HW2 PB

part A, Satisfiability Intro [easy]. A boolean formula is satisfiable if there exists some variable assignment that makes the formula evaluate to true. Namely, a boolean formula is satisfiable if there is some row of the truth table that comes out true. Determining whether an arbitrary boolean formula is satisfiable is called the Satisfiability Problem. There is no known efficient solution to this problem, in fact, an efficient solution would earn you a million dollar prize. While this is hard problem in computer science, not all instances of the problem are hard, in fact, determining satisfiability for some types of boolean formulae is easy.

$$
(A \Rightarrow B) \equiv B \vee 7 A
$$

i. First, let's consider why this would be hard. If you knew nothifpobental boolean formula other than that it had n variables, how large the truth table you would need to construct? Please indicate the number of columns and rows as a function of n

iii Now consider an arbitrary 3-DNF formula with 100 variables and 200 clauses. 3-DNF means that the formula is in disjunctive normal form and each clause has three literals. (A literal is the instantiation of the variable in the formula, so for $x, \neg x$ or x.) An example might be something like:

$$
\left(\neg x_{1} \wedge x_{3} \wedge x_{10}\right) \vee\left(\neg x_{3} \wedge x_{15} \wedge \neg x_{84}\right) \vee\left(x_{17} \wedge \neg x_{37} \wedge x_{48}\right) \vee \ldots \vee\left(\neg x_{87} \wedge \neg x_{95} \wedge x_{100}\right)
$$

What is the largest size truth table needed to solve this problem. What is the maximum number of such truth tables needed to determine satisfiabilty.

HoN PB2 : general 2 CNF Formula find \times boob assignment

part B: 2CNF-SAT [hard]. The 2CNF-SAT instance is a boolean CNF formula with 2 variables in each clause, "OR" inside clauses, "AND" between clauses. There are m boolean variables $x_{1}, x_{2}, \ldots, x_{m}$) and n clauses $C_{1}, C_{2}, \ldots, C_{n}$). Every variable and its negation appears in at least one clause. Such formula is given as input in format redundantly :

- for each variable there is a list of clauses containing it
- for each variable there is a list of clauses
- for each clause there there are 2 variables

For example the formula
 $\wedge\left(x_{2} \vee\right.$ will be given as:
$m=3, n=4$
$x_{1}: C_{1}$
$x_{2} \Rightarrow x_{1}$
Traustorw each cause
$\neg x_{1}: C_{3}$
$x_{2}: C_{2}$
$7 x_{1}=77 x_{2}$
into 2 implications
$2: C_{1}, C_{4}$
$x_{3}: C_{2}, C_{3}$
$\neg x_{3}: C_{4}$
$C_{1}: x_{1}, \neg x_{2}$
want
$C_{2}: x_{2}, x_{2}$
$C_{3}: \neg x_{1}, x_{3}$
$C_{4}: \neg x_{2}, \neg x_{3}$

Your task is to design a strategy hat determines, for a given formula, the boolean assignments for the variables such that all clauses are satisfied, thus the formula is true (if more such assignments are possible, you only need to output one). If no such assignment is possible, output "FALSE".

As established inpart A, there are 2^{m} possible assignments for the variable set. So if one were to build the truth table and "brute force" search all rows/assignments until one works, it would take exponential time - not good! Instead: do trial and error, but in a smart way that only tries at most $2 * m^{2}$ boolean assignments.

Your strategy can be pseudocode, or you can informally describe a procedure with bullets and English statements. You can write in your procedure statements like

* $x=x_{1}$
* foreach C containing variable $x\{$
\}
* $C=$ next clause, or $C=$ next clause containing x
* loop C through all clauses that contain x or $\neg x$
* for each $x \in C$ \{
\}
* $y=$ the other variable in clause C, other than x or $\neg x$

Lecture 9 Advanced Counting.

- Binomial Th recap, Binomial coef
- PIE (m sets) proof.
- Deranpements: permutations with no fixed point
- Balls into bins of e o of... (ex: 8 balls into 3 bins)
- Catalan number $C_{n}=\binom{2 n}{n}-\binom{2 n}{n-1}$ is answer to many counting problems

Binomial theorem (wef) \Rightarrow Pascal $\lambda \quad x, y \in \mathbb{R}$
$(x+y)(x+y)(x+y)(x+y) \rightarrow \frac{16 \text { lerms (iud repetion) }}{4}$
 way bin

$$
(x+y)^{n}=\sum_{j=0}^{n} \frac{\binom{n}{j}}{\substack{600 s_{0}-j j^{\prime \prime} y^{\prime \prime} \\ n-j}} \sum_{j=0}^{n-j}\binom{n}{j} x^{j} y^{n-j}
$$

