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Probabilistic topic models

As more information becomes
available, it becomes more difficult
to find and discover what we need.

We need new tools to help us
organize, search, and understand
these vast amounts of information.



Probabilistic topic models

Topic modeling provides methods for automatically organizing, understanding,
searching, and summarizing large electronic archives.

1 Discover the hidden themes that pervade the collection.

2 Annotate the documents according to those themes.

3 Use annotations to organize, summarize, search, form predictions.
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Jared M. Diamond, Distributional Ecology of New Guinea Birds. Science (1973) 
[296 citations]

W. B. Scott, The Isthmus of Panama in Its Relation to the Animal Life of North and South America, Science (1916)
[3 citations]

William K. Gregory, The New Anthropogeny: Twenty-Five Stages of 
Vertebrate Evolution, from Silurian Chordate to Man, Science (1933)
[3 citations]

Derek E. Wildman et al., Implications of Natural Selection in Shaping 99.4% Nonsynonymous 
DNA Identity between Humans and Chimpanzees: Enlarging Genus Homo, PNAS (2003)
[178 citations]
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16 J. CHANG AND D. BLEI

Table 2
Top eight link predictions made by RTM (ψe) and LDA + Regression for two documents
(italicized) from Cora. The models were fit with 10 topics. Boldfaced titles indicate actual

documents cited by or citing each document. Over the whole corpus, RTM improves
precision over LDA + Regression by 80% when evaluated on the first 20 documents

retrieved.

Markov chain Monte Carlo convergence diagnostics: A comparative review

Minorization conditions and convergence rates for Markov chain Monte Carlo
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Rates of convergence of the Hastings and Metropolis algorithms
Possible biases induced by MCMC convergence diagnostics

Bounding convergence time of the Gibbs sampler in Bayesian image restoration
Self regenerative Markov chain Monte Carlo

Auxiliary variable methods for Markov chain Monte Carlo with applications
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation

Diagnosing convergence of Markov chain Monte Carlo algorithms
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Self regenerative Markov chain Monte Carlo
Minorization conditions and convergence rates for Markov chain Monte Carlo

Gibbs-markov models
Auxiliary variable methods for Markov chain Monte Carlo with applications

Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Models
Mediating instrumental variables

A qualitative framework for probabilistic inference
Adaptation for Self Regenerative MCMC

Competitive environments evolve better solutions for complex tasks

Coevolving High Level Representations
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A Survey of Evolutionary Strategies
Genetic Algorithms in Search, Optimization and Machine Learning

Strongly typed genetic programming in evolving cooperation strategies
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
Evolutionary Module Acquisition

An Empirical Investigation of Multi-Parent Recombination Operators. . .

A New Algorithm for DNA Sequence Assembly

L
D

A
+

R
e
g
r
e
ssio

n

Identification of protein coding regions in genomic DNA
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
A genetic algorithm for passive management

The Performance of a Genetic Algorithm on a Chaotic Objective Function
Adaptive global optimization with local search

Mutation rates as adaptations

Table 2 illustrates suggested citations using RTM (ψe) and LDA + Regres-
sion as predictive models. These suggestions were computed from a model fit
on one of the folds of the Cora data. The top results illustrate suggested links
for “Markov chain Monte Carlo convergence diagnostics: A comparative re-
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Probabilistic topic models

• What are topic models?

• What kinds of things can they do?

• How do I compute with a topic model?

• How do I evaluate and check a topic model?

• What are some unanswered questions in this field?

• How can I learn more?



Probabilistic models

• This is a case study in data analysis with probability models.

• Our agenda is to teach about this kind of analysis through topic models.

• Note: We are being “Bayesian” in this sense:

“[By Bayesian inference,] I simply mean the method of statistical inference
that draws conclusions by calculating conditional distributions of unknown
quantities given (a) known quantities and (b) model specifications.”
(Rubin, 1984)

• (The Bayesian versus Frequentist debate is not relevant to this talk.)



Probabilistic models

• Specifying models

• Directed graphical models
• Conjugate priors and nonconjugate priors
• Time series modeling
• Hierarchical methods
• Mixed-membership models
• Prediction from sparse and noisy inputs

• Model selection and Bayesian nonparametric methods

• Approximate posterior inference

• MCMC
• Variational inference

• Using and evaluating models

• Exploring, describing, summarizing, visualizing data
• Evaluating model fitness



Probabilistic models

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check



Organization of these lectures

1 Introduction to topic modeling: Latent Dirichlet allocation

2 Beyond latent Dirichlet allocation

• Correlated and dynamic models
• Supervised models
• Modeling text and user data

3 Bayesian nonparametrics: A brief tutorial

4 Posterior computation

• Scalable variational inference
• Nonconjugate variational inference

5 Checking and evaluating models

• Using the predictive distribution
• Posterior predictive checks

6 Discussion, open questions, and resources



Introduction to Topic Modeling



Latent Dirichlet allocation (LDA)

Simple intuition: Documents exhibit multiple topics.



Latent Dirichlet allocation (LDA)

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

• Each topic is a distribution over words

• Each document is a mixture of corpus-wide topics

• Each word is drawn from one of those topics



Latent Dirichlet allocation (LDA)

Topics Documents Topic proportions and
assignments

• In reality, we only observe the documents

• The other structure are hidden variables



Latent Dirichlet allocation (LDA)

Topics Documents Topic proportions and
assignments

• Our goal is to infer the hidden variables

• I.e., compute their distribution conditioned on the documents

p(topics, proportions, assignments |documents)



LDA as a graphical model

θd Zd,n Wd,n
N

D K
βk

α η

Proportions
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
parameter

• Encodes assumptions

• Defines a factorization of the joint distribution

• Connects to algorithms for computing with data



LDA as a graphical model

θd Zd,n Wd,n
N

D K
βk

α η

Proportions
parameter

Per-document
topic proportions

Per-word
topic assignment

Observed
word Topics

Topic
parameter

• Nodes are random variables; edges indicate dependence.

• Shaded nodes are observed; unshaded nodes are hidden.

• Plates indicate replicated variables.



LDA as a graphical model
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LDA as a graphical model

θd Zd,n Wd,n
N

D K
βk

α η

• This joint defines a posterior, p(θ ,z,β |w).

• From a collection of documents, infer

• Per-word topic assignment zd ,n

• Per-document topic proportions θd

• Per-corpus topic distributions βk

• Then use posterior expectations to perform the task at hand:
information retrieval, document similarity, exploration, and others.



LDA as a graphical model

θd Zd,n Wd,n
N

D K
βk

α η

Approximate posterior inference algorithms
• Mean field variational methods (Blei et al., 2001, 2003)

• Expectation propagation (Minka and Lafferty, 2002)

• Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)

• Distributed sampling (Newman et al., 2008; Ahmed et al., 2012)

• Collapsed variational inference (Teh et al., 2006)

• Online variational inference (Hoffman et al., 2010)

• Factorization based inference (Arora et al., 2012; Anandkumar et al., 2012)



Example inference

• Data: The OCR’ed collection of Science from 1990–2000

• 17K documents
• 11M words
• 20K unique terms (stop words and rare words removed)

• Model: 100-topic LDA model using variational inference.



Example inference
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Example inference

“Genetics” “Evolution” “Disease” “Computers”
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project two united new

sequences common tuberculosis simulations
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Aside: The Dirichlet distribution

• The Dirichlet distribution is an exponential family distribution over the
simplex, i.e., positive vectors that sum to one

p(θ |~α) =
Γ
�
∑

i αi

�

∏

i Γ(αi)

∏

i

θ αi−1
i .

• It is conjugate to the multinomial. Given a multinomial observation, the
posterior distribution of θ is a Dirichlet.

• The parameter α controls the mean shape and sparsity of θ .

• The topic proportions are a K dimensional Dirichlet.
The topics are a V dimensional Dirichlet.
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Why does LDA “work”?

• LDA trades off two goals.

1 For each document, allocate its words to as few topics as possible.
2 For each topic, assign high probability to as few terms as possible.

• These goals are at odds.

• Putting a document in a single topic makes #2 hard:
All of its words must have probability under that topic.

