Sequential Pattern Mining

Outline

- What is sequence database and sequential pattern mining
- Methods for sequential pattern mining
- Constraint-based sequential pattern mining
- Periodicity analysis for sequence data

Sequence Databases

- A sequence database consists of ordered elements or events
- Transaction databases vs. sequence databases

A transaction database

TID	itemsets
10	a, b, d
20	a, c, d
30	a, d, e
40	b, e, f

A sequence database

SID	sequences
10	<a(abc)(ac)d(cf)>
20	$<(a d) c(b c)(a e)>$
30	$<(e f)(a b)(d f)$ cb> $>$
40	$<e g(a f) c b c>$

Applications

- Applications of sequential pattern mining
- Customer shopping sequences:
- First buy computer, then CD-ROM, and then digital camera, within 3 months.
- Medical treatments, natural disasters (e.g., earthquakes), science \& eng. processes, stocks and markets, etc.
- Telephone calling patterns, Weblog click streams
- DNA sequences and gene structures

Subsequence vs. super sequence

- A sequence is an ordered list of events, denoted < $e_{1} e_{2} \ldots e_{1}>$
- Given two sequences $\alpha=<a_{1} a_{2} \ldots a_{n}>$ and $\beta=<$ $b_{1} b_{2} \ldots b_{m}>$
- α is called a subsequence of β, denoted as $\alpha \subseteq$ β, if there exist integers $1 \leq j_{1}<j_{2}<\ldots<j_{n} \leq m$ such that $a_{1} \subseteq b_{j 1}, a_{2} \subseteq b_{j 2}, \ldots, a_{n} \subseteq b_{j n}$
- β is a super sequence of α
- E.g. $\alpha=<(a b), d>$ and $\beta=<(a b c)$, (de)>

What Is Sequential Pattern Mining?

- Given a set of sequences and support threshold, find the complete set of frequent subsequences A sequence: < (ef) (ab) (daf) $\mathrm{cb} \gg$
sequence database

SID	sequence
10	$<a(a b c)(a c) d(c f)>$
20	$<(a d) c(b c)(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

An element may contain a set of items. Items within an element are unordered and we list them alphabetically._
<a(bc)dc> is a subsequence of $\langle\underline{a}(a b c)(a c) \underline{d}(\underline{c f})\rangle$

Given support threshold min_sup $=2,<(\mathrm{ab}) \mathrm{c}\rangle$ is a sequential pattern

Challenges on Sequential Pattern Mining

- A huge number of possible sequential patterns are hidden in databases
- A mining algorithm should
- find the complete set of patterns, when possible, satisfying the minimum support (frequency) threshold
- be highly efficient, scalable, involving only a small number of database scans
- be able to incorporate various kinds of userspecific constraints

Studies on Sequential Pattern Mining

- Concept introduction and an initial Apriori-like algorithm
- Agrawal \& Srikant. Mining sequential patterns, [ICDE'95]
- Apriori-based method: GSP (Generalized Sequential Patterns: Srikant \& Agrawal [EDBT'96])
- Pattern-growth methods: FreeSpan \& PrefixSpan (Han et al.KDD'00; Pei, et al. [ICDE'01])
- Vertical format-based mining: SPADE (Zaki [Machine Leanining'00])
- Constraint-based sequential pattern mining (SPIRIT: Garofalakis, Rastogi, Shim [VLDB'99]; Pei, Han, Wang [CIKM'02])
- Mining closed sequential patterns: CloSpan (Yan, Han \& Afshar [SDM'03])

Methods for sequential pattern mining

- Apriori-based Approaches
- GSP
- SPADE
- Pattern-Growth-based Approaches
- FreeSpan
- PrefixSpan

The Apriori Property of Sequential Patterns

- A basic property: Apriori (Agrawal \& Sirkant'94)
- If a sequence S is not frequent, then none of the super-sequences of S is frequent
- E.g, <hb> is infrequent \rightarrow so do <hab> and <(ah)b>

Seq. ID	Sequence
10	$<(\mathrm{bd}) \mathrm{cb}(\mathrm{ac})>$
20	$<(\mathrm{bf})(\mathrm{ce}) \mathrm{b}(\mathrm{fg})>$
30	$<(\mathrm{ah})(\mathrm{bf}) \mathrm{abf}>$
40	$<(\mathrm{be})(\mathrm{ce}) \mathrm{d}>$
50	<a(bd)bcb(ade)>

