Theorem 1: Divisibility with 3 in base 10. A natural number is divisible with 3 if and only if the sum of its base10-digits is divisible with 3.
proof. Lets say $n=d_{0}+d_{1} * 10^{1}+d_{2} * 10^{2}+\ldots .+d_{k} * 10^{k}$ in base 10 , with digits $d_{i} \in\{0,1,2 \ldots, 9\}$. That is the same as writing $n=\sum_{i=0}^{k} d_{i} 10^{i}$

Recall that modulo 3 means remainder at division with 3. For example $100 \bmod 3=1$, because $100=3^{*} 33+1$.
Also recall that modulo distributes over sum, product, and powers. For example
$(100+22) \bmod 3=((100 \bmod 3)+(22 \bmod 3)) \bmod 3$.
See the appendix for a recap of modulo operations.

So now we can write:
$n \bmod 3=\left(\sum_{i=0}^{k} d_{i} 10^{i}\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(d_{i} 10^{i} \bmod 3\right)\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(d_{i} \bmod 3\right) *\left(10^{i} \bmod 3\right)\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(d_{i} \bmod 3\right) *(10 \bmod 3)^{i}\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(d_{i} \bmod 3\right) * 1^{i}\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(d_{i} \bmod 3\right)\right) \bmod 3$
$=\left(\sum_{i=0}^{k} d_{i}\right) \bmod 3$
Reading the beginning and the end in english : The remainder of n divided by 3 is the same as the reminder of the sum-of-digits (n) divided by 3 . In particular if one of these remainder is 0 (that means divisible with 3) the other one is aslo 0 .
This is a proof in both directions since we didnt use implications (unidirectional), we used equality modulo 3 , which goes both ways.

Theorem 2: Divisibility with 3 in base 2. A natural number is divisible with 3 if and only if the alternating sum of its base2-digits is divisible with 3 . That is if $n=b_{k} b_{k-1} \ldots b_{2} b_{1} b_{0}$ in binary then divisibility by 3 comes down to whether the alternating bits sum $+b_{0}-b_{1}+b_{2}-b_{3}+\ldots+(-1)^{k} b_{k}$ is divisible by 3 .
proof. Lets write $n=b_{0}+b_{1} * 2^{1}+b_{2} * 2^{2}+\ldots+b_{k} * 2^{k}$ in base 2, with digits $b_{i} \in\{0,1\}$. That is the same as writing $n=\sum_{i=0}^{k} b_{i} 2^{i}$

Repeating the idea in the previous proof, we can write equalities modulo 3:
$n \bmod 3=\left(\sum_{i=0}^{k} b_{i} 2^{i}\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(b_{i} 2^{i} \bmod 3\right)\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(b_{i} \bmod 3\right) *\left(2^{i} \bmod 3\right)\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(b_{i} \bmod 3\right) *(2 \bmod 3)^{i}\right) \bmod 3$
$=\left(\sum_{i=0}^{k}\left(b_{i} \bmod 3\right) *(-1)^{i} \bmod 3\right) \bmod 3$
$=\left(\sum_{i=0}^{k} b_{i} *(-1)^{i} \bmod 3\right) \bmod 3$
$=\left(\sum_{i=0}^{k}(-1)^{i} b_{i}\right) \bmod 3$
$=\left(+b_{0}-b_{1}+b_{2}-b_{3}+\ldots+(-1)^{k} b_{k}\right) \bmod 3$
We used here the fact that
$2 \bmod 3=2=-1 \bmod 3$
which is due to $-1=-1 * 3+2$. The rest of the explanation goes like in the previous proof.
appendix: modulo arithmetic recap All numbers here are integers. The integer division of a at $n>1$ means finding the unique quotient q and remainder $r \in \mathbf{Z}_{n}$ such that
$a=n q+r$
where \mathbf{Z}_{n} is the set of all possible remainders at $n: \mathbf{Z}_{n}=\{0,1,2,3, \ldots, n-1\}$.
$" \bmod n "=$ remainder at division with n for $n>1$ (n it has to be at least 2$)$
" $a \bmod n=r$ " means mathematically all of the following:

- r is the remainder of integer division a to n
- $a=n * q+r$ for some integer q
- a, r have same remainder when divided by n
- $a-r=n q$ is a multiple of n
- $n \mid a-r$, a.k.a n divides $a-r$

EXAMPLES

$21 \bmod 5=1$, because $21=5^{*} 4+1$
same as saying $5 \mid(21-1)$
$24=10=3=-39 \bmod 7$, because $24=7^{*} 3+3 ; 10=7^{*} 1+3 ; 3=7^{*} 0+3$; $-39=7^{*}(-6)+3$. Same as saying
7 | $(24-10)$ or
7 | $(3-10)$ or
$7 \mid(10-(-39))$ etc
LEMMA two numbers a, b have the same remainder $\bmod n$ if and only if n divides their difference.
We can write this in several equivalent ways:

- $a \bmod n=b \bmod n$, saying a, b have the same remainder (or modulo)
- $a=b(\bmod n)$
- $n \mid a-b$ saying n divides $a-b$
- $a-b=n k$ saying $a-b$ is a multiple of n (k is integer but its value doesnt matter)
EXAMPLES
$21=11(\bmod 5)=1 \Leftrightarrow 5 \mid(21-11) \Leftrightarrow 21 \bmod 5=11 \bmod 5$
$86 \bmod 10=1126 \bmod 10 \Leftrightarrow 10 \mid(86-1126) \Leftrightarrow 86-1126=10 k$
proof: EXERCISE. Write " $a \bmod n=r$ " as equation $a=n q+r$, and similar for b
modulo addition $(a+b) \bmod n=(a \bmod n+b \bmod n) \bmod n$ EXAMPLES
$17+4 \bmod 3=(17 \bmod 3)+(4 \bmod 3) \bmod 3=2+1 \bmod 3=0$
modulo multiplication $(a \cdot b) \bmod n=(a \bmod n \cdot b \bmod n) \bmod n$ EXAMPLES
$17^{*} 4 \bmod 3=(17 \bmod 3)^{*}(4 \bmod 3) \bmod 3=2 * 1 \bmod 3=2$
modulo power is simply a repetition of multiplications
$a^{k} \bmod n=(a \bmod n * a \bmod n \ldots * a \bmod n) \bmod n$
EXAMPLE: $13^{100} \bmod 11=$?
$13 \bmod 11=2$
$13^{2} \bmod 11=2^{2} \bmod 11=4$
$13^{4} \bmod 11=\left(13^{2} \bmod 11\right)^{2} \bmod 11=4^{2} \bmod 11=16 \bmod 11=5$
$13^{8} \bmod 11=\left(13^{4} \bmod 11\right)^{2} \bmod 11=5^{2} \bmod 11=25 \bmod 11=3$
$13^{16} \bmod 11=\left(13^{8} \bmod 11\right)^{2} \bmod 11=3^{2} \bmod 11=9$
$13^{32} \bmod 11=\left(13^{16} \bmod 11\right)^{2} \bmod 11=9^{2} \bmod 11=4$
$13^{64} \bmod 11=\left(13^{32} \bmod 11\right)^{2} \bmod 11=4^{2} \bmod 11=5$
$13^{100}=13^{64} \cdot 13^{32} \cdot 13^{4} \bmod 11=(5 * 4 * 5) \bmod 11=25 * 4 \bmod 11=25$ $\bmod 11 * 4 \bmod 11=3 * 4 \bmod 11=1$

