Algorithms

Introduction Algorithm Examples Pseudocode Order of Growth

Algorithms – what are they

- series of computational steps given an input, to produce an output
- desirable properties:
 - correctness
 - efficient (time, space)
 - elegant
 - easy to implement

Week 1 Objectives

- understand the importance of algorithms
- Example of different solutions for the same problem
 - emphasize running time
- Example of being good at math
- Example of being smart
- Running time analysis, intro
 - Order of growth
 - Big-O notation

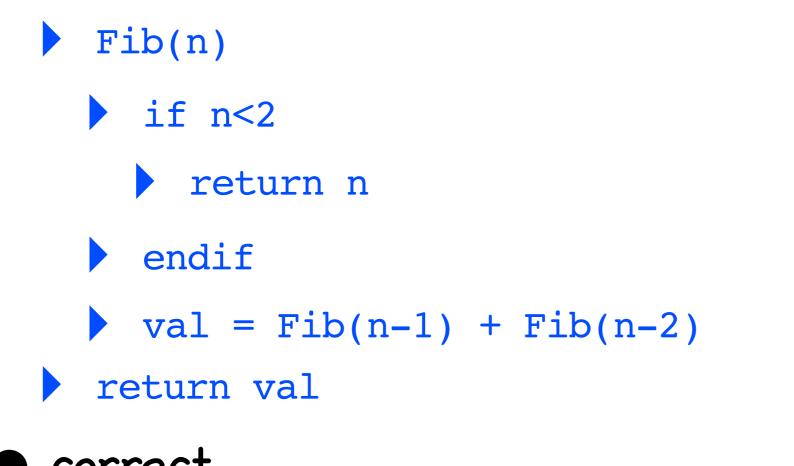
Example 1 : MAX

- given an array A, find maximum value
- input A[1:n]
- maxi=1
- for i=2:n
 - if A[i]>A[maxi] then maxi=i
- endfor
- return (maxi, A[maxi])
- number of comparisons: n-1. Running Time o(n)
- observe correctness
- observe pseudocode

Example 2 : Fibonacci

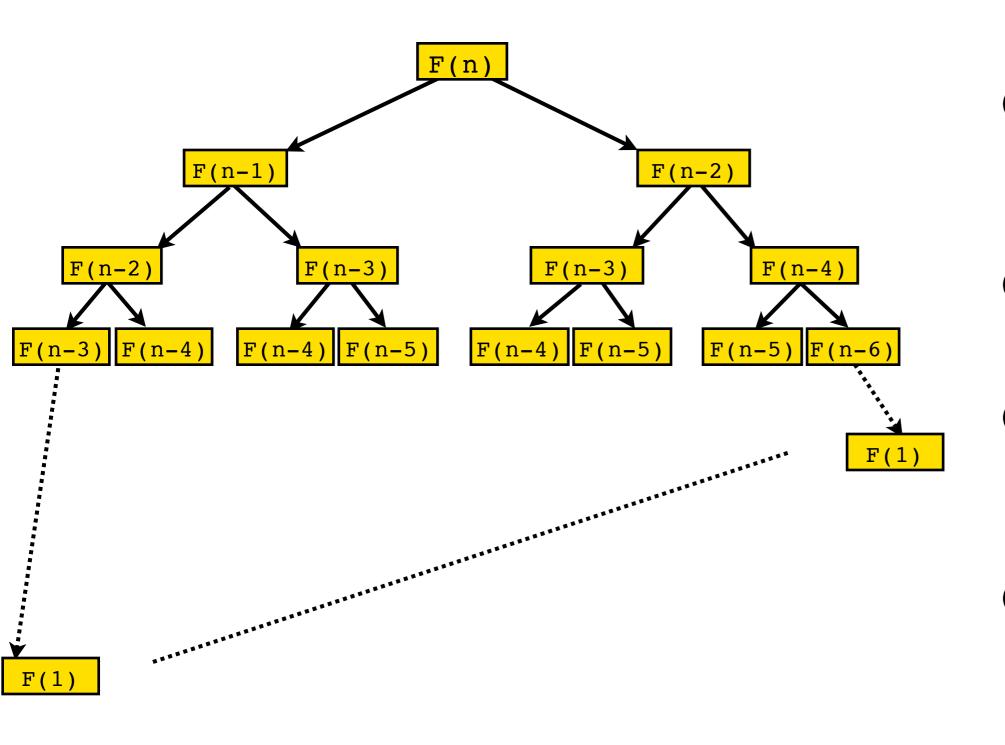
- Fibonacci numbers are defined as
 - F(O)=O; F(1) =1;
 - F(n) = F(n-1) + F(n-2) for all n>1
- Observe the recursive definition
- Task: given n, calculate F(n)

