CS1800

Discrete Structures
 Fall 2019

Lecture 23 11/26/19

Last tine
Graphs:

- representations
- traversals: BFS \&DFS
- Handshake lemma

Today
Next time
Finish hardihake lemma • Exam

- Optimal topics

Handshaking Lemma Prof 1: by induction over vertices.
B. C. $\quad n=1$
degree $=0$
\# vert $\omega /$ odd degree $=0$ even
I.S. Assume true when $|v|=n=k$

- Show true when $|v|=n=k+1$
- Consider amy greph G with $k+1$ vertices

Remove any one vertex and all its incident edges; what remains in a graph $G^{\prime} w / k$ vertices \rightarrow I.H. applies
now consider returning the vertex and its \rightarrow vertices w/odd m incident edges. Let i be the $\#$ of connected degree is even vertices $w /$ even degree in G^{\prime} and $m-i$ the $\#$ with odd degree

- How does addling the vertex back change the number of vertices $\omega /$ odd degree?

- How does the number of vertices wi odd degree change once we add back the removed vertex?
- In G^{\prime}, \# vertices al odd degree is even, by ind. hyp.
Two cases: (1) m is even: change $=i-(m-i)=2 i-m$
\Rightarrow charge is even
(2) m is odd: change $=1+i-(m-i)=1+2 i-m$
new
vertex $\quad \Rightarrow$ odd even odd

Hand shaking Lemma Prof 2: by induction over edges
B.C. Graph $\omega / 0$ edges
\Rightarrow all vertices have degree O
\Rightarrow \# vertices $\omega /$ odd degree is 0 which is even
I.S. Assume true for $m=k$ edges;

Prove must true for $m=k+l$ edges.

- take any graph G w/ btl edges, remove any edge, obtaining graph $G^{\prime} w / k$ edges. \Rightarrow I.H. applies to 6^{\prime}
- Consider what happens when return edge back to graph. \Rightarrow moly changes the degree of 2 vertices (the incidut vertices).
 affects degree of just blue vertices charge in \# vert i of odd degree change always

Hent shaking Lemma Proof 3 : direct proof; adjacency list idea

\longrightarrow must be an even sum

- summmis up all odd numbers
- to get an even sum, must sum up an even \# of odd things.
\Longrightarrow \# vert. w/ odd degree must be even

Topological Sort

Hockey Goalie getting dressed

