Recitation 7: Induction, Series (2)

Problem 1 Multiple of 4
Prove by induction that for all n odd positive integers $1+3^{n}$ is divisible by 4 .

Problem 2 Fibonacci numbers properties by induction
i. $F_{1}-F_{2}+F_{3}-F_{4}+\ldots+(-1)^{n} F_{n+1}=(-1)^{n} F_{n}+1$
ii. $F_{1} F_{2}+F_{2} F_{3}+F_{3} F_{4}+\ldots+F_{2 n-1} F_{2 n}=F_{2 n}^{2}$

Problem 3 Approximation

i. Let $x>-1$ a real value. Prove by induction over $n \geq 0$ that $(1+x)^{n} \geq 1+n x$
ii. Prove that $\left(\frac{n}{n+1}\right)^{n} \geq \frac{1}{n+1}$ by using a particular x in the previous inequality.

Problem 4 Square Game Project check.

A) describe a specific strategy for your move. Include how to determine the row, and the number of tiles to delete.
B) Show a (partial) code setup.

PB 5 recurrences

i. If mergesort divided its input array into five pieces instead of two, calling mergesort on each piece and combining with a linear-time 5 -way merge, what would Run-Time $T(n)$ its recurrence be?
ii. What is the asymptotic of the 5 -way mergesort Run Time from previous exercise? Use the iterative method to drive recursion into a pattern than can be stated in terms of $k=$ number of iterations, then solve it by using "last- k " that makes recursive term be $T(1)$
iii. Show that the following recursion has asymptotic upper and lower bound $\Theta(n)$. $T(n)=T(n / 2)+T(n / 4)+T(n / 8)+n$

PB $6 \star \star \star$ (optional, no credit)
Prove that the inverse- $n \log n$ series diverges : $\sum_{k=2}^{\infty} \frac{1}{n \log n}=\infty$

