

, which is (2n)!
(n�1)!(n+1)! .

Finally,

Number of good paths = Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� (2n)!
(n� 1)!(n + 1)!

=
1

n + 1

✓
2n

n

◆

The number Cn = 1
n+1

�2n
n

�
is called the nth Catalan number and has a

lot of applications.

Discrete Mathematics Catalan Numbers

Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of paths reaching (n� 1, n + 1).

Therefore the number of bad paths must equal the number of paths
reaching (n� 1, n + 1), which is (2n)!

(n�1)!(n+1)! .

Finally,

Number of good paths = Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� (2n)!
(n� 1)!(n + 1)!

=
1

n + 1

✓
2n

n

◆

The number Cn = 1
n+1

�2n
n

�
is called the nth Catalan number and has a

lot of applications.

Discrete Mathematics Catalan Numbers

Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of paths reaching (n� 1, n + 1).

Therefore the number of bad paths must equal the number of paths
reaching (n� 1, n + 1), which is (2n)!

(n�1)!(n+1)! .

Finally,

Number of good paths

= Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� (2n)!
(n� 1)!(n + 1)!

=
1

n + 1

✓
2n

n

◆

The number Cn = 1
n+1

�2n
n

�
is called the nth Catalan number and has a

lot of applications.

Discrete Mathematics Catalan Numbers

Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of paths reaching (n� 1, n + 1).

Therefore the number of bad paths must equal the number of paths
reaching (n� 1, n + 1), which is (2n)!

(n�1)!(n+1)! .

Finally,

Number of good paths = Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� (2n)!
(n� 1)!(n + 1)!

=
1

n + 1

✓
2n

n

◆

The number Cn = 1
n+1

�2n
n

�
is called the nth Catalan number and has a

lot of applications.

Discrete Mathematics Catalan Numbers

Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of paths reaching (n� 1, n + 1).

Therefore the number of bad paths must equal the number of paths
reaching (n� 1, n + 1), which is (2n)!

(n�1)!(n+1)! .

Finally,

Number of good paths = Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� (2n)!
(n� 1)!(n + 1)!

=
1

n + 1

✓
2n

n

◆

The number Cn = 1
n+1

�2n
n

�
is called the nth Catalan number and has a

lot of applications.

Discrete Mathematics Catalan Numbers

Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of paths reaching (n� 1, n + 1).

Therefore the number of bad paths must equal the number of paths
reaching (n� 1, n + 1), which is (2n)!

(n�1)!(n+1)! .

Finally,

Number of good paths = Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� (2n)!
(n� 1)!(n + 1)!

=
1

n + 1

✓
2n

n

◆

The number Cn = 1
n+1

�2n
n

�
is called the nth Catalan number and has a

lot of applications.

Discrete Mathematics Catalan Numbers

Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of paths reaching (n� 1, n + 1).

Therefore the number of bad paths must equal the number of paths
reaching (n� 1, n + 1), which is (2n)!

(n�1)!(n+1)! .

Finally,

Number of good paths = Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� (2n)!
(n� 1)!(n + 1)!

=
1

n + 1

✓
2n

n

◆

The number Cn = 1
n+1

�2n
n

�
is called the nth Catalan number and has a

lot of applications.

Discrete Mathematics Catalan Numbers

