Algorithms

Introduction
Algorithm Examples
Pseudocode
Order of Growth

Algorithms - what are they

- series of computational steps given an input, to produce an output
- desirable properties:
- correctness
- efficient (time, space)
- elegant
- easy to implement

Week 1 Objectives

- understand the importance of algorithms
- Example of different solutions for the same problem
- emphasize running time
- Example of being good at math
- Example of being smart
- Running time analysis, intro
- Order of growth
- Big-O notation

Example 1: MAX

- given an array A, find maximum value
input A[1:n]
- maxi=1
- for $i=2: n$
- if $A[i]>A[m a x i] ~ t h e n ~ m a x i=i$
- endfor
- return (maxi, A[maxi])
- number of comparisons: n-1. Running Time o(n)
- observe correctness
- observe pseudocode

Example 2 : Fibonacci

- Fibonacci numbers are defined as
- $F(0)=0 ; F(1)=1$;
- $F(n)=F(n-1)+F(n-2)$ for all $n>1$

Observe the recursive definition
Task: given n, calculate $F(n)$

Fibonacci - recursive solution

> Fib(n)
\Rightarrow if $\mathrm{n}<2$

- return n
$>$ endif
$>\operatorname{val}=\operatorname{Fib}(n-1)+\operatorname{Fib}(n-2)$
- return val
- correct
- exponential running time (bad)
- see recursion tree

Fibonacci - recursive solution tree

- tree= stack of function calls
- n levels on the left
- $n / 2$ levels on the right
- at least $n / 2$ levels full binary tree
- at least $2^{(n / 2)}$

Fibonacci - array solution

$\Rightarrow \operatorname{Fib}(\mathrm{n})$

- array A[0..n] initialized
- $A[0]=0 ; A[1]=1$;
- for $i=2: n$
- $A[i]=A[i-1]+A[i-2] ;$
- endfor
- return A[n];
- one for loop runs across the array
- inside the loop a constant time operation $O(1)$
- overall linear time $O(n)$

Fibonacci - Matrix Multiplication

$$
M=\left[\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right] \quad M^{k}=\left[\begin{array}{cc}
F_{k+1} & F_{k} \\
F_{k} & F_{k-1}
\end{array}\right]
$$

- proof by mathematical induction

$$
\begin{aligned}
& M^{k+1}=M * M^{k}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
F_{k+1} & F_{k} \\
F_{k} & F_{k-1}
\end{array}\right] \\
& {\left[\begin{array}{cc}
F_{k+1}+F_{k} & F_{k}+F_{k-1} \\
F_{k+1} & F_{k}
\end{array}\right]=\left[\begin{array}{cc}
F_{k+2} & F_{k+1} \\
F_{k+1} & F_{k}
\end{array}\right]}
\end{aligned}
$$

- so we have to multiply M with itself n times
- how fast can it be done?
- naively: each multiplication of 2×2 matrixes takes constant $O(1)$ time so linear time $O(n)$ total

Fibonacci - Matrix Multiplication

$M=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$

- want to compute M^{n} : multiply M with itself n times
- each multiplication of 2×2 matrixes takes constant $O(1)$ time
- idea: repeated squaring
- $M^{2}=M^{*} M ; M^{4}=M^{2 *} M^{2} ; M^{8}=M^{4 *} M^{4}$ etc
- then multiply only the powers needed
- for example $n=13$ gives $M^{13}=M^{8 *} M^{4 *} M$

Fibonacci - Matrix Multiplication

- Fib(n)
- init $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$
- for $i=0: \log (n)$
- if ($\mathrm{n} \% 2==1$) $\mathrm{A}=\mathrm{A} * \mathrm{M}$; endif //add this power of M only if the respective bition is 1
- $\mathrm{M}=\mathrm{M} * \mathrm{M}$; // get the next squaring M
- $\mathrm{n}=\mathrm{n} / 2 / /$ move on to the next bit(right to left) in n - think of n represented in binary
- endfor
- return A[1,1]
- only $\log (n)$ iterations in for loop, each constant time
- logarithmic time $O(\log n)$ total

Fibonacci - generative function

- use the generative function (requires analytic solution)

$$
F_{n}=\frac{\phi^{n}-\hat{\phi}^{n}}{\sqrt{5}}
$$

- where

$$
\phi=\frac{1+\sqrt{5}}{2} ; \hat{\phi}=\frac{1-\sqrt{5}}{2}
$$

- practically constant time, if scalar expoential is done with a dedicated math processor

Conclusions

- Algorithms matter, even if the problem is very simple
- They matter a lot if the problem is BIG
- think of big data today, or the web search
- Analysis of algorithms: running time, space requirements, bottlenecks
- Implementation makes a difference too

CheckPoint

- Consider the first Fibonacci solution (recursion) vs the second (array)
- how is it possible to reduce an exponential number of computations to a linear number?
- are some of the computations in the first solutions not necessary?
- can you speed up the recursion for the first solution?