Given support threshold min_sup $=2$

GSP—Generalized Sequential Pattern Mining

- GSP (Generalized Sequential Pattern) mining algorithm
- Outline of the method
- Initially, every item in DB is a candidate of length-1
- for each level (i.e., sequences of length-k) do
- scan database to collect support count for each candidate sequence
- generate candidate length- $(k+1)$ sequences from length- k frequent sequences using Apriori
- repeat until no frequent sequence or no candidate can be found
- Major strength: Candidate pruning by Apriori

Finding Length-1 Sequential Patterns

- Initial candidates:
- <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan database once, count support for candidates
min_sup $=2$

Seq. ID	Sequence
10	$<(\mathrm{bd}) \mathrm{cb}(\mathrm{ac})>$
20	$<(\mathrm{bf})(\mathrm{ce}) \mathrm{b}(\mathrm{fg})>$
30	$<$ (ah) bf$) \mathrm{bbf}>$
40	$<(\mathrm{be})(\mathrm{ce}) \mathrm{d}>$
50	<a(bd)bcb(ade)>

Cand	Sup
<a>	3
	5
<c>	4
<d>	3
<e>	3
<f>	2
<9<	1
sn'	1

Generating Length-2 Candidates

51 length-2 Candidates

	<a>		<c>	<d>	<e>	<f>
<a>	<aa>	<ab>	<ac>	<ad>	<ae>	<af>
	<ba>	<bb>	<bc>	<bd>	<be>	<bf>
<c>	<ca>	<cb>	<cc>	<cd>	<ce>	<cf>
<d>	<da>	<db>	<dc>	<dd>	<de>	<df>
<e>	<ea>	<eb>	<ec>	<ed>	<ee>	<ef>
<f>	<fa>	<fb>	<fc>	<fd>	<fe>	<ff>

	<a>		<c>	<d>	<e>	<f>
<a>		< ab) $>$	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd) $>$	<(be)>	<(bf)>
<c>				< (cd) $>$	<(ce) $>$	<(cf)>
<d>					<(de)>	<(df)>
<e>						<(ef)>
<f>						

Without Apriori property, $8 * 8+8 * 7 / 2=92$
candidates
Apriori prunes
44.57% candidatEs

Finding Length-2 Sequential Patterns

- Scan database one more time, collect support count for each length-2 candidate
- There are 19 length-2 candidates which pass the minimum support threshold
- They are length-2 sequential patterns

The GSP Mining Process

$5^{\text {th }}$ scan: 1 cand. 1 length-5 seq. <(bd)cba> pat.
$4^{\text {th }}$ scan: 8 cand. 6 length -4 seq. pat.
$3^{\text {rd }}$ scan: 46 cand. 19 length-3 seq. pat. 20 cand. not in DB at all $2^{\text {nd }}$ scan: 51 cand. 19 length-2 seq. pat. 10 cand. not in DB at all $1^{\text {st }}$ scan: 8 cand. 6 length -1 seq. pat.

The GSP Algorithm

- Take sequences in form of $<x>$ as length-1 candidates
- Scan database once, find F_{1}, the set of length-1 sequential patterns
- Let $k=1$; while F_{k} is not empty do
- Form C_{k+1}, the set of length-($k+1$) candidates from F_{k};
- If C_{k+1} is not empty, scan database once, find $\mathrm{F}_{\mathrm{k}+1}$, the set of length-($k+1$) sequential patterns
- Let $\mathrm{k}=\mathrm{k}+1$;

The GSP Algorithm

- Benefits from the Apriori pruning
- Reduces search space
- Bottlenecks
- Scans the database multiple times
- Generates a huge set of candidate sequences

The SPADE Algorithm

- SPADE (Sequential PAttern Discovery using Equivalent Class) developed by Zaki 2001
- A vertical format sequential pattern mining method
- A sequence database is mapped to a large set of Item: <SID, EID>
- Sequential pattern mining is performed by
- growing the subsequences (patterns) one item at a time by Apriori candidate generation