• Putting very few words in each topic makes #1 hard:
To cover a document’s words, it must assign many topics to it.

• Trading off these goals finds groups of tightly co-occurring words.



LDA summary
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• LDA is a probabilistic model of text. It casts the problem of discovering
themes in large document collections as a posterior inference problem.

• It lets us visualize the hidden thematic structure in large collections, and
generalize new data to fit into that structure.

• Builds on latent semantic analysis (Deerwester et al., 1990; Hofmann, 1999)
It is a mixed-membership model (Erosheva, 2004).
It relates to PCA and matrix factorization (Jakulin and Buntine, 2002).
Was independently invented for genetics (Pritchard et al., 2000)



LDA summaryby emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where

Chang, Blei
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2

= 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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(b) Sentence Graphical Model

Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• LDA is a simple building block that enables many applications.

• It is popular because organizing and finding patterns in data has become
important in the sciences, humanties, industry, and culture.

• Further, algorithmic improvements let us fit models to massive data.



Example: LDA in R (Jonathan Chang)

docs <- read.documents("mult.dat")
K <- 20
alpha <- 1/20
eta <- 0.001
model <- lda.collapsed.gibbs.sampler(documents, K, vocab, 1000, alpha, eta)

245 1897:1 1467:1 1351:1 731:2 800:5 682:1 315:6 3668:1 14:1 
260 4261:2 518:1 271:6 2734:1 2662:1 2432:1 683:2 1631:7
279 2724:1 107:3 518:1 141:3 3208:1 32:1 2444:1 182:1 250:1 
266 2552:1 1993:1 116:1 539:1 1630:1 855:1 1422:1 182:3 2432:1
233 1372:1 1351:1 261:1 501:1 1938:1 32:1 14:1 4067:1 98:2
148 4384:1 1339:1 32:1 4107:1 2300:1 229:1 529:1 521:1 2231:1
193 569:1 3617:1 3781:2 14:1 98:1 3596:1 3037:1 1482:12 665:2

....

perspective identifying tumor suppressor genes in human...
letters global warming report leslie roberts article global....
research news a small revolution gets under way the 1990s....
a continuing series the reign of trial and error draws to a close...
making deep earthquakes in the laboratory lab experimenters...
quick fix for freeways thanks to a team of fast working...
feathers fly in grouse population dispute researchers...
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Extending LDA
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• LDA is a simple topic model.

• It can be used to find topics that describe a corpus.

• Each document exhibits multiple topics.

• How can we build on this simple model of text?
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Extending LDA
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2

= 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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(b) Sentence Graphical Model

Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.

252

• LDA can be embedded in more complicated models, embodying further
intuitions about the structure of the texts.

• E.g., it can be used in models that account for syntax, authorship, word
sense, dynamics, correlation, hierarchies, and other structure.



Extending LDA
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2

= 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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(b) Sentence Graphical Model

Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• The data generating distribution can be changed. We can apply
mixed-membership assumptions to many kinds of data.

• E.g., we can build models of images, social networks, music, purchase
histories, computer code, genetic data, and other types.



Extending LDA
by emerging groups. Both modalities are driven by the
common goal of increasing data likelihood. Consider the
voting example again; resolutions that would have been as-
signed the same topic in a model using words alone may
be assigned to different topics if they exhibit distinct voting
patterns. Distinct word-based topics may be merged if the
entities vote very similarly on them. Likewise, multiple dif-
ferent divisions of entities into groups are made possible by
conditioning them on the topics.

The importance of modeling the language associated with
interactions between people has recently been demonstrated
in the Author-Recipient-Topic (ART) model [16]. In ART
the words in a message between people in a network are
generated conditioned on the author, recipient and a set
of topics that describes the message. The model thus cap-
tures both the network structure within which the people
interact as well as the language associated with the inter-
actions. In experiments with Enron and academic email,
the ART model is able to discover role similarity of people
better than SNA models that consider network connectivity
alone. However, the ART model does not explicitly capture
groups formed by entities in the network.

The GT model simultaneously clusters entities to groups
and clusters words into topics, unlike models that gener-
ate topics solely based on word distributions such as Latent
Dirichlet Allocation [4]. In this way the GT model discov-
ers salient topics relevant to relationships between entities
in the social network—topics which the models that only
examine words are unable to detect.

We demonstrate the capabilities of the GT model by ap-
plying it to two large sets of voting data: one from US Sen-
ate and the other from the General Assembly of the UN.
The model clusters voting entities into coalitions and si-
multaneously discovers topics for word attributes describing
the relations (bills or resolutions) between entities. We find
that the groups obtained from the GT model are signifi-
cantly more cohesive (p-value < .01) than those obtained
from the Blockstructures model. The GT model also dis-
covers new and more salient topics in both the UN and Sen-
ate datasets—in comparison with topics discovered by only
examining the words of the resolutions, the GT topics are
either split or joined together as influenced by the voters’
patterns of behavior.

2. GROUP-TOPIC MODEL
The Group-Topic Model is a directed graphical model that

clusters entities with relations between them, as well as at-
tributes of those relations. The relations may be either di-
rected or undirected and have multiple attributes. In this
paper, we focus on undirected relations and have words as
the attributes on relations.

In the generative process for each event (an interaction
between entities), the model first picks the topic t of the
event and then generates all the words describing the event
where each word is generated independently according to
a multinomial distribution φt, specific to the topic t. To
generate the relational structure of the network, first the
group assignment, gst for each entity s is chosen condition-
ally on the topic, from a particular multinomial distribution
θt over groups for each topic t. Given the group assignments
on an event b, the matrix V (b) is generated where each cell

V
(b)

gigj represents how often the groups of two senators be-
haved the same or not during the event b, (e.g., voted the

SYMBOL DESCRIPTION
git entity i’s group assignment in topic t
tb topic of an event b

w
(b)
k the kth token in the event b

V
(b)

ij entity i and j’s groups behaved same (1)
or differently (2) on the event b

S number of entities
T number of topics
G number of groups
B number of events
V number of unique words
Nb number of word tokens in the event b
Sb number of entities who participated in the event b

Table 1: Notation used in this paper
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Figure 1: The Group-Topic model

same or not on a bill). The elements of V are sampled from

a binomial distribution γ
(b)
gigj . Our notation is summarized

in Table 1, and the graphical model representation of the
model is shown in Figure 1.

Without considering the topic of an event, or by treat-
ing all events in a corpus as reflecting a single topic, the
simplified model (only the right part of Figure 1) becomes
equivalent to the stochastic Blockstructures model [17]. To
match the Blockstructures model, each event defines a re-
lationship, e.g., whether in the event two entities’ groups
behave the same or not. On the other hand, in our model a
relation may have multiple attributes (which in our exper-
iments are the words describing the event, generated by a
per-topic multinomial).

When we consider the complete model, the dataset is dy-
namically divided into T sub-blocks each of which corre-
sponds to a topic. The complete GT model is as follows,

tb ∼ Uniform(
1

T
)

wit|φt ∼ Multinomial(φt)

φt|η ∼ Dirichlet(η)

git|θt ∼ Multinomial(θt)

θt|α ∼ Dirichlet(α)

V
(b)

ij |γ(b)
gigj

∼ Binomial(γ(b)
gigj

)

γ
(b)
gh |β ∼ Beta(β).

We want to perform joint inference on (text) attributes
and relations to obtain topic-wise group memberships. Since
inference can not be done exactly on such complicated prob-
abilistic graphical models, we employ Gibbs sampling to con-
duct inference. Note that we adopt conjugate priors in our

Indian Buffet Process Compound Dirichlet Process

B selects a subset of atoms for each distribution, and the
gamma random variables φ determine the relative masses
associated with these atoms.

2.4. Focused Topic Models

Suppose H parametrizes distributions over words. Then,
the ICD defines a generative topic model, where it is used
to generate a set of sparse distributions over an infinite num-
ber of components, called “topics.” Each topic is drawn
from a Dirichlet distribution over words. In order to specify
a fully generative model, we sample the number of words
for each document from a negative binomial distribution,
n

(m)
· ∼ NB(

�
k bmkφk, 1/2).2

The generative model for M documents is

1. for k = 1, 2, . . . ,

(a) Sample the stick length πk according to Eq. 1.
(b) Sample the relative mass φk ∼ Gamma(γ, 1).
(c) Draw the topic distribution over words,

βk ∼ Dirichlet(η).