Fibonacci - recursive solution



- correct
- exponential running time (bad)
 - see recursion tree

Fibonacci – recursive solution tree



- tree= stack of function calls
- n levels on the left
 - n/2 levels on the right
- at least n/2 levels full binary tree
 - at least 2^(n/2) calls

Fibonacci – array solution

Fib(n)

- array A[0..n] initialized
- A[0]=0; A[1]=1;
- for i=2:n
 - A[i]=A[i-1] + A[i-2];

endfor

return A[n];

- one for loop runs across the array
- inside the loop a constant time operation O(1)
- overall linear time O(n)

Fibonacci – Matrix Multiplication

$$M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \qquad \qquad M^k = \begin{bmatrix} F_{k+1} & F_k \\ F_k & F_{k-1} \end{bmatrix}$$

proof by mathematical induction

$$M^{k+1} = M * M^{k} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_{k+1} & F_{k} \\ F_{k} & F_{k-1} \end{bmatrix}$$
$$= \begin{bmatrix} F_{k+1} + F_{k} & F_{k} + F_{k-1} \\ F_{k+1} & F_{k} \end{bmatrix} = \begin{bmatrix} F_{k+2} & F_{k+1} \\ F_{k+1} & F_{k} \end{bmatrix}$$

- so we have to multiply M with itself n times
 - how fast can it be done?
 - naively : each multiplication of 2x2 matrixes takes constant O(1) time so linear time O(n) total

Fibonacci – Matrix Multiplication

$M = \left[\begin{array}{rrr} 1 & 1 \\ 1 & 0 \end{array} \right]$

- want to compute Mⁿ: multiply M with itself n times
 - each multiplication of 2x2 matrixes takes constant O(1) time
- idea: repeated squaring
 - M²=M*M; M⁴=M²*M²; M⁸=M⁴*M⁴ etc
- then multiply only the powers needed
 - for example n=13 gives $M^{13}=M^{8*}M^{4*}M$

Fibonacci – Matrix Multiplication

- Fib(n) init $M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ for i=0:log(n) if (n%2 ==1) A=A*M; endif //add this power of M only if the respective bit in n is 1 M=M*M; // get the next squaring M n=n/2 // move on to the next bit(right to left) in n - think of n represented in binary endfor return A[1,1]
 - only log(n) iterations in for loop, each constant time
 logarithmic time O(log n) total

Fibonacci – generative function

• use the generative function (requires analytic solution) $F_n = \frac{\phi^n - \hat{\phi}^n}{\sqrt{5}}$

$$1 + \sqrt{5}$$

$$\phi = \frac{1 + \sqrt{5}}{2}; \hat{\phi} = \frac{1 - \sqrt{5}}{2}$$

 practically constant time, if scalar expoential is done with a dedicated math processor

Conclusions

- Algorithms matter, even if the problem is very simple
- They matter a lot if the problem is BIG
 - think of big data today, or the web search
- Analysis of algorithms: running time, space requirements, bottlenecks
- Implementation makes a difference too

CheckPoint

- Consider the first Fibonacci solution (recursion) vs the second (array)
 - how is it possible to reduce an exponential number of computations to a linear number?
 - are some of the computations in the first solutions not necessary?
 - can you speed up the recursion for the first solution?

