induction

Consider this prasum. ryordy charge (coins)
Claim: for $n>=8, n$ cents can be made with 34 cains any 54 coins

We build frau
is it true for $8-$ yes $\begin{aligned} & 134 \\ & 154\end{aligned}$ to make san try true for All
is it rue for 9 - yes 3 . 34 numbs
is 14 true for 10 - yes 2.54

How mint Be prove for All n ?

Let's say we know we have dore All the unce up to k fo same k.
k cents

$k+1$ cent

CAN I use mus to get $k r l$?

2 cases

$$
\begin{aligned}
& \mid 5 \text { cons } \left\lvert\,=0-t \begin{array}{l}
\text { take } a_{\text {many }} 3 \text { - ont cis ADD } 2.5 \text { cent }
\end{array}\right. \\
& k-9+10=k+1 \\
& \mid 5 \text { cams } \mid \neq 0 \text { - tale away } 15 \text { cont conn } \\
& \text { ADD } 2 \text { at cons. } \\
& (k) \gtrsim \\
& k-5+6=k+1
\end{aligned}
$$

MAwolic - 1575
used by fermat 3_{c} Pascal But

Demajan formalized it a named P is same property defined over the integers and a is same fined integer AND

1. $P(a)$ is true
2. $\forall k \in \mathbb{Z}, k>=a, P(k) \rightarrow P(k+1)$
(For all integus k, k bigener equal to a, if $P(k)$ is thee then $P(k+1)$ is true)
This implies $\forall n \in \mathbb{Z}, u)=a, P(n) \quad$ (frail for all bused than or equal a $P(n)$ istand)

Proof Technique!
we offer want ta prove a statement (property)
$\forall n \in Z, n \geq a, P(n)$ is true
we do this in Two Step!
BAse care (Basis case) - show P(a) is true
Inductive step (we want to statist
$\forall k \geqslant a$ if $P(k)$ is

$$
\forall k \geqslant q \text { if } P(k) \text { is the thew } P((\alpha+1) \text { (s she) }
$$

To po this we Assume $p(k)$ and use it to prove $p(k+1)$

Coins U. 2.0

$$
\begin{aligned}
& \forall n \geqslant 8, \quad \exists_{m_{1}, m_{2}} \in \mathbb{N}, \text { sit } \\
& n=3 m_{1}+5 m_{2}
\end{aligned}
$$

$$
\forall n \geqslant 8
$$

$$
n=3 m_{1}+5 m_{2}
$$

$P(n) \quad \forall n>=8, n$ cents can be made with 34 coins two 5 coins

Proof by induction:
(we argue by mathematical wouctio.)

Consumer the base case when $n=8$. We know that 8 can be made with 1 sa coin mas 134 coin. So 8 cents can be made with 3 mo 5 cent cons,

Now consider an innuctove bypotucsis for k an arbitron integer." We know from our hypothesis that k can be made
from 3 cent coins and 5 cent cons,
There ore two cases:

Case 1. K is made up of at least one 5 cent coin.
Then to shaw that $k+1$ can be made fran 3 is cent coins we use all of the coins than k leaving out 15 cent coin and Addy in 23 cent counts. Since $k-5+6=k+1$

We know $k+1$ con be made frown 3 anD 5 cent cones,

Case 2: k is made up of owl y 3 cat cains.
we know don our Assumption $k \geqslant 9$, so we have at least 3. Scent coins.

We scare 3. Scents Coins And ADD two 5 cent coins.
Since $k-9+10=k+1$, we know $k+1$ can be made form 3 and 5 cent cans.

So for all $n \geqslant 8$, n cents can be vape usij 3 and 5 cent coins.

$$
\begin{aligned}
\sum_{i=1}^{n} i=1+2+3+\ldots+n & =\frac{n(n+1)}{2} \\
a & =b
\end{aligned}
$$

property is the statement itself.
$\binom{\text { Sum of } 1 \text { ton } n \text { is equal }}{\text { to } \frac{n(u+1)}{2}}^{\text {n er }}$
Base Case: $a=1$
$1 \sim$ left hams side
$\frac{1(1+1)}{\partial}=\frac{\partial}{\alpha}=1 \sim$ ryint hand side so were good.
Inductive
Hyponsis $\quad k>=1$
$1+\alpha+3 . \ldots+k=\frac{k(k+1)}{2}$
We assume K
frail ow Assumption we $k_{\text {Now }} 1+2+3+\ldots+k=\frac{k(k+1)}{2}$
Consider left hand side for $k+1$

$$
1+j+3+\cdots+k+k+1
$$

From ow Assumption this is $\frac{k(k+1)}{\alpha}+k+1$ But This is $\frac{k(k+1)}{2}+\frac{\partial(k+1)}{2}$
which simplifies to $\frac{(k+2)(k+1)}{2}$
which is the derived rout kart side for $k+1$
So

$$
\begin{aligned}
& 1+2+3+\ldots .+k+1=\frac{(k+2)(k+1)}{2} \text { which icuples } \\
& 1+2+\ldots+n=\frac{h(n+1)}{2} \quad \forall n, n>=1
\end{aligned}
$$

$$
\sum_{i=1}^{n} i^{2}=1+4+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Proof by mouction:
Consider the base case were n $n=1$ we have 1 on left side we have $\frac{1(1+1)(2+1)}{6}=\frac{6}{6}=1$ as deswed.

Now we assume by inductee uypstrosis that for some $k \geqslant 1$

$$
1+4+9+\ldots+k^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Ans we Argue that $1+4+9+\ldots \cdot k^{2}+(k+1)^{2}=\frac{(k+1)(k+2)(2(k+1)+1)}{6}$

Left Han side

$$
1+4+9+\cdots+k^{2}+(k+1)^{2}
$$

Right haws Side

$$
\frac{(k+1)(k+2)(2(k+1)+1)}{6}
$$

we know $1+4+9+\cdots+k^{2}=\frac{k(k+1)(2 k+1)}{6}$
So

$$
\left(+4+9+\ldots+k^{2}+(k+1)^{2}=\frac{k(k+1)(\lambda k+1)}{6}+(k+1)(k+1)\right.
$$

which is $\frac{k(k+1)(2 k+1)}{6}+\frac{6(k+1)(k+1)}{6}$
which is $\frac{k(k+1)(2 k+1)+6(k+1)(k+1)}{6}=\frac{k(2 k+1)(k+1)+6(k+1)(k+1))}{6}$

$$
\begin{aligned}
& \frac{(6(k+1)+k(2 k+1))(k+1)}{6} \\
& \frac{\left(6 k+6+2 k^{2}+k\right)(k+1)}{6} \\
& \frac{\left(2 k^{2}+7 k+6\right)(k+1)}{6}
\end{aligned}
$$

Now causider right hand side But this is $(k+1)(k+2)(2 k+3) / 6^{6}-s_{0}$ LAts $=$ Rets.