2. for m = 1, . . . ,M ,

(a) Sample a binary vector bm according to Eq. 1.
(b) Draw the total number of words,

n
(m)
· ∼ NB(

�
k bmkφk, 1/2).

(c) Sample the distribution over topics,
θm ∼ Dirichlet(bm · φ).

(d) For each word wmi, i = 1, . . . , n
(m)
· ,

i. Draw the topic index zmi ∼ Discrete(θm).
ii. Draw the word wmi ∼ Discrete(βzmi

).

We call this the focused topic model (FTM) because the
infinite binary matrix B serves to focus the distribution
over topics onto a finite subset (see Figure 1). The number
of topics within a single document is almost surely finite,
though the total number of topics is unbounded. The topic
distribution for the mth document, θm, is drawn from a
Dirichlet distribution over the topics selected by bm. The
Dirichlet distribution models uncertainty about topic pro-
portions while maintaining the restriction to a sparse set of
topics.

The ICD models the distribution over the global topic pro-
portion parameters φ separately from the distribution over
the binary matrix B. This captures the idea that a topic may
appear infrequently in a corpus, but make up a high propor-
tion of those documents in which it occurs. Conversely, a
topic may appear frequently in a corpus, but only with low
proportion.

2Notation n
(m)
k is the number of words assigned to the kth

topic of the mth document, and we use a dot notation to represent
summation - i.e. n

(m)
· =

P
k n

(m)
k .

Figure 1. Graphical model for the focused topic model

3. Related Models
Titsias (2007) introduced the infinite gamma-Poisson pro-
cess, a distribution over unbounded matrices of non-
negative integers, and used it as the basis for a topic model
of images. In this model, the distribution over features
for the mth image is given by a Dirichlet distribution over
the non-negative elements of the mth row of the infinite
gamma-Poisson process matrix, with parameters propor-
tional to the values at these elements. While this results in
a sparse matrix of distributions, the number of zero entries
in any column of the matrix is correlated with the values
of the non-zero entries. Columns which have entries with
large values will not typically be sparse. Therefore, this
model will not decouple across-data prevalence and within-
data proportions of topics. In the ICD the number of zero
entries is controlled by a separate process, the IBP, from
the values of the non-zero entries, which are controlled by
the gamma random variables.

The sparse topic model (SparseTM, Wang & Blei, 2009)
uses a finite spike and slab model to ensure that each topic
is represented by a sparse distribution over words. The
spikes are generated by Bernoulli draws with a single topic-
wide parameter. The topic distribution is then drawn from a
symmetric Dirichlet distribution defined over these spikes.
The ICD also uses a spike and slab approach, but allows
an unbounded number of “spikes” (due to the IBP) and a
more globally informative “slab” (due to the shared gamma
random variables). We extend the SparseTM’s approxima-
tion of the expectation of a finite mixture of Dirichlet dis-
tributions, to approximate the more complicated mixture of
Dirichlet distributions given in Eq. 2.

Recent work by Fox et al. (2009) uses draws from an IBP
to select subsets of an infinite set of states, to model multi-
ple dynamic systems with shared states. (A state in the dy-
namic system is like a component in a mixed membership
model.) The probability of transitioning from the ith state
to the jth state in the mth dynamic system is drawn from a
Dirichlet distribution with parameters bmjγ + τδi,j , where
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Figure 2: A two-document segment of the RTM. The variable y indicates whether the two documents are linked. The complete model
contains this variable for each pair of documents. The plates indicate replication. This model captures both the words and the link
structure of the data shown in Figure 1.

formulation, inspired by the supervised LDA model (Blei
and McAuliffe 2007), ensures that the same latent topic as-
signments used to generate the content of the documents
also generates their link structure. Models which do not
enforce this coupling, such as Nallapati et al. (2008), might
divide the topics into two independent subsets—one for
links and the other for words. Such a decomposition pre-
vents these models from making meaningful predictions
about links given words and words given links. In Sec-
tion 4 we demonstrate empirically that the RTM outper-
forms such models on these tasks.

3 INFERENCE, ESTIMATION, AND
PREDICTION

With the model defined, we turn to approximate poste-
rior inference, parameter estimation, and prediction. We
develop a variational inference procedure for approximat-
ing the posterior. We use this procedure in a variational
expectation-maximization (EM) algorithm for parameter
estimation. Finally, we show how a model whose parame-
ters have been estimated can be used as a predictive model
of words and links.

Inference In posterior inference, we seek to compute
the posterior distribution of the latent variables condi-
tioned on the observations. Exact posterior inference is in-
tractable (Blei et al. 2003; Blei and McAuliffe 2007). We
appeal to variational methods.

In variational methods, we posit a family of distributions
over the latent variables indexed by free variational pa-
rameters. Those parameters are fit to be close to the true
posterior, where closeness is measured by relative entropy.
See Jordan et al. (1999) for a review. We use the fully-
factorized family,

q(Θ,Z|γ,Φ) =
�

d [qθ(θd|γd)
�

n qz(zd,n|φd,n)] , (3)

where γ is a set of Dirichlet parameters, one for each doc-

ument, and Φ is a set of multinomial parameters, one for
each word in each document. Note that Eq [zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximiz-
ing the Jensen’s lower bound on the marginal probability of
the observations, i.e., the evidence lower bound (ELBO),

L =
�

(d1,d2)
Eq [log p(yd1,d2

|zd1
,zd2

,η, ν)]+
�

d

�
n Eq [log p(wd,n|β1:K , zd,n)]+�

d

�
n Eq [log p(zd,n|θd)]+�

d Eq [log p(θd|α)] + H(q), (4)

where (d1, d2) denotes all document pairs. The first term
of the ELBO differentiates the RTM from LDA (Blei et al.
2003). The connections between documents affect the ob-
jective in approximate posterior inference (and, below, in
parameter estimation).

We develop the inference procedure under the assumption
that only observed links will be modeled (i.e., yd1,d2 is ei-
ther 1 or unobserved).1 We do this for two reasons.

First, while one can fix yd1,d2
= 1 whenever a link is ob-

served between d1 and d2 and set yd1,d2 = 0 otherwise, this
approach is inappropriate in corpora where the absence of
a link cannot be construed as evidence for yd1,d2

= 0. In
these cases, treating these links as unobserved variables is
more faithful to the underlying semantics of the data. For
example, in large social networks such as Facebook the ab-
sence of a link between two people does not necessarily
mean that they are not friends; they may be real friends
who are unaware of each other’s existence in the network.
Treating this link as unobserved better respects our lack of
knowledge about the status of their relationship.

Second, treating non-links links as hidden decreases the
computational cost of inference; since the link variables are
leaves in the graphical model they can be removed when-

1Sums over document pairs (d1, d2) are understood to range
over pairs for which a link has been observed.
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Figure 1: In the graphical model of the STM, a document is made up of a number of sentences,
represented by a tree of latent topics z which in turn generate words w. These words’ topics are
chosen by the topic of their parent (as encoded by the tree), the topic weights for a document θ,
and the node’s parent’s successor weights π. (For clarity, not all dependencies of sentence nodes
are shown.) The structure of variables for sentences within the document plate is on the right, as
demonstrated by an automatic parse of the sentence “Some phrases laid in his mind for years.” The
STM assumes that the tree structure and words are given, but the latent topics z are not.

is going to be a noun consistent as the object of the preposition “of.” Thematically, because it is in
a travel brochure, we would expect to see words such as “Acapulco,” “Costa Rica,” or “Australia”
more than “kitchen,” “debt,” or “pocket.” Our model can capture these kinds of regularities and
exploit them in predictive problems.