Matrix multiplication

multiply nxn matrices

$$C = AB$$
$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

- running time $\Theta(n^3)$
 - $\Theta(n^3)$ means actual number of multiplications T(n) is about n^3
 - $C_1^*n^3 \leq T(n) \leq C_2^*n^3$, for fixed constants C_1 and C_2
 - count the number of multiplications

Strassen's Algorithm

n=2: Multiplay 2x2 matrix using 7 multiplications instead of 8

$$\begin{bmatrix} r & s \\ t & u \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \times \begin{bmatrix} e & g \\ f & h \end{bmatrix}$$

• Strassen's equations

P1 = a(g - h) P2 = (a + b)h P3 = (c + d)e P4 = d(f - e) P5 = (a + d)(e + h) P6 = (b - d)(f + h) P7 = (a - c)(e + g)

$$r = P5 + P4 - P2 + P6$$

$$s = P1 + P2$$

$$t = P3 + P4$$

$$u = P5 + P1 - P3 - P7$$

Strassen's Algorithm

- divide : partition A, B each in four ⁿ/₂ x ⁿ/₂
 matrices
- conquer: perform 7 multiplications
 - each multiplication of 2 matrices of size n/2, done recursively with divide-conquer mechanism for n = n/2
- combine: find C=AxB using Strassen's equations
- T(n) = time to multiply nxn matrices
 - recursively: $T(n) = 7T(n/2) + \Theta(n^2)$
 - how to solve this recursion?

Running time

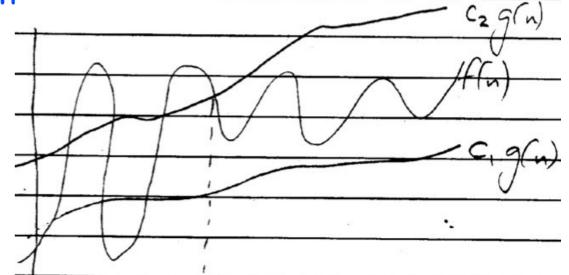
- Solve equation $T(n) = 7T(n/2) + \Theta(n^2)$ as order of growth
 - no interest in T(1), T(2) etc, but the general growth of the function
- solution next module: T(n) is like $n^{\log(7)}$
 - approx $n^{2.81}$, better than n^3 the running time of multiplication
- that means C₁*n^{log(7)}< T(n) < C₂*n^{log(7)}, for some constants C₁ and C₂, for n≥n₀ some starting value

checkpoint: matrix multiplication

 verify that Strassen's equation produce indeed the correct matrix multiplication

Asymptotic Notation : Θ

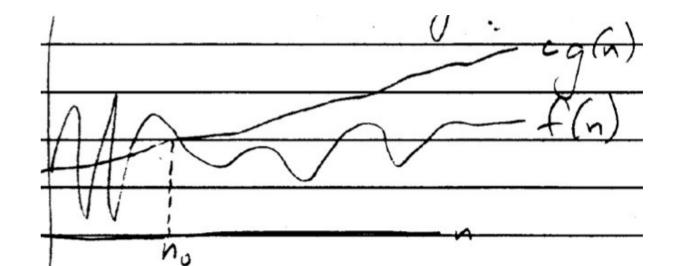
- $f(n) = \Theta(g(n))$ if $C_1g(n) \leq f(n) \leq C_2g(n)$
 - for some positive constants C_1 and C_2 , and starting at $n \ge n_0$
 - T(n) for Strassen's multiplication is $\Theta(n^{\log(7)})$
 - we cannot compute T(n) exactly, but we know its growing like constant* n^{log(7)}
 - example: $f(n)=\frac{1}{2}n^2-2n$ is $\Theta(n^2)$
- a simple loop through data = linear algorithm
 - $\Theta(n)$ or growing like constant*n
 - for example the MAX algorithm parlier