Matrix multiplication

- multiply nxn matrices

$$
\begin{gathered}
C=A B \\
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}
\end{gathered}
$$

- running time $\Theta\left(n^{3}\right)$
- $\Theta\left(n^{3}\right)$ means actual number of multiplications $T(n)$ is about n^{3}
- $C_{1}{ }^{*} n^{3} \leq T(n) \leq C_{2}{ }^{*} n^{3}$, for fixed constants C_{1} and C_{2}
- count the number of multiplications

Strassen's Algorithm

- $n=2$: Multiplay 2×2 matrix using 7 multiplications instead of 8

$$
\left[\begin{array}{cc}
r & s \\
t & u
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \times\left[\begin{array}{ll}
e & g \\
f & h
\end{array}\right]
$$

- Strassen's equations

$$
\begin{aligned}
& P 1=a(g-h) \\
& P 2=(a+b) h \\
& P 3=(c+d) e \\
& P 4=d(f-e) \\
& P 5=(a+d)(e+h) \\
& P 6=(b-d)(f+h) \\
& P 7=(a-c)(e+g)
\end{aligned}
$$

$$
\begin{aligned}
& \quad r=P 5+P 4-P 2+P 6 \\
& s=P 1+P 2 \\
& t=P 3+P 4 \\
& u=P 5+P 1-P 3-P 7
\end{aligned}
$$

Strassen's Algorithm

- divide : partition A, B each in four $n / 2 \times n / 2$ matrices
- conquer: perform 7 multiplications
- each multiplication of 2 matrices of size $n / 2$, done recursively with divide-conquer mechanism for $n=n / 2$
- combine: find $C=A \times B$ using Strassen's equations
- $T(n)=$ time to multiply $n \times n$ matrices
- recursively: $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$
- how to solve this recursion?

Running time

- Solve equation $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$ as order of growth
- no interest in $T(1), T(2)$ etc, but the general growth of the
- solution next module: $T(n)$ is like $n^{\log (7)}$
- approx $n^{2.81}$, better than n^{3} the running time of multiplication
- that means $C_{1}^{*} n^{\log (7)}<T(n)<C_{2}^{*} n^{\log (7)}$, for some constants C_{1} and C_{2}, for $n \geq n_{0}$ some starting value

checkpoint: matrix multiplication

- verify that Strassen's equation produce indeed the correct matrix multiplication

Asymptotic Notation :

Θ

- $f(n)=\Theta(g(n))$ if $C_{1} g(n) \leq f(n) \leq C_{2} g(n)$
- for some positive constants C_{1} and C_{2}, and starting at $n \geq n_{0}$
- $T(n)$ for Strassen's multiplication is $\Theta\left(n^{\log (7)}\right)$
- we cannot compute $T(n)$ exactly, but we know its growing like constant ${ }^{*} \mathrm{n}^{\log (7)}$
- example: $f(n)=1 / 2^{*} n^{2}-2 n$ is $\Theta\left(n^{2}\right)$
- a simple loop through data = linear algorithm
- $\Theta(n)$ or growing like constant*n
- for example the MAX algorithm onrlior

Asymptotic Notation : "big" O

- $f(n)=O(g(n))$ if $f(n) \leq C_{2} g(n)$
- for some positive constant C_{2}, and starting at $n \geq n_{0}$
- only bounding $T(n)$ up, not down
- "worst case" = longest running time
- worst case not worse than $g(n)$ growth
- if $T(n)$ is $\Theta(g(n))$, then $T(n)$ is also $O(g(n))$, but not the converse!
expression $f(n)=n^{2}+O(n)$, or n^{2} plus "linear"
- means $f(n) \leq n^{2}+C_{2} n$, for some constant C_{2}, and initial n_{0}

Asymptotic Notation: Ω

- lower bound: $f(n)=\Omega(g(n))$ if $f(n)>C_{1} g(n)$
- for some positive constant C_{1}, and starting at $n \geq n_{0}$
- example: $f(n)=n^{2}$ is $\Omega(n \log (n))$

