
How many shortest paths from A to B do not pass above

the diagonal?
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Back to first problem :
Lets compute
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Number of good paths = Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� Number of bad paths

So it is su�cient to count the number of bad paths.
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How to count the number of bad paths?
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In fact, reflection turns every bad path into a path reaching (n�1, n+1).
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Moreover, every path reaching (n� 1, n + 1) is obtained from a bad path.
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Conclusion: There is a one-to-one correspondence between the set of bad
paths and the set of paths reaching (n� 1, n + 1).

Therefore the number of bad paths must equal the number of paths
reaching (n� 1, n + 1), which is (2n)!

(n�1)!(n+1)! .

Finally,

Number of good paths = Total Number of paths� Number of bad paths

=
(2n)!
n!n!

� (2n)!
(n� 1)!(n + 1)!

=
1

n + 1
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The number Cn = 1
n+1

�2n
n

�
is called the nth Catalan number and has a

lot of applications.
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