The SPADE Algorithm

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	d
1	5	cf
2	1	ad
2	2	c
2	3	bc
2	4	ae
3	1	ef
3	2	ab
3	3	df
3	4	c
3	5	b
4	1	e
4	2	g
4	3	af
4	4	c
4	5	b
4	6	c

a		b		\cdots
SID	EID	SID	EID	\cdots
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

ab				ba			
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	\cdots	
1	1	2	1	2	3		
2	1	3	2	3	4		
3	2	5					
4	3	5					

aba				
SID	EID (a)	EID(b)	EID(a)	\cdots
1	1	2	3	
2	1	3	4	

Bottlenecks of Candidate Generate-and-test

- A huge set of candidates generated.
- Especially 2-item candidate sequence.
- Multiple Scans of database in mining.
- The length of each candidate grows by one at each database scan.
- Inefficient for mining long sequential patterns.
- A long pattern grow up from short patterns
- An exponential number of short candidates

PrefixSpan (Prefix-Projected Sequential Pattern Growth)

- PrefixSpan
- Projection-based
- But only prefix-based projection: less projections and quickly shrinking sequences
- J.Pei, J.Han,... PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth. ICDE'01.

Prefix and Suffix (Projection)

- <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of sequence <a(abc)(ac)d(cf)>
- Given sequence <a(abc)(ac)d(cf)>

Prefix	Suffix (Prefix-Based Projection)
<a>	<(abc)(ac)d(cf)>
<aa>	$<\left(_b c\right)(a c) d(c f)>$
<ab>	<(_c)(ac)d(cf)>

Mining Sequential Patterns by Prefix Projections

- Step 1: find length-1 sequential patterns
$-<a>,,<c>,<d>,<e>,<f>$
- Step 2: divide search space. The complete set of seq. pat. can be partitioned into 6 subsets:
- The ones having prefix <a>;
- The ones having prefix ;
- ...
- The ones having prefix <f>

SID	sequence
10	<a(abc)(ac)d(cf)>
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	<eg(af)cbc>

Finding Seq. Patterns with Prefix <a>

- Only need to consider projections w.r.t. <a>
- <a>-projected database: <(abc)(ac)d(cf)>, <(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>
- Find all the length-2 seq. pat. Having prefix $<a>$: <aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
- Further partition into 6 subsets
- Having prefix <aa>;
- ...
- Having prefix <af>

SID	sequence
10	$<a(\mathrm{abc})(\mathrm{ac}) \mathrm{d}(\mathrm{cf})>$
20	$<(\mathrm{ad}) \mathrm{c}(\mathrm{bc})(\mathrm{ae})>$
30	$<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{cb}>$
40	$<e g(\mathrm{af}) \mathrm{cbc}>$

Completeness of PrefixSpan

SDB

The Algorithm of PrefixSpan

- Input: A sequence database S, and the minimum support threshold min_sup
- Output: The complete set of sequential patterns
- Method: Call PrefixSpan(<>,0,S)
- Subroutine PrefixSpan(a, I, S|a)
- Parameters:
- α : sequential pattern,
$-l$: the length of α;
- S| α : the α-projected database, if $\alpha \neq<>$; otherwise; the sequence database S

The Algorithm of PrefixSpan(2)

- Method

1. Scan S|a once, find the set of frequent items b such that:
a) b can be assembled to the last element of α to form a sequential pattern; or
b) can be appended to α to form a sequential pattern.
2. For each frequent item b, append it to α to form a sequential pattern α^{\prime}, and output α^{\prime};
3. For each α^{\prime}, construct α^{\prime}-projected database $S \mid \alpha^{\prime}$, and call PrefixSpan($\left.\alpha^{\prime}, 1+1, S \mid \alpha^{\prime}\right)$.