Previous efforts to capture local syntactic context include semantic space models [6] and similarity
functions derived from dependency parses [7]. These methods successfully determine words that
share similar contexts, but do not account for thematic consistency. They have difficulty with pol-
ysemous words such as “fly,” which can be either an insect or a term from baseball. With a sense
of document context, i.e., a representation of whether a document is about sports or animals, the
meaning of such terms can be distinguished.

Other techniques have attempted to combine local context with document coherence using linear
sequence models [8, 9]. While these models are powerful, ordering words sequentially removes
the important connections that are preserved in a syntactic parse. Moreover, these models gener-
ate words either from the syntactic or thematic context. In the syntactic topic model, words are
constrained to be consistent with both.

The remainder of this paper is organized as follows. We describe the syntactic topic model, and
develop an approximate posterior inference technique based on variational methods. We study its
performance both on synthetic data and hand parsed data [10]. We show that the STM captures
relationships missed by other models and achieves lower held-out perplexity.

2 The syntactic topic model

We describe the syntactic topic model (STM), a document model that combines observed syntactic
structure and latent thematic structure. To motivate this model, we return to the travel brochure
sentence “In the near future, you could find yourself in .”. The word that fills in the blank is
constrained by its syntactic context and its document context. The syntactic context tells us that it is
an object of a preposition, and the document context tells us that it is a travel-related word.

The STM attempts to capture these joint influences on words. It models a document corpus as
exchangeable collections of sentences, each of which is associated with a tree structure such as a

2

This provides an inferential speed-up that makes it
possible to fit models at varying granularities. As ex-
amples, journal articles might be exchangeable within
an issue, an assumption which is more realistic than
one where they are exchangeable by year. Other data,
such as news, might experience periods of time without
any observation. While the dDTM requires represent-
ing all topics for the discrete ticks within these periods,
the cDTM can analyze such data without a sacrifice
of memory or speed. With the cDTM, the granularity
can be chosen to maximize model fitness rather than
to limit computational complexity.

We note that the cDTM and dDTM are not the only
topic models to take time into consideration. Topics
over time models (TOT) [23] and dynamic mixture
models (DMM) [25] also include timestamps in the
analysis of documents. The TOT model treats the
time stamps as observations of the latent topics, while
DMM assumes that the topic mixture proportions of
each document is dependent on previous topic mix-
ture proportions. In both TOT and DMM, the topics
themselves are constant, and the time information is
used to better discover them. In the setting here, we
are interested in inferring evolving topics.

The rest of the paper is organized as follows. In sec-
tion 2 we describe the dDTM and develop the cDTM
in detail. Section 3 presents an efficient posterior in-
ference algorithm for the cDTM based on sparse varia-
tional methods. In section 4, we present experimental
results on two news corpora.

2 Continuous time dynamic topic
models

In a time stamped document collection, we would like
to model its latent topics as changing through the
course of the collection. In news data, for example, a
single topic will change as the stories associated with
it develop. The discrete-time dynamic topic model
(dDTM) builds on the exchangeable topic model to
provide such machinery [2]. In the dDTM, documents
are divided into sequential groups, and the topics of
each slice evolve from the topics of the previous slice.
Documents in a group are assumed exchangeable.

More specifically, a topic is represented as a distribu-
tion over the fixed vocabulary of the collection. The
dDTM assumes that a discrete-time state space model
governs the evolution of the natural parameters of the
multinomial distributions that represent the topics.
(Recall that the natural parameters of the multino-
mial are the logs of the probabilities of each item.)
This is a time-series extension to the logistic normal
distribution [26].

Figure 1: Graphical model representation of the
cDTM. The evolution of the topic parameters βt is
governed by Brownian motion. The variable st is the
observed time stamp of document dt.

A drawback of the dDTM is that time is discretized.
If the resolution is chosen to be too coarse, then the
assumption that documents within a time step are ex-
changeable will not be true. If the resolution is too
fine, then the number of variational parameters will ex-
plode as more time points are added. Choosing the dis-
cretization should be a decision based on assumptions
about the data. However, the computational concerns
might prevent analysis at the appropriate time scale.

Thus, we develop the continuous time dynamic topic
model (cDTM) for modeling sequential time-series
data with arbitrary granularity. The cDTM can be
seen as a natural limit of the dDTM at its finest pos-
sible resolution, the resolution at which the document
time stamps are measured.

In the cDTM, we still represent topics in their natural
parameterization, but we use Brownian motion [14] to
model their evolution through time. Let i, j (j > i >
0) be two arbitrary time indexes, si and sj be the time
stamps, and ∆sj ,si be the elapsed time between them.
In a K-topic cDTM model, the distribution of the kth

(1 ≤ k ≤ K) topic’s parameter at term w is:

β0,k,w ∼ N (m, v0)

βj,k,w|βi,k,w, s ∼ N
�
βi,k,w, v∆sj ,si

�
, (1)

where the variance increases linearly with the lag.

This construction is used as a component in the full
generative process. (Note: if j = i+1, we write ∆sj ,si

as ∆sj for short.)

1. For each topic k, 1 ≤ k ≤ K,

(a) Draw β0,k ∼ N (m, v0I).

(a) (b)

Figure 1: (a) LDA model. (b) MG-LDA model.

is still not directly dependent on the number of documents
and, therefore, the model is not expected to suffer from over-
fitting. Another approach is to use a Markov chain Monte
Carlo algorithm for inference with LDA, as proposed in [14].
In section 3 we will describe a modification of this sampling
method for the proposed Multi-grain LDA model.

Both LDA and PLSA methods use the bag-of-words rep-
resentation of documents, therefore they can only explore
co-occurrences at the document level. This is fine, provided
the goal is to represent an overall topic of the document,
but our goal is different: extracting ratable aspects. The
main topic of all the reviews for a particular item is virtu-
ally the same: a review of this item. Therefore, when such
topic modeling methods are applied to a collection of re-
views for different items, they infer topics corresponding to
distinguishing properties of these items. E.g. when applied
to a collection of hotel reviews, these models are likely to in-
fer topics: hotels in France, New York hotels, youth hostels,
or, similarly, when applied to a collection of Mp3 players’
reviews, these models will infer topics like reviews of iPod
or reviews of Creative Zen player. Though these are all valid
topics, they do not represent ratable aspects, but rather de-
fine clusterings of the reviewed items into specific types. In
further discussion we will refer to such topics as global topics,
because they correspond to a global property of the object
in the review, such as its brand or base of operation. Dis-
covering topics that correlate with ratable aspects, such as
cleanliness and location for hotels, is much more problem-
atic with LDA or PLSA methods. Most of these topics are
present in some way in every review. Therefore, it is difficult
to discover them by using only co-occurrence information at
the document level. In this case exceedingly large amounts
of training data is needed and as well as a very large num-
ber of topics K. Even in this case there is a danger that
the model will be overflown by very fine-grain global topics
or the resulting topics will be intersection of global topics
and ratable aspects, like location for hotels in New York.
We will show in Section 4 that this hypothesis is confirmed
experimentally.

One way to address this problem would be to consider co-
occurrences at the sentence level, i.e., apply LDA or PLSA to
individual sentences. But in this case we will not have a suf-
ficient co-occurrence domain, and it is known that LDA and
PLSA behave badly when applied to very short documents.
This problem can be addressed by explicitly modeling topic
transitions [5, 15, 33, 32, 28, 16], but these topic n-gram

models are considerably more computationally expensive.
Also, like LDA and PLSA, they will not be able to distin-
guish between topics corresponding to ratable aspects and
global topics representing properties of the reviewed item.
In the following section we will introduce a method which
explicitly models both types of topics and efficiently infers
ratable aspects from limited amount of training data.