$$
\begin{aligned}
& n^{\prime 2}(x+y)^{2}=1 x^{2}+2 x y+y^{2}=\binom{2}{0} x^{2}+\binom{2}{1} x y+\binom{2}{2} y^{2} \\
& (x+y)^{3}=\left(x^{3}+3 x^{2} y+3 x y^{2}+\left\lvert\, y^{3}=\binom{3}{0} x^{3}+\binom{3}{1} x^{2} y+\binom{3}{2} x y^{2}+3 \begin{array}{l}
3 \\
3
\end{array}\right.\right) y^{3} \\
& (x+y)^{4}=1 x^{4}+\left(4 x^{3} y+\left(6 x^{2} y^{2}+4 x y^{3}+11\right)^{4}\right. \\
& \binom{4}{2}=\frac{4!}{2!\cdot 2!} \frac{34}{2} \\
& \binom{4}{0} x^{4}+\binom{4}{1} x^{3} y+\binom{4}{2} x^{2} y^{2}+\binom{4}{3} x y^{3}+\binom{4}{4} y^{4} \\
& \text { (4) } x^{4+} y^{1} \\
& \text { (2) } x^{4} x^{42} y^{2} \\
& \text { (3) } x^{4.3} y^{3}
\end{aligned}
$$

2^{n} terms (with repehtions)

$$
\begin{aligned}
& x=1 \quad y=1 \\
& \left.2^{n}=(1+1)^{n}=\sum_{j=0}^{n}\binom{n}{j} 1^{n-j}\right) \cdot(\hat{j})=\sum_{j=0}^{n}\binom{n}{j}=\binom{n}{0}+\binom{n}{1}+\cdots+\left(\begin{array}{l}
n \\
n \\
n \\
1
\end{array}\right)=0 \\
& x=t 1, y=-1 \\
& 0=(1-1)^{n}=\sum_{j=0}^{n}\binom{n}{j} 1^{n}\left(\begin{array}{l}
-1
\end{array}\right)^{j}=\binom{n}{0}=\binom{n}{1}+\binom{n}{2}-\binom{n}{3}+(-1)^{n}\binom{n}{n} \\
& n=3 \quad(-3+3-1=0 \\
& n=4 \\
& 1-4+6-4+1=0 \\
& n=5 \\
& 1-5+10-10+5-1=0
\end{aligned}
$$

PIE general proof $\left|A_{1} \cup A_{2} \cup A_{3} \cup \ldots \cup A_{m}\right|=$

Select ${ }^{\forall} \neq$ in $A_{1} \cup A_{2} U$. A_{m}. Its going to part of some sets with it lose of sworality assume $x \in A_{1} \cap A_{2} \ldots \cap A_{n}(n \leq m)$ plan count x on RHS *\& $A_{n+1} \cup A_{n+2}$.. Am
$t\binom{n}{1}\left|A_{1}\right|\left|A_{2}\right| \ldots\left|A_{n}\right|$
$-\binom{n}{2}\left|A_{1} \cap A_{2}\right|,\left|A_{1} \cap A_{3}\right| \ldots\left|A_{n-1} \cap A_{n}\right|$
$+\binom{n}{3} \quad\left|A_{1} \cap A_{2} \cap A_{3}\right| \ldots\left|A_{n 2} \cap A_{n} \cap A_{n}\right|$

$$
\begin{aligned}
& { }^{(}(-1)^{n+1}\binom{n}{n}\left(A_{1} \cap A_{2} n \cdots A_{n} 1\right. \\
& \operatorname{count}(x)=\binom{n}{1}-\binom{n}{2}+\binom{n}{3} \cdots+(-1)^{n+1}\binom{n}{n} \\
& \text { Binumal in: }\binom{n}{0}-\binom{n}{1}+\binom{n}{2} \cdots+(-1)^{n}\binom{n}{n}=0 \\
& 1-\operatorname{count}(x)=\left(\begin{array}{l}
1 \\
(1 n \\
0
\end{array}\right)-\binom{n}{1}+\binom{n}{2} \cdots+(-1)^{n}\binom{n}{n}=0 \\
& 1-\operatorname{cont}(x)=0 \Rightarrow \operatorname{count}(x)=1
\end{aligned}
$$

PIE application: Derangemant=permutation w. Thant fix paints $n=5$
pos $\begin{array}{lllll}2 & 3 & 1 & 5 & 4 \\ \text { Derange - }\end{array}$ (index sits on its own spot)

$$
32451 \text { NOT DEP }(\operatorname{pos}(2)=2)
$$

\#Derangement $(5)=$? $\quad A_{1}=$ permit $(1$ fiat $) \mid 1, \ldots-4$! $\}$

$$
\text { fixed pants } \left.\left\lvert\, \begin{array}{l}
\left.A_{4}=\text { perm (} 4 \text { fire) }\right) \cdots-4-3
\end{array}\right.\right\}
$$

$$
\begin{aligned}
& A_{5}=\{\text { perm (} 5 \text { fixed) }-\ldots 5\} \\
& =n!-\frac{\left|A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5}\right|}{\left.\left(A_{1}\right)+\left(A_{2}\right)\right)^{4!}} \quad A_{1} \cap A_{2}=\{12-\infty\} \\
& \left.-A_{1} \cap A_{2} 1\right) \\
& +\left|A_{1} \cap A_{2} \cap A_{3}\right|-2! \\
& A_{1} \cap A_{2} \cap A_{3}=\{123-2\}
\end{aligned}
$$

exercise: $\binom{n}{k}=\binom{n}{n-k} \quad \begin{gathered}c h o o s e ~ s u b s e t ~ o f ~ \\ k\end{gathered}$ "in" \Leftrightarrow chook $A-K$ stay out $n-k\{k$

