CS1800

Discrete Structures
Fall 2019

Lecture 14
10/25/19

Birthday Paradox
Q: How mayy perple do we need s.t. at least so/so chance that 2 cor more) people share a b-day?

A1: PHP says that 366 people guarantee a collision A2: actually closer to 23 on 24

Calculate likelinord that all 244 studuats in class have different b-days.

- קossible ways of assigmis b-durs to $\alpha 44$ staduls is

$$
\underbrace{365 \cdot 365 \cdots 365}_{244}=365^{244}
$$

- \#posible ways of assignig b-days w/ no collisius

$$
365 \cdot 36 y \cdot 36) \ldots=365 P_{244}
$$

$$
\begin{aligned}
& \text { Prob. of no collision }=\frac{365 \cdot 364.363 \cdots 122}{365 \cdot 365 \cdot 365 \cdots 365} \approx 1.96 \times 10^{-48} \text { ! } \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{2!} \cdot- \\
& \text { when } x \text { small } \\
& =\frac{365-0}{365} \cdot \frac{365-1}{365} \cdot \frac{365-2}{365} \cdots \frac{365-(n-1)}{365} \\
& e^{x} \approx 1+x \\
& 1+x \approx e^{x} \quad 1-x \approx e^{-x} \\
& =\left(\frac{365}{365}-\frac{0}{365}\right) \cdot\left(\frac{365}{365}-\frac{1}{365}\right) \cdots\left(\frac{365}{365}-\frac{n-1}{365}\right) \\
& =\left(1-\frac{0}{365}\right) \cdot\left(1-\frac{1}{365}\right)(1-2 / 365) \cdots\left(1-\frac{n-1}{365}\right) \\
& \sqrt{ } \approx e^{-0} \cdot e^{-\frac{1}{365}} \cdot e^{-2 / 365} \cdots e^{-\frac{n-1}{365}} \\
& \text { decent } \\
& \begin{array}{l}
\text { an roximatim } \\
\text { when } n \text {.l' } \\
\text { a } \\
-\left(0+1 / 365+2 / 365+3 / 365+\cdots+\frac{n-1}{365}\right)
\end{array} \\
& \text { is "small" }=e^{-\frac{1+\alpha+\cdots(n-1)}{365}}=e^{-\frac{n(n-1)}{2.365}}=e^{-\frac{n(n-1)}{730}}
\end{aligned}
$$

- Prob of no collisise $=e^{-\frac{n(n-1)}{730}}$ 23 or 24

$$
n=23 \quad e^{-\frac{23(22)}{730}}=.4999998
$$

- exact answer is $\frac{365 \mathrm{P} 23}{365^{23}}=0.4927$
for 2 students, chance they don't share
but with 23 students, there are $\binom{23}{2}=\frac{23.22}{2}=253$ such pairs of students
- the chance that all such pairs simultaneously the events are not perfectly independent, So this is an approximation

Q: How may y collisions? (shared b-days)

Let riv. $X=\#$ b-days used wont $E[x]$

$$
\begin{aligned}
& \text { - Let } X_{1}=\text { did I use b-day } 1 \text { (Jane) }
\end{aligned}
$$

$$
\begin{aligned}
& x_{365}=11 \quad 11365 \quad(\operatorname{Dec} 31) \\
& X=x_{1}+x_{2}+\ldots x_{365} \\
& E[x]=E\left[x_{1}+x_{2}+\cdots x_{365}\right]=E\left\{x_{1}\right]+E\left[x_{2}\right]+\cdots+E\left[x_{265}\right] \\
& \uparrow \\
& \text { - } E\left[x_{1}\right]=\sum_{x} x \cdot \operatorname{Pr}\left[x_{i} x\right]=0 \cdot \operatorname{Pr}\left[x_{1}=0\right]+1 \cdot \operatorname{Pr}\left[x_{1}=1\right] \quad \text { no one has } \\
& =\operatorname{Pr}\left(x_{1}=1\right)=1-\operatorname{Pr}\left[x_{1}=0\right) \\
& =1-(364 / 365)^{24 y} \\
& \text { Jon } 1 \\
& \text { as } \\
& \text { b-day }
\end{aligned}
$$

