HW2 PB

part A, Satisfiability Intro [easy]. A boolean formula is satisfiable if there exists some variable assignment that makes the formula evaluate to true. Namely, a boolean formula is satisfiable if there is some row of the truth table that comes out true. Determining whether an arbitrary boolean formula is satisfiable is called the Satisfiability Problem. There is no known efficient solution to this problem, in fact, an efficient solution would earn you a million dollar prize. While this is hard problem in computer science, not all instances of the problem are hard, in fact, determining satisfiability for some types of boolean formulae is easy.

$$
(A \Rightarrow B) \equiv B \vee 7 A
$$

i. First, let's consider why this would be hard. If you knew nothing boolean formula other than that it had n variables, how large the truth to you would need to construct? Please indicate the number of columns and rows as a function of n
ii. Now consider the following 100 variable formula.
 formula have, explain your answer.
iii Now consider an arbitrary 3-DNF formula with 100 variables and 200 clauses. 3-DNF means that the formula is in disjunctive normal form and each clause has three literals. (A literal is the instantiation of the variable in the formula, so for $x, \neg x$ or x.) An example might be something like:

$$
\left(\neg x_{1} \wedge x_{3} \wedge x_{10}\right) \vee\left(\neg x_{3} \wedge x_{15} \wedge \neg x_{84}\right) \vee\left(x_{17} \wedge \neg x_{37} \wedge x_{48}\right) \vee \ldots \vee\left(\neg x_{87} \wedge \neg x_{95} \wedge x_{100}\right)
$$

What is the largest size truth table needed to solve this problem. What is the maximum number of such truth tables needed to determine satisfiabilty.

HoN PB2: general 2 CNF Formula
 part B: 2CNF-SAT [hard]. The 2CNF-SAT instance is a boolean CNF formula

 with 2 variables in each clause, "OR" inside clauses, "AND" between clauses. There are m boolean variables $x_{1}, x_{2}, \ldots, x_{m}$) and n clauses $\left.C_{1}, C_{2}, \ldots, C_{n}\right)$. Every variable and its negation appears in at least one clause. Such formula is given as input in format redundantly :- for each variable there is a list of clauses containing it
- for each clause there there 2 variables

For example the formula ($\left.x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3}\right)$ will be given as:
$m=3, n=4$
$x_{1}: C_{1}$
transform each clause
$\neg x_{1}: C_{3}$
$x_{2}: C_{2}$

$\neg x_{2}: C_{1}, C_{4}$
$x_{3}: C_{2}, C_{3}$
$\neg x_{3}: C_{4}$
$C_{1}: x_{1}, \neg x_{2}$

$C_{2}: x_{2}, x_{2}$
$C_{3}: \neg x_{1}, x_{3}$
$C_{4}: \neg x_{2}, \neg x_{3}$

$x_{2} \Rightarrow x_{1}$

Your task is to design a strategy hat determines, for a given formula, the boolean assignments for the variables such that all clauses are satisfied, thus the formula is true (if more such assignments are possible, you only need to output one). If no such assignment is possible, output "FALSE".

As established inpart A, there are 2^{m} possible assignments for the variable set. So if one were to build the truth table and "brute force" search all rows/assignments until one works, it would take exponential time - not good! Instead: do trial and error, but in a smart way that only tries at most $2 * m^{2}$ boolean assignments.

Your strategy can be pseudocode, or you can informally describe a procedure with bullets and English statements. You can write in your procedure statements like ${ }^{*} x=x_{1}$

```
* foreach C containing variable }x
----
}
* C= next clause, or C = next clause containing x
* loop C through all clauses that contain }x\mathrm{ or }\neg
* for each }x\inC
}
* y= the other variable in clause C, other than }x\mathrm{ or }\neg
```

lecture 8 COUNTING + intro hon-PB2

- Basie Defintions/recipies (regular)
- PHP, Set op, sumPale

Product rale
Comb/Reven

$$
\rightarrow H W 3+4
$$

Balls into Bins

- Advanced techwignes
ex. -Binomial app/th
- Sum Rule gerveralized
- Catalan \#
- Adv thinking
- creativity
- modeling, complex pb

PHPA
(F) select

100 infegers $\Rightarrow 15$ of them

$$
\begin{aligned}
& \text { any diffot } 2=\text { multipe of } 7 \\
& a-b=7 k \Leftrightarrow 7 \mid a-b \Leftrightarrow a \equiv b \bmod 7
\end{aligned}
$$

$\operatorname{nod} 7 \Rightarrow 7$ bokes

100 integers $\} \stackrel{\text { PHP }}{\Rightarrow}$ Jbox with \geqslant 150x has at least $\left\lceil\frac{100}{7}\right\rceil=75$

$$
\text { save remat } \Rightarrow|a-b|=\text { multople of } 7
$$

10 point on a urcle of diameter $=2 r=5$
PHP2 $\Rightarrow I 2$ of Hem at $\operatorname{dist}(a, b)<2$.

$$
a b
$$

reqular 9-gon (equal sides) $r=2.5 \Rightarrow$ side $\simeq 1.71$?
Ggon splits arcle into 9rjons gu300 lopoints on citcle HPHP

2 of them same rgion geom: $|a b|<$ side 9yon $\simeq 1.71$
cow Two decks of cards ar wined together, total 104 cards whore each card appears exactly twice. How many distinct permutations are there of all 104 cards?
global:

$$
\frac{104!}{2!=2} \underbrace{52}_{52}=\frac{104!\text { all permute }}{\underbrace{2 \cdot 2 \cdot 2-2}_{52}}
$$