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

proof $\{123$. nil SUM

$$
\left(\begin{array}{l}
n \\
(k)=\# \text { ways to choose } \\
\text { a subset of } k \text { out }
\end{array}=\right.\text { RUE }
$$ a subset of k out $\{1,2,3, \cdots n\}$

verify (exercise) with factoids.
case include last elem $1 n_{n}$ "
 $\binom{n-1}{k-1}$
case 2 dont inclue "n" From $a 1,2, n, n-2 y$
balls, into bins I stares and bares)
\#ways to place n identical balls in k bins (not distinguischester)
ex: $n=10$ candies distribute to $k=3$ chuldrem
(identical) $c_{1}, c_{2}, \ldots c_{k}$

$n+k-1$ items (balls n, Eeparators $k-1$)
$\binom{n+k-1}{n}=\binom{n+k-1}{k-1}$ choose $k-1$ spots "l"

$$
\begin{aligned}
& 4,0,\left.6 \quad \underbrace{0 a 0}_{B_{1}}\right|_{B_{2}} \mid=\underbrace{a 00 \cdots}_{B_{3}} \\
& 1,9,0 \quad 0 \mid+0 a \cdot \infty \quad . \quad \cdots \quad 1 \\
& 0,0,\left.\left.10 \quad \bigcup_{0}\right|_{0}\right|^{1} \cdots \cdots \cdot \ldots \ldots .
\end{aligned}
$$

Rules for proper counting

- ITEMS are distinguishable / NOT
= REPETIONS / Not (REP)
- order / not order

How many shortest paths from A to B do not pass above the diagonal?

$$
\left.\left.\operatorname{lic}_{n=3}^{n}((())) ;(()(1)) ;(())()\right\rangle()(C)\right) ;()()()
$$

Stacks push \rightarrow at the top
pop \rightarrow from the tep
ppp \rightarrow from the tep
valid secur af stack ops: Push, pop, push, 2ush, per ...
same property
\# (histores $=$ \#rald paths under diagune \rightarrow nit items

$$
\begin{aligned}
& n=3 \quad \text { multhply } a \cdot b \cdot c \cdot d \text { chaide the order }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\text { replace ct with } c^{\prime \prime}(()) & ()()() & (())() \\
(()) & (()))
\end{array}
\end{aligned}
$$

$n=3 \Rightarrow$ polygon $n+2=5$ cider

$$
\begin{array}{llll}
d & ((a b) c) d) & ((a c c) d) & ((a b)(c d)) \\
(a((b) d)) & (a(b(c d))
\end{array}
$$

Full binary trees - every wale has 2 children (or (eat)

Back to first problem: Lets compute $C_{n}=\# p a t h s$ that doit cross diagonal.

Red path is bad

Number of good paths $=$ Total Number of paths - Number of bad paths
$=\frac{(2 n)!}{n!n!}-$ Number of bad paths

Number of good paths $=$ Total Number of paths - Number of bad paths
$=\frac{(2 n)!}{n!n!}-$ Number of bad paths
So it is sufficient to count the number of bad paths.

How to count the number of bad paths?

actually any path

$$
(0,0) \rightarrow(n-1, n(1)
$$

corresponds uniquely to an illegal path that es seen reversed!

Final ${ }_{\text {answer: }}\left(n^{-}-\binom{2 n}{n}-\binom{2 n}{n-1}\right.$

In fact, reflection turns every bad path into a path reaching ($n-1, n+1$).

Moreover, every path reaching $(n-1, n+1)$ is obtained from a bad path.

Moreover, every path reaching $(n-1, n+1)$ is obtained from a bad path.

Moreover, every path reaching $(n-1, n+1)$ is obtained from a bad path.

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching ($n-1, n+1$)

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Finally,
Number of good paths

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Finally,
Number of good paths $=$ Total Number of paths - Number of bad paths

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Finally,
Number of good paths $=$ Total Number of paths - Number of bad paths

$$
=\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n-1)!(n+1)!}
$$

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Finally,
Number of good paths $=$ Total Number of paths - Number of bad paths

$$
\begin{aligned}
& =\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n-1)!(n+1)!} \\
& =\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Finally,
Number of good paths $=$ Total Number of paths - Number of bad paths

$$
\begin{aligned}
& =\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n-1)!(n+1)!} \\
& =\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

The number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is called the $\underline{n}^{\text {th }}$ Catalan number and has a lot of applications.