2.2 MG-LDA
We propose a model called Multi-grain LDA (MG-LDA),

which models two distinct types of topics: global topics and
local topics. As in PLSA and LDA, the distribution of global
topics is fixed for a document. However, the distribution of
local topics is allowed to vary across the document. A word
in the document is sampled either from the mixture of global
topics or from the mixture of local topics specific for the
local context of the word. The hypothesis is that ratable
aspects will be captured by local topics and global topics
will capture properties of reviewed items. For example con-
sider an extract from a review of a London hotel: “. . . public
transport in London is straightforward, the tube station is
about an 8 minute walk . . . or you can get a bus for £1.50”.
It can be viewed as a mixture of topic London shared by
the entire review (words: “London”, “tube”, “£”), and the
ratable aspect location, specific for the local context of the
sentence (words: “transport”, “walk”, “bus”). Local topics
are expected to be reused between very different types of
items, whereas global topics will correspond only to partic-
ular types of items. In order to capture only genuine local
topics, we allow a large number of global topics, effectively,
creating a bottleneck at the level of local topics. Of course,
this bottleneck is specific to our purposes. Other applica-
tions of multi-grain topic models conceivably might prefer
the bottleneck reversed. Finally, we note that our definition
of multi-grain is simply for two-levels of granularity, global
and local. In principle though, there is nothing preventing
the model described in this section from extending beyond
two levels. One might expect that for other tasks even more
levels of granularity could be beneficial.

We represent a document as a set of sliding windows, each
covering T adjacent sentences within it. Each window v in
document d has an associated distribution over local topics
θloc

d,v and a distribution defining preference for local topics
versus global topics πd,v. A word can be sampled using any
window covering its sentence s, where the window is chosen
according to a categorical distribution ψs. Importantly, the
fact that the windows overlap, permits to exploit a larger
co-occurrence domain. These simple techniques are capable
of modeling local topics without more expensive modeling of
topics transitions used in [5, 15, 33, 32, 28, 16]. Introduction
of a symmetrical Dirichlet prior Dir(γ) for the distribution
ψs permits to control smoothness of topic transitions in our
model.

The formal definition of the model with Kgl global and
Kloc local topics is the following. First, draw Kgl word
distributions for global topics ϕgl

z from a Dirichlet prior
Dir(βgl) and Kloc word distributions for local topics ϕloc

z′
from Dir(βloc). Then, for each document d:

• Choose a distribution of global topics θgl
d ∼ Dir(αgl).

• For each sentence s choose a distribution ψd,s(v) ∼
Dir(γ).

• For each sliding window v
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Figure 1: Three related models, and the ART model. In all models, each observed word,
w, is generated from a multinomial word distribution, φz, specific to a particular
topic/author, z, however topics are selected differently in each of the models.
In LDA, the topic is sampled from a per-document topic distribution, θ, which
in turn is sampled from a Dirichlet over topics. In the Author Model, there is
one topic associated with each author (or category), and authors are sampled
uniformly. In the Author-Topic model, the topic is sampled from a per-author
multinomial distribution, θ, and authors are sampled uniformly from the observed
list of the document’s authors. In the Author-Recipient-Topic model, there is
a separate topic-distribution for each author-recipient pair, and the selection of
topic-distribution is determined from the observed author, and by uniformly sam-
pling a recipient from the set of recipients for the document.

its generative process for each document d, a set of authors, ad, is observed. To generate
each word, an author x is chosen uniformly from this set, then a topic z is selected from a
topic distribution θx that is specific to the author, and then a word w is generated from a
topic-specific multinomial distribution φz. However, as described previously, none of these
models is suitable for modeling message data.

An email message has one sender and in general more than one recipients. We could
treat both the sender and the recipients as “authors” of the message, and then employ the
AT model, but this does not distinguish the author and the recipients of the message, which
is undesirable in many real-world situations. A manager may send email to a secretary and
vice versa, but the nature of the requests and language used may be quite different. Even
more dramatically, consider the large quantity of junk email that we receive; modeling the
topics of these messages as undistinguished from the topics we write about as authors would
be extremely confounding and undesirable since they do not reflect our expertise or roles.

Alternatively we could still employ the AT model by ignoring the recipient information
of email and treating each email document as if it only has one author. However, in this
case (which is similar to the LDA model) we are losing all information about the recipients,
and the connections between people implied by the sender-recipient relationships.
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• The posterior can be used in creative ways.

• E.g., we can use inferences in information retrieval, recommendation,
similarity, visualization, summarization, and other applications.



Extending LDA

• These different kinds of extensions can be combined.

• (Really, these ways of extending LDA are a big advantage of using
probabilistic modeling to analyze data.)

• To give a sense of how LDA can be extended, I’ll describe several
examples of extensions that my group has worked on.

• We will discuss

• Correlated topic models
• Dynamic topic models & measuring scholarly impact
• Supervised topic models
• Relational topic models
• Ideal point topic models
• Collaborative topic models



Correlated and Dynamic Topic Models



Correlated topic models

• The Dirichlet is a distribution on the simplex, positive vectors that sum to 1.

• It assumes that components are nearly independent.

• In real data, an article about fossil fuels is more likely to also be about
geology than about genetics.



Correlated topic models

• The logistic normal is a distribution on the simplex that can model
dependence between components (Aitchison, 1980).

• The log of the parameters of the multinomial are drawn from a multivariate
Gaussian distribution,

X ∼ N K (µ,Σ)

θi ∝ exp{xi}.



Correlated topic models

Zd,n Wd,n N
D K

βkµ,Σ ηθd

Logistic normal prior

• Draw topic proportions from a logistic normal

• This allows topic occurrences to exhibit correlation.

• Provides a “map” of topics and how they are related

• Provides a better fit to text data, but computation is more complex
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Dynamic topic models

AMONG the vicissitudes incident to life no event could 
have filled me with greater anxieties than that of which 
the notification was transmitted by your order...

1789

My fellow citizens: I stand here today humbled by the task 
before us, grateful for the trust you have bestowed, mindful 
of the sacrifices borne by our ancestors...

2009

Inaugural addresses

• LDA assumes that the order of documents does not matter.

• Not appropriate for sequential corpora (e.g., that span hundreds of years)

• Further, we may want to track how language changes over time.

• Dynamic topic models let the topics drift in a sequence.
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Dynamic topic models

βk,1 βk,2 βk,T

. . .

• Use a logistic normal distribution to model topics evolving over time.

• Embed it in a state-space model on the log of the topic distribution

βt ,k |βt−1,k ∼ N (βt−1,k , Iσ2)

p(w |βt ,k ) ∝ exp
�

βt ,k
	

• As for CTMs, this makes computation more complex. But it lets us make
inferences about sequences of documents.



Dynamic topic models

Original article Topic proportions



Dynamic topic models
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Dynamic topic models
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Dynamic topic models
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Dynamic topic models

• Time-corrected similarity shows a new way of using the posterior.

• Consider the expected Hellinger distance between the topic proportions of
two documents,

dij = E





K
∑

k=1

(
p

θi ,k −
p

θj ,k )2 |wi ,wj





• Uses the latent structure to define similarity

• Time has been factored out because the topics associated to the
components are different from year to year.

• Similarity based only on topic proportions



Dynamic topic models

The Brain of the Orang (1880)



Dynamic topic models

Representation of the Visual Field on the Medial Wall
of Occipital-Parietal Cortex in the Owl Monkey (1976)



Measuring scholarly impact

History of Science
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Relativity paper #2
Relativity paper #3

Relativity paper #4

• We built on the DTM to measure scholarly impact with sequences of text.

• Influential articles reflect future changes in language use.

• The “influence” of an article is a latent variable.

• Influential articles affect the drift of the topics that they discuss.

• The posterior gives a retrospective estimate of influential articles.
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Measuring scholarly impact

Wd,n

K
βk,1 βk,2

Id

θd

Zd,n

α

• Each document has an influence score Id .

• Each topic drifts in a way that is biased towards the
documents with high influence.

• We can examine the posterior of the influence
scores to retrospectively find articles that best
explain the changes in language.



Measuring scholarly impact
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• This measure of impact only uses the words of the documents.
It correlates strongly with citation counts.

