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part A, Satisfiability Intro [easy]. A boolean formula is satisfiable if there
exists some variable assignment that makes the formula evaluate to true. Namely, a
boolean formula is satisfiable if there is some row of the truth table that comes out
true. Determining whether an arbitrary boolean formula is satisfiable is called the
Satisfiability Problem. There is no known efficient solution to this problem, in fact,
an efficient solution would earn you a million dollar prize. While this is hard problem
in computer science, not all instances of the problem are hard, in fact, determining

satisfiability for some types of boolean formulae is easy. A =S &).__. % V7 A’

i. First, let’s consider why this would be hard. If you knew not ﬁ%b%y & oy
boolean formula other than that it had n variables, how large et u‘:z tﬁ
you would need to construct? Please indicate the number of columns and rows
as a function of n

ii. Now consider the following 100 variable formula. 1
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formula have, explain your answer.

Now consider an arbitrary 3-DNF formula with 100 variables and 200 clauses.
3-DNF means that the formula is in disjunctive normal form and each clause
has three literals. (A literal is the instantiation of the variable in the formula,
so for x, =z or x.) An example might be something like:
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What is the largest size truth table needed to solve this problem. What is the
maximum number of such truth tables needed to determine satisfiabilty.
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part B: 2CNF-SAT [hard]. The QC F- SAT 1nbtance is a boolean CNF fofmula
with 2 variables in each clause, ”OR” inside clauses, " AND” between clauses. There
are m boolean variables w1, z3, ..., xy,) and n clauses Cy,Cy, ...,C,). Every variable
and its negation appears in at least one clause. Such formula is given as input in

format redundantly : 2NF
- for each variable there is a list of clauses containing it l
- for each clause there there are2 variables 576

o N\
For example the formula ]

%Ve}“ = %ﬂmgﬂw i~ eadn Clauie

;: e G\ M we Q iw p l\‘c&ﬁ\bvks
Xy 01,04
- Cy, Oy _]\/\\77/1 7(2_

_\1‘3 04

gl il,;% ‘3 . \/\)QV\/k—-
gZ e %\N\g\w\ﬂw ! @o QQOQM\'Q

Your task is to design a strategy phat determines, for a given formula, the boolean
assignments for the variables suc at all clauses are satisfied, thus the formula is
true (if more such assignments are possible, you only need to output one). If no such
assignment is possible, output "FALSE”.

As established inpart A, there are 2™ possible assignments for the variable set.
So if one were to build the truth table and ”brute force” search all rows/assignments
until one works, it would take exponential time — not good! Instead: do trial and
error, but in a smart way that only tries at most 2 * m? boolean assignments.

Your strategy can be pseudocode, or you can informally describe a procedure with
bullets and English statements. You can write in your procedure statements like
*or=m

* foreach C' containing variable z {

}

* O'= next clause, or C' = next clause containing x
* loop C through all clauses that contain z or —z

* for each z € C {

}

* y = the other variable in clause C', other than z or -z
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How many shortest paths from A to B do not pass above
the diagonal?
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Blue path is good







Red path is bad



Number of good paths = Total Number of paths — Number of bad paths

2n)!
% — Number of bad paths
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Number of good paths = Total Number of paths — Number of bad paths

2n)!
% — Number of bad paths

So it is sufficient to count the number of bad paths.
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(n,n+1)
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In fact, reflection turns every bad path into a
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Moreover, every is obtained from a bad path.
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Moreover, every is obtained from a bad path.
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Moreover, every is obtained from a bad path.

(n,n +1)
7B
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Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of
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Conclusion: There is a one-to-one correspondence between the set of bad
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Therefore the number of bad paths must equal the number of
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Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of

Therefore the number of bad paths must equal the number of
- which is =

Finally,

Number of good paths
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Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of

Therefore the number of bad paths must equal the number of

, which is (n—S!T(LL!H)'
Finally,
Number of good paths = Total Number of paths — Number of bad paths
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Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of

Therefore the number of bad paths must equal the number of

~which is (n_gf(ﬁﬂ)!.
Finally,
Number of good paths = Total Number of paths — Number of bad paths
(2n)! (2n)!

nln!  (n—1)!(n+1)!
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Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of

Therefore the number of bad paths must equal the number of

. which is (n—S!T(LL!H)'
Finally,
Number of good paths = Total Number of paths — Number of bad paths
(2n)! (2n)!

nln!  (n—1)!(n+1)!

B 1 2n
 n+1\n
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Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of

Therefore the number of bad paths must equal the number of

~which is (n_gf(ﬁﬂ)!.
Finally,
Number of good paths = Total Number of paths — Number of bad paths
(2n)! (2n)!

nln! (n—1D!(n+1)!
B 1 2n
- n+1\n
The number C,, = %H(%f) is called the nt" Catalan number and has a
lot of applications.
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