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Balls In Bins With Limited Capacity
 
Given n indistinguishable balls and m bins, where each bin has a capacity of c(i) (i = 1 to m)
balls, in how many ways can the n balls be distributed in the m bins? Note that n ≤ sum of
c(i)'s; one or more bins may have room for all n balls; we don't care which balls are in which
bins, nor do we distinguish between positions in the bins; and bins need not be occupied.
 
Before describing the traditional combinatorial approach to this problem, let's try something
a little different. First, if N(k) denotes the number of ways of packing k balls into m bins
with capacities c(i), i=1 to m, then we have
 

 
where c is the total capacity c(1) + c(2) + .. + c(m). For example, if we have 5 bins with
capacities 3,2,5,4,2 respectively, then c = 16 and the values of N(k) for k = 0 to 16 are as
shown below:
 

 
(Naturally we have N(k) = N(c–k), because the distribution of empty spaces is symmetrical
with the distribution of balls.) The total of these values of N(k) is 1080, which can be
computed directly as a function of the individual bin capacities by equation (1) as
 

 
An interesting aspect of the values of N(k), for relatively small perturbations from uniform
capacities, is that they approach a normal distribution with a mean of c/2. In fact, we can use
this feature to give an approximate formula for N(k). Letting A denote the sum of the values
of N(k) as given by (1), solve the equation
 

 
for z, and set s = (c/2 + 1)/z. Then the individual values of N(k) are given approximately by
 

 
For example, to determine the number of ways of distributing 11 balls into 5 bins with the
capacities 3, 2, 5, 4, 2, we have c = 16 and we compute A = 1080 from equation (1). Then
equation (2) gives z = 3.169, from which we compute s = 2.840. Inserting these values into
equation (3) gives
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For k = 11 we get N(11) = 87, compared with the true value of 90. For larger numbers of
bins and greater total capacity, the probability of roughly uniform capacities increases,
assuming the capacities are randomly chosen, so the true results approach more and more
closely a normal distribution and the approximation gets progressively better.
 
This approach is reasonably valid if the bins all have roughly the same capacity, but if one
c(i) is much larger than the others, N(k) will tend to look very flat around k = half the
product of (c(i)+1). Hence the normal approximation applies only to relatively small
perturbations around the condition of uniform capacities. For a more generally applicable
answer, we turn now to the more traditional combinatorial techniques.
 
One possible combinatorial approach would be to observe that N(k) can be interpreted as the
number of lattice points contained in the intersection of an m-dimensional block (one corner
at the origin, other corners at (c(1),0,..0), (0,c(2),0,...0), etc.) and the plane x + y + ... + z =
k. We could then try to estimate the area of that "plane" with its corners clipped off by the
limits at c(i) along the ith coordinate axis. Then we could consider rotating this diagonal
plane (and all the points of intersection of the plane with the c(i)=constant truncating
planes), and then computing the enclosed "area".
 
Yet another approach is to imagine the possibilities as a solid "brick" with dimensions
[c(1)+1], [c(2)+1], ...etc. The sum of all the N(k) values equals the volume of this brick, and
the individual values of N(k) are the volumes swept out by a diagonal plane as it emanates
out from one corner of the brick. The values of N(k) start out small in the corner, then get
bigger as the plane sweeps through the middle of the brick, and then get small again as the
plane sweeps through the diagonally opposite corner. The values of N(k) will change in a
uniform way except when the plane passes through a vertex of the brick. Also, by inclusion-
exclusion we can predict how the derivative of N(k) vs k will change at each vertex. On this
basis, we can formulate an exact solution as follows.
 
Let N(k) denote the number of ways of distributing k identical items into m containers with
capacities c(1), c(2),.. c(m). Then
 

 
where s(t,j) is the jth sum of t "capacity-plus-1's".
 
For example, suppose we have m = 5 containers with capacities 3, 6, 9, 12, and 15. The
"capacity-plus-1s" are therefore 4, 7, 10, 13, and 16. Our formula for N(k) begins with t = 0,
and there is only one sum of zero capacity-plus-1s, namely 0, so we have s(0,1) = 0. Thus



10/14/2020 https://www.mathpages.com/home/kmath337/kmath337.htm

https://www.mathpages.com/home/kmath337/kmath337.htm 3/3

the outer summation for t = 0 contributes +C[5+k-1,4]. (Note that we define the binomial
coefficient C[i,j] to be zero for all i < j.)
 
With t = 1 we will have 5 (=C[5,1]) negative terms, corresponding to the five possible sums
of exactly 1 c-plus-1s:
 

 
With t = 2 we will have 10 (=C[5,2]) positive terms, corresponding to the ten possible sums
of exactly 2 c-plus-1s. For example, the first of these ten terms is +C[k–7,4].
 
Continuing in this way the complete formula will have 32 (=2m) terms, giving the exact
value of N(k) for any k. Of course, we won't necessarily need all of these terms to evaluate
N(k) for particular values of k. In fact, we never need more than half of these terms, because
we only need to include terms with s[t,j] less than or equal to k, and if k exceeds half of the
total capacity c of all the containers, we can just evaluate c–k instead.
 
To illustrate, suppose we want to evaluate N(31) for the above set of five containers. By
symmetry this is the same as N(14), so we only need to use the terms
 

 
By the way, in the special case where all the capacities c[i] are equal to a single constant R,
it's clear that the C[m,t] elements of the inner summation in equation (1) for a given t are all
equal to C[m+k–s(t,j)–1,m–1] where each s(t,j) equals simply t(R+1). Therefore, in this
special case equation (5) reduces as one would expect to the well-known result
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