Constructive \qquad
choose 2 spots for $(A \hat{\theta}$ two $)\binom{104}{2}=\frac{104 \cdot 103}{2}$
choose 2 pots for $($ QA JoN $) \xrightarrow{2}\binom{102}{2}=\frac{102 \cdot 101}{2}$
choose 2 spots for (3×1) two $\rightarrow\binom{100}{2}=\frac{100.99}{2}$
chaos (last sem 2 spots) for las $\left.\operatorname{kard} \rightarrow C_{2}^{2}\right)=\frac{2.1}{2}$
(N)Now many ways to place a rock, knight and bishop
A) on a chess board such that no two of ot hem are on the same row or column? $\binom{8}{3}\binom{8}{3} \cdot 3!\times 8$ $8^{2} \times 7^{2} \times 6^{2}$?
 2 bishops that do not attack each other? [bishop attack on diagonals] exercise
(C) $x+3$ bishops

co v) How waw different per nutations of "MIssissippi"?
3 naive: $M_{1}, S_{1}, S_{2}, S_{3}, S_{4}, P_{1}, P_{2}, I_{1}, I_{2}, I_{3}, I_{4}$ 11 dejects. Permute then $\Rightarrow 11$!

$$
\text { same }\left(\begin{array}{l}
M_{1} S_{1} I_{1} S_{2} I_{2} I_{3} \\
M_{1} S_{2} I_{2} S_{1} I_{3} I_{4} \ldots R_{0 N G}
\end{array}\right.
$$

Sol 1: Cont all permutations NI!
\# permutations wale save ward
Epormulations SiFi MS: $4 \times 4 \times 2$? all those give sane word
$4!4!2!$?
$I-p o s=\{25,3,9\} 4$! to place 4-Is on those spots.
constructive

- place the $S: S S_{\text {eeg }}^{4} S S 1$ choice
 $\Delta I-s$ into 5 boxes
\Downarrow
6e9 of of $8 \ldots S+I \quad \ldots$
place PMs in bitaen
$2 P-\sin 9$ bores $4-4$ - 4 - 4 WW $P+S+I$
- place M $\Rightarrow 11$ choices
- product of choices \rightarrow ? exercise next week

O|How many triangles? Dride Q congner:

Binomial theorem $($ wee $) \Rightarrow$ Pascal $A \quad x, y \in R$

$$
\begin{aligned}
n=2(x+y)^{2}= & \left(x^{2}+2\right) x y+y^{2}=\binom{2}{0} x^{2}+\binom{2}{1} x y+\binom{2}{2} y^{2} \\
(x+y)^{3}= & \left.\left(x^{3}+3 x^{2} y+(3) x y^{2}+1 y^{3}=\binom{3}{0} x^{3}+\binom{3}{1} x^{2} y+\binom{3}{2} x y^{2}+\frac{2}{3}\right)\right|^{3} \\
(x+y)^{4}= & \left(1 x^{4}+\left(4 x^{3} y+\left(6 x^{2} y^{2}+4 x y^{3}+\left(1 y^{4} \quad\binom{4}{2}=\frac{4!}{2!\cdot 2!^{3}-\frac{3}{2}}\right.\right.\right.\right. \\
& \left.\binom{4}{0} x^{4}+\begin{array}{l}
4 \\
1
\end{array}\right) x^{3} y+\binom{4}{2} x^{2} y^{2}+\binom{4}{3} x y^{3}+\binom{4}{4} y^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { way ben } \\
& \left.(x+1)^{n}=\sum_{j=0}^{n} \frac{\sum_{j}^{n}}{j} 1\right) \times \sum_{j=0}^{n-1}\binom{n}{j} x^{j} y^{n-j}
\end{aligned}
$$

2^{n} terms (with rejections)

$$
\begin{aligned}
& 2^{x=1 \quad y=1}(1+1)^{n}=\sum_{j=0}^{n}\binom{n}{j} 1^{n-j} \cdot i^{j}=\sum_{j=0}^{n}\binom{n}{j}=\binom{n}{b}+\left(\begin{array}{l}
n \\
1 \\
1
\end{array}\right)+\cdots+\left(\begin{array}{l}
n \\
n \\
n
\end{array}\right) \\
& x=+1, y=-1 \\
& 0=(1-1)^{n}=\sum_{j=0}^{n}\binom{n}{j} 1^{n-j}(-1)^{j}=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\left(\frac{n}{3}\right) \cdot(-1)^{n}\binom{n}{n} \\
& n=3 \\
& 1-3+3-1=0 \\
& n=4 \\
& 1-4+6-4+1=0 \\
& n=5 \quad 1-5+10-10+5-1=0
\end{aligned}
$$

$$
\binom{n}{k}=\binom{n}{n-k}
$$

> Pascalt
(*)
exeraise
$x=p \quad y=1-p \quad p=$ prob of success \quad coin $f(1 p)$ $1-p=p r o s$ failure
$I=(p+(1-p))^{n}=\sum_{j=0}^{n} \underbrace{\binom{n}{j} p^{n-j}(1-p)^{j} \quad \text { Binownial distubution }}$ $P=\frac{1}{3}$ Chace of \quad prob(exactly $\begin{gathered}\text { enccesses }) \\ \text { sus }\end{gathered}$
$x=100$ coin flips

