Theorem 1: Divisibility with 3 in base 10. A natural number is divisible with 3 if and only if the sum of its base10-digits is divisible with 3.
proof. Lets say $n=d_{0}+d_{1} * 10^{1}+d_{2} * 10^{2}+\ldots .+d_{k} * 10^{k}$ in base 10 , with digits $d_{i} \in\{0,1,2 \ldots, 9\}$. That is the same as writing $n=\sum_{i=0}^{k} d_{i} 10^{i}$

Recall that modulo 3 means remainder at division with 3. For example $100 \bmod 3=1$, because $100=3^{*} 33+1$.
Also recall that modulo distributes over sum, product, and powers. For example
$(100+22) \bmod 3=((100 \bmod 3)+(22 \bmod 3)) \bmod 3$.
See the appendix for a recap of modulo operations.

So now we can write:
$n \bmod 3=\left(\sum_{i=0}^{k} d_{i} 10^{i}\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(d_{i} 10^{i} \bmod 3\right)\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(d_{i} \bmod 3\right) *\left(10^{i} \bmod 3\right)\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(d_{i} \bmod 3\right) *(10 \bmod 3)^{i}\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(d_{i} \bmod 3\right) * 1^{i}\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(d_{i} \bmod 3\right)\right) \bmod 3$
$=\left(\sum_{i=0}^{k} d_{i}\right) \bmod 3$
Reading the beginning and the end in english : The remainder of n divided by 3 is the same as the reminder of the sum-of-digits (n) divided by 3 . In particular if one of these remainder is 0 (that means divisible with 3) the other one is aslo 0 .
This is a proof in both directions since we didnt use implications (unidirectional), we used equality modulo 3 , which goes both ways.