$$
\begin{aligned}
& E\left[x_{1}\right]=\operatorname{Pr}\left[x_{1}=1\right]=1-\operatorname{Pr}\left(x_{1}=0\right)=1-\left(\frac{364}{3.5}\right)^{244}=.488 \\
& \forall i \quad E\left[x_{i}\right]=0.488 \\
& E[x]
\end{aligned} \begin{aligned}
& E\left[x_{1}+x_{2}+\cdots+x_{365}\right) \\
&=E\left[x_{1}\right]+E\left[x_{2}\right]+\cdots E\left[x_{365}\right] \\
&=365 \cdot 0.488 \\
&=178.12 \leftarrow \text { expected } \# \text { b -days used }
\end{aligned}
$$

- bat..- 244 studuts

So, $244-178.12=65.88$ more students than b-days, in expectation, so lots of shared birthdays.

Next module: Algorithmic Analysis \& Related Math

- Consider the search problem
- My dretrinamy has n pages
- First alg.: Linear search - 90 through one page at a time, in order, until find page looking for
- best case scenario: on lr pase: $^{\text {pr }}$
- Worst case: on last pare: n
- average case: suppose equally lively that wand is on any of $1 \rightarrow n$ pages

$$
\begin{aligned}
& =\frac{1}{n} \cdot 1+\frac{1}{n} \cdot 2+\frac{1}{n} \cdot 3+-\frac{1}{n} \cdot n \\
& =\frac{1+2+3+--n}{n}=\frac{n(n+1) / 2}{n}=\frac{n+1}{2}
\end{aligned}
$$

Chunk search: - look at chunks of pages C at a time

- find correct chunk
- do linear search within chunk of size c

How fast? $\quad \#$ clucks $=\frac{n}{c}$
Wort case : . have to look at all ${ }^{4 / c}$ chills

- have to look at every page in chink

$$
\begin{aligned}
& f(x)=\frac{n}{x}+x=n \cdot x^{-1}+x \\
& f^{\prime}(x)=-n x^{-2}+1=0 \\
& n x^{-2}=1 \\
& x^{-2}=1 n \quad x^{2}=n \quad x=\sqrt{n}
\end{aligned}
$$

Binary search

$k_{\text {cut in half }}$	$\frac{\text { STE of book }}{0}$
1	n
2	$n / 2$
3	$n / 4=n / 2^{2}$
i	$n / 8=n / 2^{3}$
k	$n / 2^{k}$

What size k yields just ane page left?

$$
\begin{aligned}
n / 2^{k}=1 & \Leftrightarrow 2^{k}=n \\
& \Rightarrow k=\log _{2} n
\end{aligned}
$$

$T(n)=$ "tine" (on \#togerations) to solve a problen of sizen
l.s. $\left.T_{n}\right)=n$
c.s. $T(n)=2 \sqrt{n}$
b.s. $\quad(-\ln)=\log _{2} n$

$$
\begin{aligned}
& n=1000 \\
& 1000)(15.75 x \\
& 64+6.4 x) 100 x \\
& 100
\end{aligned}
$$

A cauple of years aso--

- Fastest super conputer in UJ.

CRAY XKZ "tita"" at Oak Ridge Natizal Lass
17.59 peta flops
17.55×10^{15} floatios point op $/ \mathrm{sec}$
$\left.\begin{gathered}\text { - Mac iro } 7 \text { teraflops } \\ 7 \times 10^{12}\end{gathered} \right\rvert\, \frac{17.59 \times 10^{15}}{7 \times 10^{12}}=2,513 x$

$$
n=1,000,000
$$

I's. on a supercur. is $\frac{50,000}{2,513}=20 x$
slaver then b.s. on a Mac.

