CS1800

Discrete Structures
 Fall 2019

Lecture 22
11/22/19

Last tine
Finished
g roth of functions

Start graphs

- detinitims
- properties

Today

- move graphs

Next time
finish graphs

- representations
- traversals: BFS $₫ D F S$
- Handshake lemma

Graph Represention
(1) Adjacency Matrix

$$
A=\begin{aligned}
& A \\
& B \\
& C \\
& D \\
& E \\
& F
\end{aligned}\left(\begin{array}{llllll}
A & B & C & D & E & F \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 \\
& & & \vdots & & \\
\end{array}\right)
$$

If a graph has n vertices, site of adjacency matrix is n^{2}
(2) Adjacency List Representation

Fact: If a graph is planar (can be drawn in ad wo edges crossing), then \# edges $\leqslant 3$. $\#$ vertices -6

Greph traversals
(1) Desth-finst search - "aggressine" eearch

(2) Breadth-first search - "timid" search

Depth-first search (carefully)

: the exploratory edges that form a depth-first tree (edges that correspond to visiting a vertex for the first time)

Breadth-fint search (carefully)

\uparrow
front of live

个
back of line

Graph Properties
Hand shake Lemma:
go to a party, shake some \# hands \# people who shake an odd \# hands must be even

In terms of graphs...
\# vertices $\omega /$ odd
 degree must be even

- We will do three proofs, in decreasing order of complexity, to show that
- You can solve problems in more than one way
- thinking about the problem in the right way can make things easier.
- Profs: (1) inductim over vertices, (2) induction over edges, (3) direct proof, considering site of adjacency lists.
B. C.
$n=1$
0
ind. over
\# vertices
degree $=0$
\# vert $\omega /$ odd degree $=0$ even
I.s. assume true when $n=k$

Show truce when $n=k+1$

- Stent wi amy graph wi bd vertices
- remove 1 vertex and all of its incident edges
- what's left is a graph oh k vertices \rightarrow I. H. applies
- Now consider returning vertex and it edges

(c). How do the \# vert w/ odd degme change?
vertices in $\sigma^{\prime} m-i$ have odd dom
meven: $i-(m-i)=2 i-m^{2}=$ even chare
m odd: $\quad 1+i-(m-i)=1+2 i-m=$ even char ode \rightarrow Semen Tod