• High impact, high citation: “The Mathematics of Statistical Machine
Translation: Parameter Estimation” (Brown et al., 1993)

• “Low” impact, high citation: “Building a large annotated corpus of English:
the Penn Treebank” (Marcus et al., 1993)



Measuring scholarly impact
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Jared M. Diamond, Distributional Ecology of New Guinea Birds. Science (1973) 
[296 citations]

W. B. Scott, The Isthmus of Panama in Its Relation to the Animal Life of North and South America, Science (1916)
[3 citations]

William K. Gregory, The New Anthropogeny: Twenty-Five Stages of 
Vertebrate Evolution, from Silurian Chordate to Man, Science (1933)
[3 citations]

Derek E. Wildman et al., Implications of Natural Selection in Shaping 99.4% Nonsynonymous 
DNA Identity between Humans and Chimpanzees: Enlarging Genus Homo, PNAS (2003)
[178 citations]

• PNAS, Science, and Nature from 1880–2005

• 350,000 Articles

• 163M observations

• Year-corrected correlation is 0.166



Summary: Correlated and dynamic topic models

• The Dirichlet assumption on topics and topic proportions makes strong
conditional independence assumptions about the data.

• The correlated topic model uses a logistic normal on the topic
proportions to find patterns in how topics tend to co-occur.

• The dynamic topic model uses a logistic normal in a linear dynamic
model to capture how topics change over time.

• What’s the catch? These models are harder to compute with. (Stay tuned.)



Supervised Topic Models



Supervised LDA

• LDA is an unsupervised model. How can we build a topic model that is
good at the task we care about?

• Many data are paired with response variables.

• User reviews paired with a number of stars
• Web pages paired with a number of “likes”
• Documents paired with links to other documents
• Images paired with a category

• Supervised LDA are topic models of documents and responses.
They are fit to find topics predictive of the response.



Supervised LDA

θd Zd,n Wd,n
N

D

K
βk
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Yd η, δ

Regression 
parameters

Document 
response

1 Draw topic proportions θ |α∼Dir(α).

2 For each word

• Draw topic assignment zn |θ ∼Mult(θ ).
• Draw word wn |zn,β1:K ∼Mult(βzn ).

3 Draw response variable y |z1:N ,η,σ2 ∼N
�

η>z̄,σ2
�

, where

z̄ = (1/N)
∑N

n=1 zn.



Supervised LDA

θd Zd,n Wd,n
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Yd η, δ

Regression 
parameters

Document 
response

• Fit sLDA parameters to documents and responses.
This gives: topics β1:K and coefficients η1:K .

• Given a new document, predict its response using the expected value:

E
�

Y |w1:N ,α,β1:K ,η,σ2
�

=η>E
�

Z̄ |w1:N

�

• This blends generative and discriminative modeling.
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• 10-topic sLDA model on movie reviews (Pang and Lee, 2005).

• Response: number of stars associated with each review

• Each component of coefficient vector η is associated with a topic.
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θd Zd,n Wd,n
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βk

α

Yd η, δ

Regression 
parameters

Document 
response

• SLDA enables model-based regression where the predictor is a document.

• It can easily be used wherever LDA is used in an unsupervised fashion
(e.g., images, genes, music).

• SLDA is a supervised dimension-reduction technique, whereas LDA
performs unsupervised dimension reduction.
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θd Zd,n Wd,n
N

D

K
βk

α

Yd η, δ

Regression 
parameters

Document 
response

• SLDA has been extended to generalized linear models, e.g., for image
classification and other non-continuous responses.

• We will discuss two extensions of sLDA

• Relational topic models: Models of networks and text
• Ideal point topic models: Models of legislative voting behavior
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We address the problem of 
finding a subset of features that 
allows a supervised induction 
algorithm to induce small high-
accuracy concepts...

Irrelevant features and the 
subset selection problem

In many domains, an appropriate 
inductive bias is the MIN-
FEATURES bias, which prefers 
consistent hypotheses definable 
over as few features as 
possible...

Learning with many irrelevant 
features

In this introduction, we define the 
term bias as it is used in machine 
learning systems. We motivate 
the importance of automated 
methods for evaluating...

Evaluation and selection of 
biases in machine learning

The inductive learning problem 
consists of learning a concept 
given examples and 
nonexamples of the concept. To 
perform this learning task, 
inductive learning algorithms bias 
their learning method...

Utilizing prior concepts for 
learning

The problem of learning decision 
rules for sequential tasks is 
addressed, focusing on the 
problem of learning tactical plans 
from a simple flight simulator 
where a plane must avoid a 
missile...

Improving tactical plans with 
genetic algorithms

Evolutionary learning methods 
have been found to be useful in 
several areas in the development 
of intelligent robots. In the 
approach described here, 
evolutionary...

An evolutionary approach to 
learning in robots

Navigation through obstacles 
such as mine fields is an 
important capability for 
autonomous underwater vehicles. 
One way to produce robust 
behavior...

Using a genetic algorithm to 
learn strategies for collision 

avoidance and local 
navigation

...

...

...

...

...

...

...

...

...

...

• Many data sets contain connected observations.

• For example:

• Citation networks of documents
• Hyperlinked networks of web-pages.
• Friend-connected social network profiles
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We address the problem of 
finding a subset of features that 
allows a supervised induction 
algorithm to induce small high-
accuracy concepts...

Irrelevant features and the 
subset selection problem

In many domains, an appropriate 
inductive bias is the MIN-
FEATURES bias, which prefers 
consistent hypotheses definable 
over as few features as 
possible...

Learning with many irrelevant 
features

In this introduction, we define the 
term bias as it is used in machine 
learning systems. We motivate 
the importance of automated 
methods for evaluating...

Evaluation and selection of 
biases in machine learning

The inductive learning problem 
consists of learning a concept 
given examples and 
nonexamples of the concept. To 
perform this learning task, 
inductive learning algorithms bias 
their learning method...

Utilizing prior concepts for 
learning

The problem of learning decision 
rules for sequential tasks is 
addressed, focusing on the 
problem of learning tactical plans 
from a simple flight simulator 
where a plane must avoid a 
missile...

Improving tactical plans with 
genetic algorithms

Evolutionary learning methods 
have been found to be useful in 
several areas in the development 
of intelligent robots. In the 
approach described here, 
evolutionary...

An evolutionary approach to 
learning in robots

Navigation through obstacles 
such as mine fields is an 
important capability for 
autonomous underwater vehicles. 
One way to produce robust 
behavior...

Using a genetic algorithm to 
learn strategies for collision 

avoidance and local 
navigation

...

...

...

...

...

...

...

...

...

...

• Research has focused on finding communities and patterns in the
link-structure of these networks. But this ignores content.

• We adapted sLDA to pairwise response variables.
This leads to a model of content and connection.

• Relational topic models find related hidden structure in both types of data.
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βk

α

Zi,n

Zj,n

Wi,n

Wj,n

θi

θj

Yi,jη

Pairwise 
response This structure repeats

for every i,j pair

• Adapt fitting algorithm for sLDA with binary GLM response

• RTMs allow predictions about new and unlinked data.

• These predictions are out of reach for traditional network models.
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Table 2
Top eight link predictions made by RTM (ψe) and LDA + Regression for two documents
(italicized) from Cora. The models were fit with 10 topics. Boldfaced titles indicate actual

documents cited by or citing each document. Over the whole corpus, RTM improves
precision over LDA + Regression by 80% when evaluated on the first 20 documents

retrieved.

Markov chain Monte Carlo convergence diagnostics: A comparative review

Minorization conditions and convergence rates for Markov chain Monte Carlo

R
T

M
(ψ

e
)

Rates of convergence of the Hastings and Metropolis algorithms
Possible biases induced by MCMC convergence diagnostics

Bounding convergence time of the Gibbs sampler in Bayesian image restoration
Self regenerative Markov chain Monte Carlo

Auxiliary variable methods for Markov chain Monte Carlo with applications
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation

Diagnosing convergence of Markov chain Monte Carlo algorithms

Exact Bound for the Convergence of Metropolis Chains L
D

A
+

R
e
g
r
e
ssio

n

Self regenerative Markov chain Monte Carlo
Minorization conditions and convergence rates for Markov chain Monte Carlo

Gibbs-markov models
Auxiliary variable methods for Markov chain Monte Carlo with applications

Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Models
Mediating instrumental variables

A qualitative framework for probabilistic inference
Adaptation for Self Regenerative MCMC

Competitive environments evolve better solutions for complex tasks

Coevolving High Level Representations

R
T

M
(ψ

e
)

A Survey of Evolutionary Strategies
Genetic Algorithms in Search, Optimization and Machine Learning

Strongly typed genetic programming in evolving cooperation strategies
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
Evolutionary Module Acquisition

An Empirical Investigation of Multi-Parent Recombination Operators. . .

