Probabilistic proof [edit]

Markov's inequality states that for any real-valued random variable Y and any positive number a, we have Pr(I Y > a): E(I Y)/a. One way to prove Chebyshev's inequality is to apply Markov's inequality to the random variable $Y = (X - \mu)^2$ with $a = (k\sigma)^2$.

It can also be proved directly. For any event A, let I_A be the indicator random variable of A, i.e. I_A equals 1 if A occurs and 0 otherwise. Then

$$egin{aligned} \Pr(|X-\mu| \geq k\sigma) &= \mathrm{E}ig(I_{|X-\mu| \geq k\sigma}ig) \ &= \mathrm{E}igg(I_{ig(rac{X-\mu}{k\sigma}ig)^2 \geq 1}ig) \ &\leq \mathrm{E}igg(ig(rac{X-\mu}{k\sigma}ig)^2igg) \ &= rac{1}{k^2}rac{\mathrm{E}((X-\mu)^2)}{\sigma^2} \ &= rac{1}{k^2}. \end{aligned}$$

The Inequality of direct proof shows why the bounds are quite loose in typical cases:

- 1. If $0 \le \left(\frac{X-\mu}{k\sigma}\right)^2 < 1$, instead of taking the indicating value 0 as given by the left side of the inequality, a positive value of $\left(\frac{X-\mu}{k\sigma}\right)^2$ is counted.
- 2. If $\left(\frac{X-\mu}{k\sigma}\right)^2 \geq 1$, instead of taking the indicating value 1 as given by the left side of the inequality, a value $\left(\frac{X-\mu}{k\sigma}\right)^2$ greater or equal to 1 is counted. In some cases it exceeds 1 by a very wide margin.

Proof of the weak law [edit]

Given X_1 , X_2 , ... an infinite sequence of i.i.d. random variables with finite expected value $E(X_1) = E(X_2) = ... = \mu < \infty$, we are interested in the convergence of the sample average

$$\overline{X}_n = \frac{1}{n}(X_1 + \cdots + X_n).$$

The weak law of large numbers states:

Theorem:
$$\overline{X}_n \stackrel{P}{\to} \mu \qquad \text{when } n \to \infty.$$
 (law. 2)

Proof using Chebyshev's inequality assuming finite variance [edit]

This proof uses the assumption of finite variance $Var(X_i) = \sigma^2$ (for all i). The independence of the random variables implies no correlation between them, and we have that

$$\operatorname{Var}(\overline{X}_n) = \operatorname{Var}(rac{1}{n}(X_1 + \dots + X_n)) = rac{1}{n^2} \operatorname{Var}(X_1 + \dots + X_n) = rac{n\sigma^2}{n^2} = rac{\sigma^2}{n}.$$

The common mean μ of the sequence is the mean of the sample average:

$$E(\overline{X}_n) = \mu.$$

Using Chebyshev's inequality on \overline{X}_n results in

$$\mathrm{P}(\left|\overline{X}_n - \mu\right| \geq arepsilon) \leq rac{\sigma^2}{narepsilon^2}.$$

This may be used to obtain the following:

$$\mathrm{P}(\left|\overline{X}_n - \mu\right| < arepsilon) = 1 - \mathrm{P}(\left|\overline{X}_n - \mu\right| \geqslant arepsilon) \geqslant 1 - rac{\sigma^2}{narepsilon^2}.$$

As *n* approaches infinity, the expression approaches 1. And by definition of convergence in probability, we have obtained

$$\overline{X}_n \stackrel{P}{ o} \mu \qquad ext{when } n o \infty.$$
 (law. 2)

Classical CLT [edit]

Let $\{X_1, ..., X_n\}$ be a random sample of size n—that is, a sequence of independent and identically distributed (i.i.d.) random variables drawn from a distribution of expected value given by μ and finite variance given by σ^2 . Suppose we are interested in the sample average

$$S_n:=rac{X_1+\cdots+X_n}{n}$$

of these random variables. By the law of large numbers, the sample averages converge in probability and almost surely to the expected value μ as $n\to\infty$. The classical central limit theorem describes the size and the distributional form of the stochastic fluctuations around the deterministic number μ during this convergence. More precisely, it states that as n gets larger, the distribution of the difference between the sample average S_n and its limit μ , when multiplied by the factor \sqrt{n} (that is $\sqrt{n}(S_n-\mu)$), approximates the normal distribution with mean 0 and variance σ^2 . For large enough n, the distribution of S_n is close to the normal distribution with mean μ and variance σ^2/n . The usefulness of the theorem is that the distribution of $\sqrt{n}(S_n-\mu)$ approaches normality regardless of the shape of the distribution of the individual X_i . Formally, the theorem can be stated as follows:

Lindeberg–Lévy CLT. Suppose $\{X_1, X_2, \ldots\}$ is a sequence of i.i.d. random variables with $\mathrm{E}[X_i] = \mu$ and $\mathrm{Var}[X_i] = \sigma^2 < \infty$. Then as n approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $N(0, \sigma^2)$:^[3]

$$\sqrt{n}\left(S_n-\mu
ight)\stackrel{d}{
ightarrow}N\left(0,\sigma^2
ight).$$

In the case $\sigma > 0$, convergence in distribution means that the cumulative distribution functions of $\sqrt{n}(S_n - \mu)$ converge pointwise to the cdf of the $N(0, \sigma^2)$ distribution: for every real number z,

$$\lim_{n o\infty} \Pr\left[\sqrt{n}(S_n-\mu) \le z
ight] = \lim_{n o\infty} \Pr\left[rac{\sqrt{n}(S_n-\mu)}{\sigma} \le rac{z}{\sigma}
ight] = \Phi\left(rac{z}{\sigma}
ight),$$

where $\Phi(z)$ is the standard normal cdf evaluated at z. The convergence is uniform in z in the sense that

$$\lim_{n o\infty}\sup_{z\in\mathbb{R}}\left|\Pr\left[\sqrt{n}(S_n-\mu)\leq z
ight]-\Phi\left(rac{z}{\sigma}
ight)
ight|=0,$$

where sup denotes the least upper bound (or supremum) of the set.[4]

