Vines LECTURE 13
test fir virus not perfect "false positives"

$$
\begin{aligned}
& V(V)= P(\text { virus })=P(\text { infected with virus })=\frac{1}{104} \\
& P\left(\text { poshest } \left\lvert\, \begin{array}{l}
\text { virus } \\
\text { infection }
\end{array}\right.\right)=P(T \mid V)=\frac{99}{100} \\
& P(\text { pos lest } \mid \text { no vines })=P(T \mid \bar{V})=1 / 1000
\end{aligned}
$$ false positive

if test=pos, chance of being infected?

$$
\begin{aligned}
& P(V \mid \tau)=?=\frac{P(T \mid V) \cdot P(V)}{P(T) 99 / 10^{6}}=\frac{99 / 100 \cdot 1 / 0,000}{P(T)} \\
& \frac{99 / 10^{6}}{P(T \mid V) \cdot P(V)+P(T \mid \bar{V}) \cdot P(\bar{V})}=\frac{1 / 1000^{6}+1 / 1000^{\circ}\left(1-1 / 0^{4}\right)}{99}
\end{aligned}
$$

cabs 60% white 4% yoluan accident; witness says "cab was yellow" witwos fells truth 80% ', lief 20% indep of cabcoler
Q: uniat $\operatorname{prob}\left(\mathrm{cab}=Y_{\mathrm{e}}(\mathrm{low})=R_{\text {an }}\right.$
\&V cal color: Mus Y
Second RV -NO
virtues tells Truth W
second
(A) GOOD Lies w
RV: $\frac{\text { withers says cab }=\text { yellow th }}{\text { tel }}$
\bar{A} : way says cab $=$ while" \rightarrow cab is yellow

$$
\frac{[P(Y \mid A}{P\left(\frac{Y}{P}\right)}=\frac{P(A \mid Y)) \cdot P(Y)}{P(A)}=\text { Ines }
$$

$$
\begin{aligned}
& =\frac{0.8 \times 0.4}{0.8 \times 0.4+0.2 \times 0.6} \text {-cassis while } \\
& P\left(A(Y)=\frac{P(A, Y)}{P(Y)} \quad \begin{array}{l}
\text { out of "4 possie" (restricted) } \\
P(A, Y)=\text { the ones with } A
\end{array}\right.
\end{aligned}
$$

cone $=\frac{\text { joint }}{\text { morgivial }}$

Alien Planet 3 Parties Red Blue Purple 4 states E W NS Exercise eaduregion elects 2 senators Red Bur Pu at random (from that region)

	Red Due Purple			
	E	12	20	8
\therefore				
	W	16	14	18
	N	9	18	14
\vdots	S	22	10	12

Task: if we mot a purple elected senator, what is chance its from S region?

$$
\begin{aligned}
& \begin{array}{l}
\text { Hunts } x=\operatorname{legion}\{N, S, W, E Y \\
Y=\text { Party }\{R, B, P\} \\
G=\text { elected (seinater) }\{\pi, F\}
\end{array}=\frac{\operatorname{Prob}(P, G \mid S) \cdot P(S)}{P(S, G)}=
\end{aligned}
$$

Expectation $E[x]=\sum_{x \in z(x)} x \cdot \operatorname{Pr}(x=x)=\sum x \cdot P(x)$ R.S.X requirement $\operatorname{valuos}(x)=$ numbers intuition
$E[x]$ = weighted average of values weighted By probalalities of seeing that value

$$
\begin{aligned}
& P(x) \\
& P(X=x)
\end{aligned}
$$

uniform: $p(x)=\underset{\text { in } x}{\text { constant }}=\frac{1}{|\Omega \Omega(x)|}=\frac{1}{n}$

$$
\begin{array}{r}
E[x]=\sum_{x} x \cdot P(x)=\frac{1}{n} \sum_{x} x= \\
=\frac{x+x_{2}+\cdots+x n}{n} \begin{array}{c}
\text { arithmetic } \\
\text { average }
\end{array}
\end{array}
$$