A New Algorithm for DNA Sequence Assembly

L
D

A
+

R
e
g
r
e
ssio

n

Identification of protein coding regions in genomic DNA
Solving combinatorial problems using evolutionary algorithms

A promising genetic algorithm approach to job-shop scheduling. . .
A genetic algorithm for passive management

The Performance of a Genetic Algorithm on a Chaotic Objective Function
Adaptive global optimization with local search

Mutation rates as adaptations

Table 2 illustrates suggested citations using RTM (ψe) and LDA + Regres-
sion as predictive models. These suggestions were computed from a model fit
on one of the folds of the Cora data. The top results illustrate suggested links
for “Markov chain Monte Carlo convergence diagnostics: A comparative re-

Given a new document, which documents is it likely to link to?
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p(vij) = f(d(xi, aj))

• The ideal point model uncovers voting patterns in legislative data

• We observe roll call data vij .

• Bills attached to discrimination parameters aj .
Senators attached to ideal points xi .
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• Posterior inference reveals the political spectrum of senators

• Widely used in quantitative political science.
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• We can predict a missing vote.

• But we cannot predict all the missing votes from a bill.

• Cf. the limitations of collaborative filtering
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• Use supervised LDA to predict bill discrimination from bill text.

• But this is a latent response.
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In addition to senators and bills, IPTM places topics on the spectrum.



Summary: Supervised topic models

• Many documents are associated with response variables.

• Supervised LDA embeds LDA in a generalized linear model that is
conditioned on the latent topic assignments.

• Relational topic models use sLDA assumptions with pair-wise responses
to model networks of documents.

• Ideal point topic models demonstrates how the response variables can
themselves be latent variables. In this case, they are used downstream in a
model of legislative behavior.

• (SLDA, the RTM, and others are implemented in the R package “lda.”)



Modeling User Data and Text



Topic models for recommendation (Wang and Blei, 2011)

Introduction to Variational Methods for Graphical Models
Conditional Random Fields

Maximum likelihood from incomplete data via the EM algorithm

The Mathematics of Statistical Machine Translation

Users

Papers

In-matrix prediction

Out-of-matrix prediction

Topic Models for Recommendation

• In many settings, we have information about how people use documents.

• With new models, this can be used to

• Help people find documents that they are interested in
• Learn about what the documents mean to the people reading them
• Learn about the people reading (or voting on) the documents.

• (We also saw this in ideal point topic models.)



Topic models for recommendation (Wang and Blei, 2011)

Introduction to Variational Methods for Graphical Models
Conditional Random Fields

Maximum likelihood from incomplete data via the EM algorithm

The Mathematics of Statistical Machine Translation

Users

Papers

In-matrix prediction

Out-of-matrix prediction

Topic Models for Recommendation

• Online communities of scientists’ allow for new ways of connecting
researchers to the research literature.

• With collaborative topic models, we recommend scientific articles based
both on other scientists’ preferences and their content.

• We can form both “in-matrix” and “out-of-matrix” predictions. We can learn
about which articles are important, and which are interdisciplinary.



• Consider EM (Dempster et al., 1977). The text lets us estimate its topics:

StatisticsVision

• With user data, we adjust the topics to account for who liked it:

StatisticsVision

• We can then recommend to users:

Statistics

Vision

STATISTICIAN VISION RESEARCHER



Topic models for recommendation

θd

N

D

K
βk

α

Wdn

Zdn

Xu

User Preferences

Ratings

U

Vud

ζd

σ2
uσ2

d

Article content Topic correction



Topic models for recommendation

• Big data set from Mendeley.com

• Fit the model with stochastic optimization

• The data—

• 261K documents
• 80K users
• 10K vocabulary terms
• 25M observed words
• 5.1M entries (sparsity is 0.02%)
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Topic models for recommendation
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More than recommendation

Introduction to Variational Methods for Graphical Models
Conditional Random Fields

Maximum likelihood from incomplete data via the EM algorithm

The Mathematics of Statistical Machine Translation

P
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• The users also tell us about the data.

• We can look at posterior estimates to find

• Widely read articles in a field
• Articles in a field that are widely read in other fields
• Articles from other fields that are widely read in a field

• These kinds of explorations require interpretable dimensions.
They are not possible with classical matrix factorization.



Maximum Likelihood Estimation

Topic

In-topic, 
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In-topic, 
read in other topics
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estimates, likelihood, maximum, parameters, method

Maximum Likelihood Estimation of Population Parameters
Bootstrap Methods: Another Look at the Jackknife
R. A. Fisher and the Making of Maximum Likelihood

Maximum Likelihood from Incomplete Data with the EM Algorithm
Bootstrap Methods: Another Look at the Jackknife
Tutorial on Maximum Likelihood Estimation

Random Forests
Identification of Causal Effects Using Instrumental Variables
Matrix Computations



Network Science

networks, topology, connected, nodes, links, degree

Assortative Mixing in Networks
Characterizing the Dynamical Importance of Network Nodes and Links
Subgraph Centrality in Complex Networks

Assortative Mixing in Networks
The Structure and Function of Complex Networks
Statistical Mechanics of Complex Networks

Power Law Distributions in Empirical Data
Graph Structure in the Web
The Orgins of Bursts and Heavy Tails in Human Dynamics

Topic

In-topic, 
read in topic

In-topic, 
read in other topics

Out-of-topic,
read in topic



Issue-adjusted ideal points

• Our earlier ideal point model uses topics to predict votes from new bills.

• Alternatively, we can use the text to characterize how legislators diverge
from their usual ideal points.

• For example: A senator might be left wing, but vote conservatively when it
comes to economic matters.



Issue-adjusted ideal points
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Issue-adjusted ideal points
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Extending LDA

New applications—

• Syntactic topic models

• Topic models on images

• Topic models on social network data

• Topic models on music data

• Topic models for recommendation systems

Testing and relaxing assumptions—

• Spike and slab priors

• Models of word contagion

• N-gram topic models



Extending LDA
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• Each of these models is tailored to solve a problem.

• Some problems arise from new kinds of data.
• Others arise from an issue with existing models.

• Probabilistic modeling is a flexible and modular language for designing
solutions to specific problems.
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Models

Probabilistic 
Matrix 

Factorization

Graph Models
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Linear Models

Supervised
LDA

Relational 
Topic Models

Collaborative 
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Ideal Point 
Topic Models

Issue-Adjusted 
Ideal Points

Dynamic Topic 
Models

The Impact 
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Correlated 
Topic Models

State Space 
Models

Logistic Normal



Extending LDA

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check



Bayesian Nonparametric Models



Bayesian nonparametric models

• Why Bayesian nonparametric models?

• The Chinese restaurant process

• Chinese restaurant process mixture models

• The Chinese restaurant franchise

• Bayesian nonparametric topic models

• Random measures and stick-breaking constructions



Why Bayesian nonparametric models?

• Topic models assume that the number of topics is fixed.

• It is a type of regularization parameter. It can be determined by cross
validation and other model selection techniques.

• Bayesian nonparametric methods skirt model selection—

• The data determine the number of topics during inference.
• Future data can exhibit new topics.

• (This is a field unto itself, but has found wide application in topic modeling.)



The Chinese restaurant process (CRP)

1 2

3

4 5

6 7
8 9

10

• N customers arrive to an infinite-table restaurant. Each sits down according
to how many people are sitting at each table,

p(zi = k |z1:(i−1),α)∝
¨

nk for k ≤ K
α for k = K + 1.

• The resulting seating plan provides a partition

• This distribution is exchangeable: Seating plan probabilities are the same
regardless of the order of customers (Pitman, 2002).



CRP mixture models

1 2

3

4 5

6 7
8 9

10

β∗
1 β∗

2 β∗
3 β∗

4 β∗
5

• Associate each table with a topic (β ∗).
Associate each customer with a data point (grey node).