Asymptotic Notation : summary

Notation	Name	Intuition	As $n \rightarrow \infty$, eventually...	Definition
$f(n) \in O(g(n))$	Big Omicron; Big O ; Big Oh	f is bounded above by g (up to constant factor) asymptotically	$f(n) \leq g(n) \cdot k$	$\exists(k>0), n_{0}: \forall\left(n>n_{0}\right)\|f(n)\| \leq\|g(n) \cdot k\|$ or $\exists(k>0), n_{0}: \forall\left(n>n_{0}\right) f(n) \leq g(n) \cdot k$
$f(n) \in \Omega(g(n))$	Big Omega	f is bounded below by g (up to constant factor) asymptotically	$\|f(n)\| \geq g(n) \cdot k$	$\exists(k>0), n_{0}: \forall\left(n>n_{0}\right)\|g(n) \cdot k\| \leq\|f(n)\|$
$f(n) \in \Theta(g(n))$	Big Theta	f is bounded both above and below by g asymptotically	$g(n) \cdot k_{1} \leq f(n) \leq g(n) \cdot k_{2}$	$\exists\left(k_{1}, k_{2}>0\right), n_{0}: \forall\left(n>n_{0}\right)\left\|g(n) \cdot k_{1}\right\|<\|f(n)\|<\left\|g(n) \cdot k_{2}\right\|$
$f(n) \in o(g(n))$	Small Omicron; Small O; Small Oh	f is dominated by g asymptotically	$f(n)<g(n) \cdot k$	$\forall(k>0), \exists n_{0}: \forall\left(n>n_{0}\right)\|f(n)\|<\|g(n) \cdot k\|$
$f(n) \in \omega(g(n))$	Small Omega	f dominates g asymptotically	$f(n)>g(n) \cdot k$	$\forall(k>0), \exists n_{0}: \forall\left(n>n_{0}\right)\|g(n) \cdot k\|<\|f(n)\|$
$f(n) \sim g(n)$	on the order of	f is equal to g asymptotically	$\|f(n)-g(n) \cdot k\|<\varepsilon$	$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=k, 0<k<\infty$

Ten orders of growth

Let's assume that your computer can perform 10,000 operations (e.g., data structure manipulations, database inserts, etc.) per second. Given algorithms that require Ig $n, n^{1 / 2}, n, n^{2}, n^{3}, n^{4}, n^{6}, 2^{n}$, and n ! operations to perform a given task on n items, here's how long it would take to process $10,50,100$ and 1,000 items.

	n			
	10	50	100	1,000
$\boldsymbol{l g} \boldsymbol{n}$	0.0003 sec	0.0006 sec	0.0007 sec	0.0010 sec
$n^{1 / 2}$	0.0003 sec	0.0007 sec	0.0010 sec	0.0032 sec
n	0.0010 sec	0.0050 sec	0.0100 sec	0.1000 sec
$n \boldsymbol{l g} \boldsymbol{n}$	0.0033 sec	0.0282 sec	0.0664 sec	0.9966 sec
n^{2}	0.0100 sec	0.2500 sec	1.0000 sec	100.00 sec
n^{3}	0.1000 sec	12.500 sec	100.00 sec	1.1574 day
n^{4}	1.0000 sec	10.427 min	2.7778 hrs	3.1710 yrs
n^{6}	1.6667 min	18.102 day	3.1710 yrs	3171.0 cen
2^{n}	0.1024 sec	35.702 cen	4×10^{16} cen	1×10^{166} cen
n!	362.88 sec	1×10^{51} cen	3×10^{144} cen	1×10^{2554} cen

Table 1: Time required to process n items at a speed of 10,000 operations/sec using eight different algorithms.

Note: The units above are seconds (sec), minutes (min), hours (hrs), days (day), years (yrs), and centuries (cen)!

Explosive growth of exponential

\boldsymbol{n}							
$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 5}$	
3.28 sec	1.75 min	55.9 min	1.24 days	39.8 days	3.48 yrs	1.12 cen	

Table 2: Time required to process n items at a speed of 10,000 operations/sec using a 2^{n} algorithm.

Even more explosive n!

\boldsymbol{n}							
$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	
1.11 hrs	13.3 hrs	7.20 days	101 days	4.15 yrs	66.3 yrs	11.3 cen	

Table 3: Time required to process n items at a speed of 10,000 operations/sec using an n ! algorithm.

CheckPoint: Order of growth

- who is growing faster?
- $f(n)=n^{1 / 2}$ or $g(n)=2 \log (n)$
- $f(n)=n^{1 / 3}$ or $g(n)=[\log (n)]^{3}$
- $f(n)=2^{\left(2^{\wedge} n\right)}$ or $g(n)=n!$
- explain equation $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$
- MergeSort (size n) : solve 2 problems of size T(n/ 2), then combine result in linear time. What is the recursive equation for the running time $T(n)$?

Being Smart: list intersection

- You are given the two head-nodes headA and headB of two single-linked lists that are known to intersect
- after intersection they are identical due to the linkage nature
- Task: find the intersection node
- cannot modify the lists, or use auxiliary data structures

Being Smart: list intersection


```
    for each a=node of first list (traversal)
    | for each b=node of the second list (traversal)
    * if a==b return "found intersection node: a"
> end second for
    end first for
```

- such solution runs in $O(\mathrm{mn})$ quadratic time, if m and n are the lengths of the two lists
- the first loop takes up to m steps to iterate to the first list
- the second loop takes n steps; it runs for each step of the first loop

Being Smart: list intersection

- smart solution:

- traverse the first list to count it, obtain m; m=9 in example
- traverse the second list to count it, obtain n; $n=7$ in example
- if $m>n$ traverse first list for exactly $m-n$ nodes; $m-n=2$ in example
- if $n>m$ traverse second list for exactly $n-m$ elements
- traverse the list simultaneously until the intersection node // in example this simultaneous traversal starts at third blue and first red
smart solution runs in $O(m+n)$ linear time

