Recitation 4: Power Set, Coprimes, Euler totient, RSA

Instructions: Submit to gradescope by the deadline.
Problem 1 : Power Set(a), Coprimes
i. Prove that 22^{12001} has a multiplicative inverse modulo 175
ii. What is the multiplicative $\operatorname{order}(22) \bmod 175$?
iii. What is the division remainder of 22^{12001} by 175 ?
iv. \star What is the last digit of $7^{7^{7^{7}}}$?

Hint: Compute the powers of $7 \bmod 10$. If $\operatorname{order}(7)=v$, it comes down to finding $7^{7^{7}} \bmod v$ and so forth.

Problem 2 Prove that $n^{13} \equiv n \bmod 10$ for any integer n. Do this in two separate cases: for n coprimes and non-coprimes with 10 .

Problem 3 Fermat's primality test For each one of these n test primality by randomly picking several $a \in \mathbb{Z}_{n}$ and check if $a^{n-1} \equiv 1 \bmod n$. As discussed in class, if any of the tests fail n is certainly not prime; but if all tests succeed there is a high chance (not guaranteed) for n to be prime. You can use a calculator for power and modulo.
i. $n=1429$; try $a=2,3,5,7$
ii. $n=6601$; try $a=2,3,5$
iii. $n=1105$; try $a=2,3,7,11$

Problem 4 RSA Simulate RSA. Form teams of 2-3 students.
i. choose your primes p, q in range 10-40. Compute $n=p q$ and $\varphi(n)=(p-1)(q-1)$.
ii. choose the public key e (try $e=3,5,7$..) such that $\operatorname{gcd}(e, \varphi(n))=1$. Write on the board your team name, together with your n, e. Keep everything else secret.
iii. compute your private key d that is the inverse of $e \bmod \varphi(n)$. You can use Extended Euclid or a calculator online (but make sure $e d \equiv 1 \bmod \varphi(n)$)
iv. Pick one of these messages m and send the encrypted version to another team. The encryption is the integer $\widehat{m}=m^{e} \bmod n$ using the published (n, e) of the team receiving the encrypted messasge. Other teams can send encryted messages to you (using your n, e)
$\mathrm{m}=2$: Greetings and salutations!
$\mathrm{m}=3$: Yo, wassup?
$\mathrm{m}=4$: You guys are slow!
$\mathrm{m}=5$: All your base are belong to us.
$\mathrm{m}=6$: Someone on our team thinks someone on your team is cheating.
$m=7$: You are the weakest link. Goodbye.
\mathbf{v}. decrypt the message received and send it back. The decryption is computed as the integer $m=\widehat{m}^{d} \bmod n$. Other tems can decypt encrypted message you sent to them and send it back to you.

Problem 5(optional, no credit) $\star \star \star$

Lets denote $\pi(n)=$ the number of primes up to n. For example $\pi(10)=4$ because there are 4 primes less or equal to $10(2,3,5,7)$. Prove that $\pi(n)>\frac{n}{3 \ln n}$
which means there are quite a few prime numbers.