$E[]$ rules $c=$ constant
$E[c \cdot x]=c E[x]$ exercise

$$
E[c+x]=c+E[x]
$$

$X, 4$ 2R.V with values - numbers (even DEPENDENT)
(Th) $E[x+Y] \stackrel{\text { Linearity of expectation }[Y] \quad X+Y=R, V}{=}[x]+E[Y]$
proof $E[X X Y]=\sum_{\omega \in \Omega(x+Y)}(\omega) P(x+Y=\omega)=$

$$
\begin{aligned}
& \sum_{W=x+y}(x+y) P(x+y=x+y)= \\
&= \sum_{\text {vales }} \sum_{x}(x+y) P(x=x, y=y) . \\
& \cap(x)=(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x} \sum_{y} x \cdot \frac{P(x, y)}{d}+\sum_{x} \sum_{y} y \cdot \frac{P(x, y)}{r} \\
& =\sum_{x} x \sum_{y} P(x)^{d} \cdot P(Y \mid X)+\sum_{y} y \sum_{\star} P(Y) \cdot P(X \mid Y) \\
& =\sum_{x} F_{x} P(x) \cdot(\underbrace{\sum_{y} P(Y \mid X=x)}_{1})]+\sum_{y}[y P P(Y)(\underbrace{\sum_{x} P(x \mid Y=y)}_{1}) \\
& =\sum_{x} x \cdot P(*) \quad 1+\sum_{y} y \cdot P(y) \\
& =E[x]+E[Y] \\
& \text { - } E[x+y+Z]=E[x+y]+E[Z]=E[x]+E[Y]+E[Z] \\
& \text { - } x_{1}, x_{2}, \ldots x_{n} \text { indicator R.V }>1 \text { "ppescut"/ } / \pi \\
& x=x_{1}+x_{2} t \cdots+x_{n}=\text { count of items prefent }
\end{aligned}
$$

$E[x]=$ expected $\#$ Hews present

$$
=E\left[x_{1}+x_{2}+\cdots+x_{n}\right]=\sum_{i} E\left[x_{i}\right]
$$

"expected number of ..."

Birtlday paradox $n=244$ people Sdays are probab differat bdays?
lno collisions"

$$
\begin{aligned}
& \text { probals no cullisions prodictrule } \\
& \begin{array}{l}
1^{\text {st }} \quad 2^{\text {nd }} \\
1 \times \frac{364}{365} \times \frac{363}{365} \times \cdots \frac{1+x \simeq e^{x} \mid}{n}+\frac{366-n}{366}
\end{array} \\
& =\left(1-\frac{0}{365}\right)\left(1-\frac{1}{365}\right) \cdots\left(1-\frac{n-1}{365}\right) \\
& \simeq e^{-0} \cdot e^{-1 / 365} \cdot e \cdots \cdot e^{-\frac{n-1}{365}} \\
& =e^{-(0+1+2 \ldots f(n-1) / 365} \\
& =e^{-\frac{n(n-1)}{2} \cdot / 365} \simeq 0.5(n=244)
\end{aligned}
$$

Expected \# of coll isions? \# bays in a day with already a first-bolay.
ex. day with 3 people $\rightarrow 2$ cullis to people $\rightarrow 90$ (ks.
$X=$ brays used ($\geqslant 1$ person that day)

$$
\begin{aligned}
& x=x_{1}+1_{2}+\cdots+x_{n} \\
& E[x]=E\left[x_{1}+x_{2} \cdot+x_{n}\right]=E\left[x_{1}\right]+E\left[x_{2}\right] \ldots+E\left[x_{n}\right]
\end{aligned}
$$

$E\left[x_{i}\right]=E\left[x_{j}\right]$ (all hare the save expectation)

$$
\begin{aligned}
E\left[x_{1}\right]= & \operatorname{pros}\left(x_{1}=1\right) \cdot 1+p \operatorname{ros}\left(x_{1}=0\right) \cdot 0= \\
& =\operatorname{prot}\left(x_{1}=1\right) \Rightarrow \text { vatody has } \\
p\left(x_{1}=1\right)= & 1-\operatorname{prot}\left(x_{1}=0\right)=x_{1} \text { body } \\
& 1-\left(1-\frac{1}{365}\right) \rightarrow \text { n people }
\end{aligned}
$$

probal of 1 person not have that bray x_{1}

$$
\begin{aligned}
& X, Y R V \\
& \begin{aligned}
E[X, Y] & =\sum_{W=x \cdot y} x \cdot y \operatorname{Prob}(X \cdot Y=w) \\
& =E[X] \cdot E[Y] \text { if } X, Y \text { independent } \\
& \neq E[X] \cdot E[Y] \text { in preral } X, y \text { might } \\
& \text { bo depenvert. }
\end{aligned}
\end{aligned}
$$

