CS1800 Discrete Structures Fall 2019

> Lecture 14 10/25/19

Last +me

- (Exam)
- Finishing Probability

Today · Last topic in probability - Birthday Paradox - indicator r.v.

Next time · Contrinue Alg. Analysi3

· Algorithmic Analysis

- sequences
- series
- recurrence
- in duction

$$\frac{1}{16 \text{ rob. of no collision}}{16 \text{ rob. of no collision}} = \frac{365 \cdot 364 \cdot 363 \cdots 123}{365 \cdot 365 \cdots 365} \approx 1.96 \times 10^{-48} \frac{1}{2}$$

Prob of no collition =
$$e^{-\frac{n(n-1)}{730}}$$

23 or 24
 $N=23$ $e^{-\frac{23(22)}{730}}$ = ,49999998
exact answer is $\frac{365Pa3}{315^{23}}$ = 0.4927
for 2 students, chance they don't share
another indian a b-day is $\frac{364}{365} \approx 0.99726$
 $e^{\frac{23}{2}} = \frac{23\cdot22}{2} = 253$ such pairs of students
the chance that all such pairs simal taneously
fail to share b-days is approximately $(\frac{369}{365})^{(23)} \approx 0.4995$

$$E\{x_{i}\} = \Pr\{x_{i}=1\} = 1 - \Pr\{x_{i}=0\} = 1 - \left(\frac{3ky}{3ks}\right)^{2ky} = .488$$

$$\forall \hat{i} \quad E\{x_{i}\} = 0.486$$

$$E\{x\} = E\{x_{i} + x_{k} + - + x_{3kr}\}$$

$$= E\{x_{i}\} + E\{x_{k}\} + - E\{x_{3ks}\}$$

$$= 365 \cdot 0.488$$

$$= 178.12 \leftarrow expected \neq b.days \text{ used}$$

$$i \quad but \dots 244 \text{ studub}$$

$$i \quad j_{0} \quad 244 - 178.12 = 65.88 \quad more$$

$$s \text{ tuduts than } b - bays, in expectation,$$

$$s \quad bots \quad of \text{ shared by th days.}$$

Next module: Algorithmic Analysis & Related Math
. Consider the search problem
. My diction my has n pages
. First als. : Linear Search - go through one page at a time,
in order, until find page
lipking for
- best case scenario: on 1st page : 1
- Worst case : on last page : n
- average case : suppose agriculty lively that word
is on any of 1 in pases
=
$$\frac{1}{n} \cdot 1 + \frac{1}{n} \cdot 2 + \frac{1}{n} \cdot 3 + \dots + \frac{1}{n} \cdot n$$

= $\frac{1+2+3+\dots}{n} = \frac{n(n+1)/2}{n} = \frac{n+1}{2}$

Worst case : . have to look at all "/c churks . have to look at every page in churk

H

3.2	ray lear	4	
	k cut in l	half Site of back	
	0	n	
	۱	n/2	
	2	$n/y = n/2^2$	
	3	$n/g = n/2^{3}$	
	1		
	k	n/ ₂ k	
	what si	te k yields just one page	left?
		$\sqrt[n]{k=1} \iff 2^{k} = n$	
		\Rightarrow k= log ₂ n	

$$T(n) = "twice" (n \pm operations) to Johne a problem of size n
1.5. $T(n) = n$
 $rightarrow = 1,000,000$
 $rightarrow = 1$$$