Recitation 9: Advanced Counting

Problem 1 Permutation cycles Three permutations are given for $n=6$ as values in each position
$a=[425163] ; b=[426135] ; c=[351624]$.
i. Decompose each permutation into cycles
ii. Write a 3×3 table that computes all possible products of 2 of these. Each cell is the product of the row-permutation \times col-permutation

		a	b
a			
b			c
c			

Problem 2. Non-decreasing sequences How many non-decreasing sequences of length 8 are there if the values are integers in range [11:20] ? For example such sequence can be (12,12,14,16,16,19,20,20).

Problem 3 Fruit Share

In how many ways can 5 people divide 4 apples, 3 oranges, 6 bananas and 2 pears? People are distinguishable, but fruits of the same kind are not. All divisions are possible: a person can end up with no fruit, or can end up with all.

Problem 4 Sequence to Generative Functions

For each sequence below state the generative function (recap: a polynomial in compact form that has the given sequence as coefficients). a, b, c etc are constants; n is the largest degree; k indices run from 0 to ∞ unless otherwise indicated. For some its easier to compute; for others you can enumerate the terms and use Taylor Series, or look it up online.
i. $\left.\left\langle a^{k}\right\rangle=<a^{0}, a^{1}, a^{2}, a^{4} \ldots\right\rangle$
ii. $\left\langle\binom{ n}{k} \cdot a^{k}>\right.$
iii. \star Prove using a combinatorial argument the following $<\binom{n+k-1}{k}>\equiv \frac{1}{(1-x)^{n}}$
Use the fact that the LHS is the balls-into-bins count, and that RHS is $\left(1+x+x^{2}+\ldots\right)^{n}$
iv. $\left\langle\binom{ n+k-1}{k} a^{k}>\right.$
v. $\left\langle\frac{1}{k!}\right\rangle$
vi. $\left\langle(-1)^{k+1} / k\right\rangle$

Problem 5 Counting with Generative Functions

Use generating functions to determine the number of ways to insert tokens worth $\$ 1, \$ 2$, and $\$ 5$ into a vending machine to pay for an item that costs 17 dollars in these cases below.
You can use an online calculator for your GF coefficient such as https://www.wolframalpha.com/ input? "SeriesCoefficient [GF, x, $0, \mathrm{deg}$]"
i. The order in which the tokens are inserted does not matter
ii. \star The order in which the tokens are inserted matters (inserting $\$ 1$ followed by $\$ 2$ is different from inserting $\$ 2$ followed by $\$ 1$.)

Problem 6 Check on Project 3: Valid Dates

i. Write a bullet plan for part A. How do you generate all possible dates? How to check validity condition on each ?
ii. Write a bullet plan for part B.

- What is the R() recurrence? What is R() close form?
- What is the decomposition of $T(n)$ into $R(k)$ and $T(n-k)$?

Problem 7 (optional, no credit)

A certain computer room has 5 computers and 9 printers (all distinguishable). Computers have many ethernet ports; printers have one ethernet port.
i. Each printer must be connected to a computer. In how many ways can the connections be made?
ii. \star Each printer must be connected to a computer and each computer must be connected to a printer. In how many ways can the connections be made?
iii. \star Each printer must be connected to at least one computer and each computer must be connected to at least one printer. Each computer has 4 ports, and each printer 3 ports. In how many ways can the connections be made?