Efficiency of PrefixSpan

- No candidate sequence needs to be generated
- Projected databases keep shrinking
- Major cost of PrefixSpan: constructing projected databases
- Can be improved by bi-level projections

Optimization in PrefixSpan

- Single level vs. bi-level projection
- Bi-level projection with 3-way checking may reduce the number and size of projected databases
- Physical projection vs. pseudo-projection
- Pseudo-projection may reduce the effort of projection when the projected database fits in main memory
- Parallel projection vs. partition projection
- Partition projection may avoid the blowup of disk space

Scaling Up by Bi-Level Projection

- Partition search space based on length-2 sequential patterns
- Only form projected databases and pursue recursive mining over bi-level projected databases

Speed-up by Pseudo-projection

- Major cost of PrefixSpan: projection
- Postfixes of sequences often appear
repeatedly in recursive projected databases
- When (projected) database can be held in main memory, use pointers to form projections
- Pointer to the sequence

Pseudo-Projection vs. Physical Projection

- Pseudo-projection avoids physically copying postfixes
- Efficient in running time and space when database can be held in main memory
- However, it is not efficient when database cannot fit in main memory
- Disk-based random accessing is very costly
- Suggested Approach:
- Integration of physical and pseudo-projection
- Swapping to pseudo-projection when the data set fits in memory

Performance on Data Set C10TR.S8I8

Performance on Data Set Gazelle

Effect of Pseudo-Projection

CloSpan: Mining Closed Sequential

 Patterns- A closed sequential pattern s: there exists no superpattern s ' such that $s^{\prime} \supset s$, and s^{\prime} and s have the same support
- Motivation: reduces the
 number of (redundant) patterns but attains the same expressive power
- Using Backward Subpattern and Backward Superpattern pruning to prune redundant
 search space

CloSpan: Performance Comparison with PrefixSpan

Constraints for Seq.-Pattern Mining

- Item constraint
- Find web log patterns only about online-bookstores
- Length constraint
- Find patterns having at least 20 items
- Super pattern constraint
- Find super patterns of "PC digital camera"
- Aggregate constraint
- Find patterns that the average price of items is over \$100

More Constraints

- Regular expression constraint
- Find patterns "starting from Yahoo homepage, search for hotels in Washington DC area"
- Yahootravel(WashingtonDC|DC)(hotel|motel||lodging)
- Duration constraint
- Find patterns about ± 24 hours of a shooting
- Gap constraint
- Find purchasing patterns such that "the gap between each consecutive purchases is less than 1 month"

From Sequential Patterns to Structured Patterns

- Sets, sequences, trees, graphs, and other structures
- Transaction DB: Sets of items
- $\left\{\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}, \ldots\right\}$
- Seq. DB: Sequences of sets:
- $\left\{<\left\{i_{1}, i_{2}\right\}, \ldots,\left\{i_{m}, i_{n}, i_{k}\right\}>, \ldots\right\}$
- Sets of Sequences:
- $\left\{\left\{<i_{1}, i_{2}>, \ldots,<i_{m}, i_{n}, i_{k}>\right\}, \ldots\right\}$
- Sets of trees: $\left\{\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{n}\right\}$
- Sets of graphs (mining for frequent subgraphs):
- $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$
- Mining structured patterns in XML documents,
hin-rheminal structuras atr

Episodes and Episode Pattern Mining

- Other methods for specifying the kinds of patterns
- Serial episodes: A B
- Parallel episodes: A \& B
- Regular expressions: (A|B)C*(D ${ }^{*}$)
- Methods for episode pattern mining
- Variations of Apriori-like algorithms, e.g., GSP
- Database projection-based pattern growth
- Similar to the frequent pattern growth without candidate generation

Periodicity Analysis

- Periodicity is everywhere: tides, seasons, daily power consumption, etc.
- Full periodicity
- Every point in time contributes (precisely or approximately) to the periodicity
- Partial periodicit: A more general notion
- Only some segments contribute to the periodicity
- Jim reads NY Times 7:00-7:30 am every week day
- Cyclic association rules
- Associations which form cycles
- Methods
- Full periodicity: FFT, other statistical analysis methods
- Partial and cyclic periodicity: Variations of Apriori-like mining methods

Summary

- Sequential Pattern Mining is useful in many application, e.g. weblog analysis, financial market prediction, Biolnformatics, etc.
- It is similar to the frequent itemsets mining, but with consideration of ordering.
- We have looked at different approaches that are descendants from two popular algorithms in mining frequent itemsets
- Candidates Generation: AprioriAll and GSP
- Pattern Growth: FreeSpan and PrefixSpan

