Probabilistic proof |edit]

Markov's inequality states that for any real-valued random variable Y and any positive number a, we have Pr(IYl > a) :
E(IYl)/a. One way to prove Chebyshev's inequality is to apply Markov's inequality to the random variable Y = (X — ,u)z
with a = (ko)?.

It can also be proved directly. For any event A, let /4 be the indicator random variable of A, i.e. [4 equals 1 if A occurs
and 0 otherwise. Then

Pr(|X — p| > ko) = B(Ix_p>k0)
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The Inequality of direct proof shows why the bounds are quite loose in typical cases:

X — 2
1. 1f0 < ( 2 M) < 1, instead of taking the indicating value 0 as given by the left side of the inequality, a
o
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positive value of ( #) is counted.

ko
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2. If ( 2 “) > 1, instead of taking the indicating value 1 as given by the left side of the inequality, a value
o
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( 2 ) greater or equal to 1 is counted. In some cases it exceeds 1 by a very wide margin.
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Proof of the weak law [edit]

Given Xy, Xo, ... an infinite sequence of i.i.d. random variables with finite expected value E(X4) =
E(X5) = ... =y <, we are interested in the convergence of the sample average

Xp=2(X1+ - +X,).

The weak law of large numbers states:

P
Theorem: X, —u when n — 0o. (law. 2)

Proof using Chebyshev's inequality assuming finite variance |edit]

This proof uses the assumption of finite variance Var(Xi) = o? (for all 2). The independence of the
random variables implies no correlation between them, and we have that
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Var(X,) = Var(2 (X1 + - + Xp)) = — Var(X; + -+ X)) = = = 2,
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The common mean p of the sequence is the mean of the sample average:
E(X,) = p.

Using Chebyshev's inequality on )_(n results in

P(|X, — | >e) < 0—22
ne

This may be used to obtain the following:

0.2

P(| X, —p|<e)=1-P(|Xp —p|>e) >1- —.
ne?

As n approaches infinity, the expression approaches 1. And by definition of convergence in

probability, we have obtained

—_ P
Xn— when n — oo. (law. 2)



Classical CLT [edit]

Let {Xj, ..., X},} be a random sample of size n—that is, a sequence of independent and identically
distributed (i.i.d.) random variables drawn from a distribution of expected value given by u and finite

variance given by . Suppose we are interested in the sample average
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of these random variables. By the law of large numbers, the sample averages converge in probability
and almost surely to the expected value u as n — oo. The classical central limit theorem describes the
size and the distributional form of the stochastic fluctuations around the deterministic number x during
this convergence. More precisely, it states that as n gets larger, the distribution of the difference
between the sample average S,, and its limit z, when multiplied by the factor \n (thatis Vn (S, — ),
approximates the normal distribution with mean 0 and variance o*. For large enough n, the distribution
of §,, is close to the normal distribution with mean x and variance o*/n. The usefulness of the theorem
is that the distribution of \/;(S,, — u) approaches normality regardless of the shape of the distribution of
the individual X;. Formally, the theorem can be stated as follows:

Lindeberg-Lévy CLT. Suppose {X|, X, ...} is a sequence of i.i.d. random variables with
E[X;] = 4 and Var[X;] = o> <. Then as n approaches infinity, the random variables
\n (S, — u) converge in distribution to a normal N(0,62):13!

V(s — 1) 5N (0,6%).

In the case ¢ > 0, convergence in distribution means that the cumulative distribution functions of
\ n (S, — u) converge pointwise to the cdf of the N(0, 02) distribution: for every real number z,
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where @(z) is the standard normal cdf evaluated at z. The convergence is uniform in z in the sense that

lim sup |Pr[y/A(S, — 1) < 4 & () =0,
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where sup denotes the least upper bound (or supremum) of the set.[4]
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