Agenda: 0) Review of graph definitions

1) Tree properties
2) Hand Shake Lemma
3) Graph representations
4) Depth first search
5) Breadth first search

Review

- Graph - cincirected directed complies) cycle
- Vertex
- complete graph
- Edge
- subgraph
- Degree
- complement
- (simple) path
- tree = ronroted
- reachable
- forest
- connected components. Bipartite graph

Additional tree properties
(contained in the point below, not covering)

- Any tree has at least one vertex u with

$$
\operatorname{degree}(u)=1
$$

wont return to the same vertex b/c we have no cycles in a tree
(starting here)

- Rooted trees have a few more definitions:

Vertices with degree $=1$ are leaves (nochibren)

- Trees must have between 2 and $|v|-1$ leaves

$|v|-1$ leaves

Handshake Lemma Let G be any unctirectect graph:

$$
\begin{aligned}
& \sum_{V \in V} \operatorname{degree}(V)=2|E| \\
& \sum_{V \in V} \text { in-degreel } v \text {) } \text { +out-degree }(v)=2|E|
\end{aligned}
$$

Pox some arbitrary edge e, contributes one degree count to u \& onetov $\therefore e$ contributes 2 to the total degree of G, and since e was chosen arbitrarily, this w.l.og can apply to any edge.

Corrollary: The total degree of a graph is even

Graph Representation

- Adjacency matrix:

Note symmetry around diagonal
$a_{i j}=\left\{\begin{array}{l}1 \text { iff edge exists between vertex is } \\ 0 \text { otherwise }\end{array}\right.$
$O(1)$ How do we check if an edge exists between v_{1} \& v_{3} check entry a_{13} or a_{31} in the matrix. To find all adjacent vertices, scan through the row.

$$
O(N I)
$$

Find an edge \rightarrow scan through array Find all edges \rightarrow return linked array

- When to use one or another?

Matrix:-Dense (graph is almost complete)

- static
- looking up speafic ecliges, not searching througnall adjacent vertices

List:- Sparse (graph complement is mostly complete)

- upolating
- searching through all adjacent vertices
Traversal
Searching Algorthins in Graphs
- Depth - First Search: Main idea, traverse
 as far as you can until either car go no further or you would visit a horde already visited Then return to the previous noddle \& repeat.

Example starting at 4.

$$
4,3,1,2,5,6
$$

Example at 1:

In more depth:

Visited

DFS (Vertex v) $V_{\text {is ted }}[v]=$ true for adjacent u to v : If v sped $[u]=$ false DFS (u)

- Breach - First Search: Main idea, traverse
 all your children ? then traverse the chider of the first then the second, etc.

Example starting at 40

Example at 1:

$$
1,2,3,7,4,5,6
$$

In more depth:

Visited

Queue

$$
7
$$

