How many shortest paths from A to B do not pass above the diagonal?

$$
\left.\left.\operatorname{lic}_{n=3}^{n}((())) ;(()(1)) ;(())()\right\rangle()(C)\right) ;()()()
$$

Stacks push \rightarrow at the top
pop \rightarrow from the tep
ppp \rightarrow from the tep
valid secur af stack ops: Push, pop, push, 2ush, per ...
same property
\# (histores $=$ \#rald paths under diagune \rightarrow nit items

$$
\begin{aligned}
& n=3 \quad \text { multhply } a \cdot b \cdot c \cdot d \text { chaide the order }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lll}
\text { replace ct with } c^{\prime \prime}(()) & ()()() & (())() \\
(()) & (()))
\end{array}
\end{aligned}
$$

$n=3 \Rightarrow$ polygon $n+2=5$ cider

$$
\begin{array}{llll}
d & ((a b) c) d) & ((a c c) d) & ((a b)(c d)) \\
(a((b) d)) & (a(b(c d))
\end{array}
$$

Full binary trees - every wale has 2 children (or (eat)

Back to first problem: Lets compute $C_{n}=\# p a t h s$ that doit cross diagonal.

Red path is bad

Number of good paths $=$ Total Number of paths - Number of bad paths
$=\frac{(2 n)!}{n!n!}-$ Number of bad paths

Number of good paths $=$ Total Number of paths - Number of bad paths
$=\frac{(2 n)!}{n!n!}-$ Number of bad paths
So it is sufficient to count the number of bad paths.

How to count the number of bad paths?

actually any path

$$
(0,0) \rightarrow(n-1, n(1)
$$

corresponds uniquely to an illegal path that es seen reversed!

Final ${ }_{\text {answer: }}\left(n^{-}-\binom{2 n}{n}-\binom{2 n}{n-1}\right.$

In fact, reflection turns every bad path into a path reaching ($n-1, n+1$).

Moreover, every path reaching $(n-1, n+1)$ is obtained from a bad path.

Moreover, every path reaching $(n-1, n+1)$ is obtained from a bad path.

Moreover, every path reaching $(n-1, n+1)$ is obtained from a bad path.

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching ($n-1, n+1$)

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Finally,
Number of good paths

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Finally,
Number of good paths $=$ Total Number of paths - Number of bad paths

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Finally,
Number of good paths $=$ Total Number of paths - Number of bad paths

$$
=\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n-1)!(n+1)!}
$$

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Finally,
Number of good paths $=$ Total Number of paths - Number of bad paths

$$
\begin{aligned}
& =\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n-1)!(n+1)!} \\
& =\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

Conclusion: There is a one-to-one correspondence between the set of bad paths and the set of paths reaching ($n-1, n+1$).

Therefore the number of bad paths must equal the number of paths reaching $(n-1, n+1)$, which is $\frac{(2 n)!}{(n-1)!(n+1)!}$.

Finally,
Number of good paths $=$ Total Number of paths - Number of bad paths

$$
\begin{aligned}
& =\frac{(2 n)!}{n!n!}-\frac{(2 n)!}{(n-1)!(n+1)!} \\
& =\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

The number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is called the $\underline{n}^{\text {th }}$ Catalan number and has a lot of applications.

