Lecture 20: Graphs part 1

- project proposal due Thu
ens recitations next week
- class next Mon 11/22 but not Wed 4/24
- hon PB 4 (manly after TFXGV)

Craphs: vertices/modes/arcles edges / connections/lines / pairs-of-vertic

$$
V=\{a, b, c, \ldots f\}
$$

$E=x$ tof edjes

ab infermal

conrected: "path" from any rettex : avortex
Connected: path from any reftex \sim vertex
disconrected: 2 sonnected asmponents

subgraph: $V^{\prime} \subset V$ and all correspreding edpees

$V=\{1,23,4,5\}$

$$
\text { subgraph: } \begin{aligned}
& V^{\prime}=\{1,4,5\} \\
& \text { edges } E^{\prime}=\{15,45\}
\end{aligned}
$$

degree (vertex) $\operatorname{deg}(a) \quad d(a) \quad \operatorname{des}=$ red

= \#edges inciont at that venter

$$
\begin{aligned}
& \operatorname{deg}(1)=3 \\
& \operatorname{deg}(4)=2
\end{aligned}
$$

Theorem (hond-shake lem ma)

$$
\begin{aligned}
\text { Graph } G=(v, E) & =\left(\begin{array}{c}
\text { vertex } \\
\text { set },
\end{array}, \begin{array}{l}
\text { edge } \\
\text { set }
\end{array}\right) \\
\sum_{u \in V} \operatorname{deg}(u) & =2|E|
\end{aligned}
$$

sum of vertex dey = twice \# of edges
proof.

$$
\sum_{u} \operatorname{dg}(u)=\sum_{e \in E} 2
$$

$\operatorname{deg}(h)=$ \#ninetent in u

$\{3,4\}$ clique
$\Delta=$ gigue of $3: 125$ 123
max dique size $=3$

$$
\bar{E}=\{14,24,35\}
$$

clique: subset (whole set) of vertices with al edges present
$P b(*) \quad G=(V, E) \quad E=(V, E) \quad|V|=6$ prove that one of G or \bar{G} has a (diane $1=3$ (a triangle)

proof $a \in V$
look at all possible 4 -edges (5)
-some are in G - He other are in \bar{G}
a)
(b) $P H P \Rightarrow$ one of the G / \bar{G} has 3 edges ab, ac ped
b, c, d : "red" "graph

- either they hare an
(d) edge in same "red" graph
say $b c \Rightarrow \Delta a b c$
- or no red edge between (b, c, d)
(b) $9 \Rightarrow$ all 3 edges $b c$, $\frac{c d}{}$, bd b bed

Tours: path that ends where it started = cycle cycles

Euler Tour: Dour that visits every edge exactly once

Vertex lover: Find smallest set of vertices incident in all edges extreme: $|v c|=1$

(2) any two vertices (4,0) connected with unigne path
(3) T minimal vameded (remove any edge \Rightarrow disconnect)
(4) T max acyclic (add any musing \Rightarrow edge \Rightarrow cycle)
(5) connected \& $E E=|V|-1 \|$ (6) acyclic \& $(E|=|V|-1$
pick root $\circledast \rightarrow$ levelo