Asymptotic Notation : "big" O

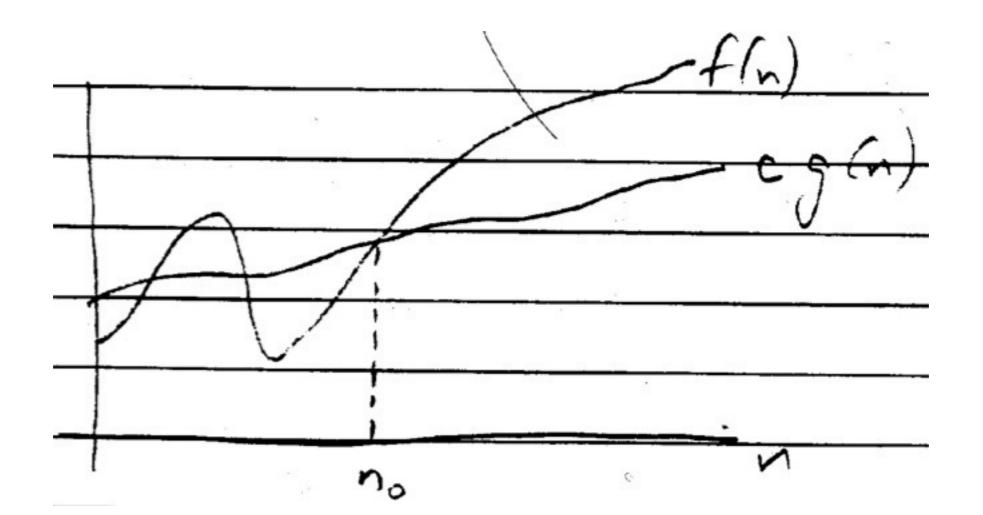
- f(n) = O(g(n)) if $f(n) \leq C_2 g(n)$
 - for some positive constant C_2 , and starting at $n \ge n_0$
 - only bounding T(n) up, not down
 - "worst case" = longest running time
 - worst case not worse than g(n) growth
 - if T(n) is $\Theta(g(n))$, then T(n) is also O(g(n)), but not the converse!
- expression $f(n) = n^2 + O(n)$, or n^2 plus "linear"

means f(n)≤n²+C₂n, for some constant C₂, and initial n₀



Asymptotic Notation : Ω

- lower bound: $f(n) = \Omega(g(n))$ if $f(n)>C_1g(n)$
 - for some positive constant C_1 , and starting at $n \ge n_0$
 - example: $f(n)=n^2$ is $\Omega(nlog(n))$



Asymptotic Notation : summary

Notation	Name	Intuition	As $n ightarrow \infty$, eventually	Definition
$f(n) \in O(g(n))$	Big Omicron; Big O; Big Oh	<i>f</i> is bounded above by <i>g</i> (up to constant factor) asymptotically	$f(n) \le g(n) \cdot k$	$\exists (k > 0), n_0 : \forall (n > n_0) \; f(n) \le g(n) \cdot k \text{ or } \exists (k > 0), n_0 : \forall (n > n_0) \; f(n) \le g(n) \cdot k d(n) = 0$
$f(n) \in \Omega(g(n))$	Hig Umega	f is bounded below by g (up to constant factor) asymptotically	$ f(n) \ge g(n) \cdot k$	$\exists (k > 0), n_0 : \forall (n > n_0) g(n) \cdot k \le f(n) $
$f(n) \in \Theta(g(n))$	Big Theta	f is bounded both above and below by g asymptotically	$g(n) \cdot k_1 \le f(n) \le g(n) \cdot k_2$	$\exists (k_1, k_2 > 0), n_0 : \forall (n > n_0) g(n) \cdot k_1 < f(n) < g(n) \cdot k_2 $
$f(n) \in o(g(n))$	Small Omicron; Small O; Small Oh	f is dominated by g asymptotically	$f(n) < g(n) \cdot k$	$\forall (k>0), \exists n_0: \forall (n>n_0) f(n) < g(n) \cdot k $
$f(n) \in \omega(g(n))$	Small Omega	f dominates g asymptotically	$f(n) > g(n) \cdot k$	$\forall (k>0), \exists n_0 : \forall (n>n_0) g(n) \cdot k < f(n) $
$f(n) \sim g(n)$	on the order of	f is equal to g asymptotically	$ f(n) - g(n) \cdot k < \varepsilon$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k, 0 < k < \infty$

Ten orders of growth

Let's assume that your computer can perform 10,000 operations (e.g., data structure manipulations, database inserts, etc.) per second. Given algorithms that require $\lg n, n^{1/2}, n, n^2, n^3, n^4, n^6, 2^n$, and n! operations to perform a given task on n items, here's how long it would take to process 10, 50, 100 and 1,000 items.

	n					
	10	50	100	1,000		
lg <i>n</i>	0.0003 sec	0.0006 sec	0.0007 sec	0.0010 sec		
n ^{1/2}	0.0003 sec	0.0007 sec	0.0010 sec	0.0032 sec		
n	0.0010 sec	0.0050 sec	0.0100 sec	0.1000 sec		
<i>n</i> lg <i>n</i>	0.0033 sec	0.0282 sec	0.0664 sec	0.9966 sec		
n ²	0.0100 sec	0.2500 sec	1.0000 sec	100.00 sec		
n ³	0.1000 sec	12.500 sec	100.00 sec	1.1574 day		
n ⁴	1.0000 sec	10.427 min	2.7778 hrs	3.1710 yrs		
n ⁶	1.6667 min	18.102 day	3.1710 yrs	3171.0 cen		
2 ^{<i>n</i>}	0.1024 sec	35.702 cen	4×10 ¹⁶ cen	1×10 ¹⁶⁶ cen		
<i>n</i> !	362.88 sec	1×10 ⁵¹ cen	3×10144 cen	1×10 ²⁵⁵⁴ cen		

Table 1: Time required to process *n* items at a speed of 10,000 operations/sec using eight different algorithms.

Note: The units above are seconds (sec), minutes (min), hours (hrs), days (day), years (yrs), and centuries (cen)!

Explosive growth of exponential

n							
15	20	25	30	35	40	45	
3.28 sec	1.75 min	55.9 min	1.24 days	39.8 days	3.48 yrs	1.12 cen	

Table 2: Time required to process *n* items at a speed of 10,000 operations/sec using a 2^{*n*} algorithm.

Even more explosive n!

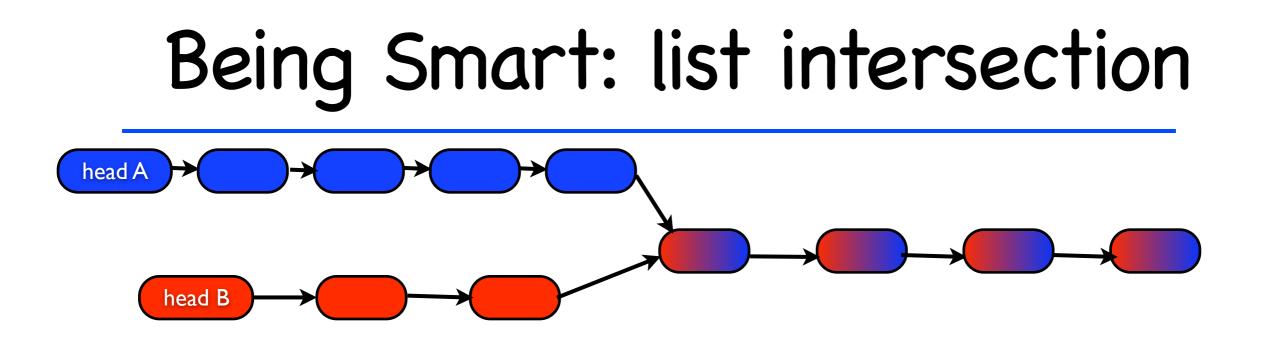
n						
11	12	13	14	15	16	17
1.11 hrs	13.3 hrs	7.20 days	101 days	4.15 yrs	66.3 yrs	11.3 cen

Table 3: Time required to process *n* items at a speed of 10,000 operations/sec using an *n*! algorithm.

CheckPoint: Order of growth

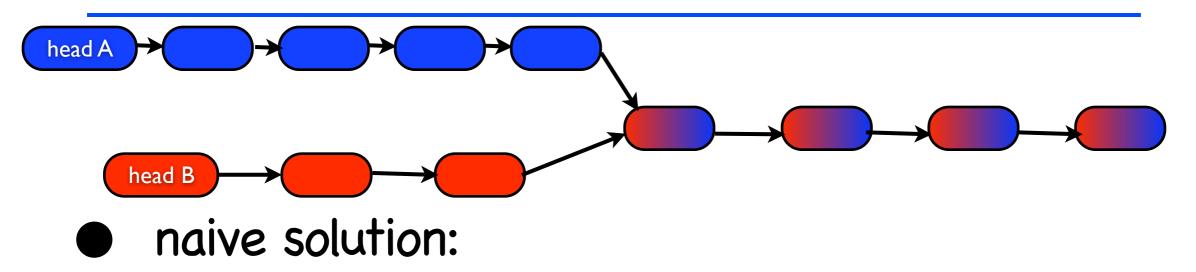
who is growing faster ?

- $f(n)=n^{1/2}$ or g(n)=2log(n)
- $f(n)=n^{1/3}$ or $g(n) = [log(n)]^3$
- $f(n) = 2^{(2^n)} \text{ or } g(n)=n!$
- explain equation $T(n) = 7T(n/2) + \Theta(n^2)$
- MergeSort (size n) : solve 2 problems of size T(n/ 2), then combine result in linear time. What is the recursive equation for the running time T(n) ?



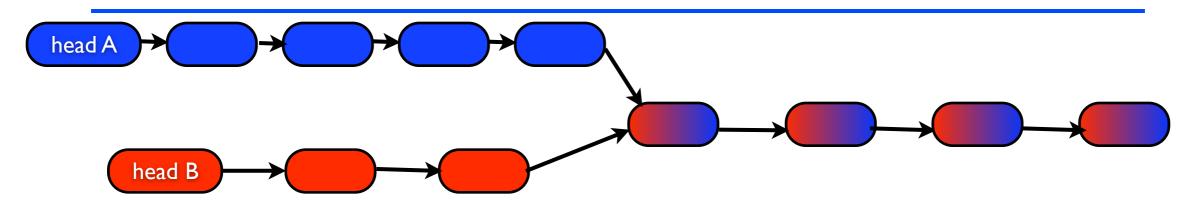
- You are given the two head-nodes headA and headB of two single-linked lists that are known to intersect
 - after intersection they are identical due to the linkage nature
- Task: find the intersection node
 - cannot modify the lists, or use auxiliary data structures

Being Smart: list intersection



- for each a=node of first list (traversal)
 - for each b=node of the second list (traversal)
 - if a==b return "found intersection node: a"
 - end second for
 - end first for
 - such solution runs in O(mn) quadratic time, if m and n are the lengths of the two lists
 - the first loop takes up to m steps to iterate to the first list
 - the second loop takes n steps; it runs for each step of the first loop

Being Smart: list intersection



- traverse the first list to count it, obtain m; m=9 in example
- traverse the second list to count it, obtain n; n=7 in example
- if m>n traverse first list for exactly m-n nodes; m-n=2 in example
 - if n>m traverse second list for exactly n-m elements
- traverse the list simultaneously until the intersection node // in example this simultaneous traversal starts at third blue and first red
 - smart solution runs in O(m+n) linear time