• The number of clusters is infinite a priori;
the data determines the number of clusters in the posterior.

• Further: the next data point might sit at new table.

• Exchangeability makes inference easy (Escobar and West, 1995; Neal, 2000).



The CRP is not a mixed-membership model

θd Zd,n Wd,n
N

D K
βk

α η

• Mixture models draw each data point from one component.

• The advantage of LDA is that it’s a mixed-membership model.

• This is addressed by the Chinese restaurant franchise.



The Chinese restaurant franchise (Teh et al., 2006)
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1 β∗

2 β∗
3 β∗

4 β∗
5

β∗
2β∗

1 β∗
1 β∗

1
β∗

2 β∗
3 β∗

4 β∗
1 β∗

4

At the corpus level, topics 
are drawn from a prior.

Each document-level table is 
associated with a customer at 
the corpus level restaurant.

Each word is associated with a customer at 
the document's restuarant.  It is drawn from 
the topic that its table is associated with.

Corpus level restaurant

Document level restaurants



The CRF selects the “right” number of topics (Teh et al., 2006)
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Figure 3: (Left) Comparison of latent Dirichlet allocation and the hierarchical Dirichlet process mixture.

Results are averaged over 10 runs; the error bars are one standard error. (Right) Histogram of the number of

topics for the hierarchical Dirichlet process mixture over 100 posterior samples.
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Extended to find hierarchies (Blei et al., 2010)
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An optimal algorithm for intersecting line segments in the plane
Recontamination does not help to search a graph
A new approach to the maximum-flow problem
The time complexity of maximum matching by simulated annealing

Quantum lower bounds by polynomials
On the power of bounded concurrency I: finite automata
Dense quantum coding and quantum finite automata
Classical physics and the Church--Turing Thesis

Nearly optimal algorithms and bounds for multilayer channel routing
How bad is selfish routing?
Authoritative sources in a hyperlinked environment
Balanced sequences and optimal routing

Single-class bounds of multi-class queuing networks
The maximum concurrent flow problem
Contention in shared memory algorithms
Linear probing with a nonuniform address distribution

Magic Functions: In Memoriam: Bernard M. Dwork 1923--1998
A mechanical proof of the Church-Rosser theorem
Timed regular expressions
On the power and limitations of strictness analysis

Module algebra
On XML integrity constraints in the presence of DTDs
Closure properties of constraints
Dynamic functional dependencies and database aging



BNP correlated topic model (Paisley et al., 2011)

{population  female  male}

{emperor  reign  imperial}

{site  town  wall}

{language  culture  spanish}

{son  father  brother}

{church  catholic  roman}

{language  letter  sound}

{william  lord  earl}

{god  greek  ancient}

{calendar  month  holiday}

{empire  ottoman  territory}

{noun  verb  language}

{colony  slave  independence}

{building  wall  design}

{island  ship  islands}

{political  society  argue}

{social  theory  cultural}

{kill  prisoner  arrest}

{president  party  elect}

{international  china  union}

{art  painting  artist}

{battle  army  fight}

{math  function  define}

{mathematician  numeral  decimal}

{capitalist  socialism  capitalism}

{host  centre  football}

{motion  law  relativity}

{law  convention  international}

{earth  planet  solar}

{law  legal  court}

{military  army  armed}

{universe  destroy  series}

{music  instrument  musical}

{university  prize  award}

{student  university  school}

{wave  light  field}

{county  home  population}

{report  fbi  investigation}

{sport  competition  event}

{weapon  gun  design}

{heat  pressure  mechanical}

{water  sub  metal}

{technology  information  organization}

{jersey  york  uniform}

{publish  story  publication}

{company  car  engine}

{game  player  character}

{film  scene  movie}

{film  award  director}

{album  song  music}

{game  sell  video}



Random measures

XnGα

G0

N

• The CRP metaphors are the best first way to understand BNP methods.

• BNP models were originally developed as random measure models.

• E.g., data drawn independently from a random distribution:

G ∼ DP(αG0)

Xn ∼ G

• The random measure perspective helps with certain applications (such as
the BNP correlated topic model) and for some approaches to inference.



The Dirichlet process (Ferguson, 1973)

XnGα

G0

N

• The Dirichlet process is a distribution of distributions, G∼DP(α,G0)

• concentration parameter α (a positive scalar)
• base distribution G0.

• It produces distributions defined on the same space as its base distribution.



The Dirichlet process (Ferguson, 1973)

XnGα

G0

N

• Consider a partition of the probability space (A1, . . . ,AK ).

• Ferguson: If for all partitions,

〈G(A1), . . . ,G(Ak )〉 ∼Dir(αG0(A1), . . . ,αG0(AK ))

then G is distributed with a Dirichlet process.

• Note: In this process, the random variables G(Ak ) are indexed by the Borel
sets of the probability space.



The Dirichlet process (Ferguson, 1973)

XnGα

G0

N

• G is discrete; it places its mass on a countably infinite set of atoms.

• The distribution of the locations is the base distribution G0.

• As α gets large, G looks more like G0.

• The conditional P(G |x1:N) is a Dirichlet process.



The Dirichlet process (Ferguson, 1973)

XnGα

G0

N

• Marginalizing out G reveals the clustering property.

• The joint distribution of X1:N will exhibit fewer than N unique values.

• These unique values are drawn from G0.

• The distribution of the partition structure is a CRP(α).



The Dirichlet process mixture (Antoniak, 1974)

XnGα

G0

Nθn

• The draw from G can be a latent parameter to an observed variable:

G ∼ DP(α,G0)

θn ∼ G

xn ∼ p(· |θn).

• This smooths the random discrete distribution to a DP mixture.

• Because of the clustering property, marginalizing out G reveals that this
model is the same as a CRP mixture.



Hierarchical Dirichlet processes (Teh et al., 2006)

α

G0 N
Gm Xmn

H

γ
M

θmn

• The hierarchical Dirichlet process (HDP) models grouped data.

G0 ∼ DP(γ,H)

Gm ∼ DP(α,G0)

θmn ∼ Gm

xmn ∼ p(· |θmn)

• Marginalizing out G0 and Gm reveals the Chinese restaurant franchise.



Hierarchical Dirichlet processes (Teh et al., 2006)

α

G0 N
Gm Xmn

H

γ
M

θmn

• In topic modeling—

• The atoms of G0 are all the topics.
• Each Gm is a document-specific distribution over those topics
• The variable θmn is a topic drawn from Gm.
• The observation xmn is a word drawn from the topic θmn.

• Note that in the original topic modeling story, we worked with pointers to
topics. Here the θmn variables are distributions over words.



Summary: Bayesian nonparametrics

• Bayesian nonparametric modeling is a growing field (Hjort et al., 2011).

• BNP methods can define priors over latent combinatorial structures.

• In the posterior, the documents determine the particular form of the
structure that is best for the corpus at hand.

• Recent innovations:
• Improved inference (Blei and Jordan, 2006, Wang et al. 2011)
• BNP models for language (Teh, 2006; Goldwater et al., 2011)

• Dependent models, such as time series models
(MacEachern 1999, Dunson 2010, Blei and Frazier 2011)

• Predictive models (Hannah et al. 2011)
• Factorization models (Griffiths and Ghahramani, 2011)



Posterior Inference



Posterior inference

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check

• We can express many kinds of assumptions.

• How can we analyze the collection under those assumptions?



Posterior inference

Topics Documents Topic proportions and
assignments

• Posterior inference is the main computational problem.

• Inference links observed data to statistical assumptions.

• Inference on large data is crucial for topic modeling applications.



Posterior inference

Topics Documents Topic proportions and
assignments

• Our goal is to compute the distribution of the hidden variables conditioned
on the documents

p(topics, proportions, assignments |documents)



Posterior inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

• The joint distribution of the latent variables and documents is

∏K
i=1 p(βi |η)

∏D
d=1 p(θd |α)

�

∏N
n=1 p(zd ,n |θd )p(wd ,n |β1:K ,zd ,n)

�

.

• The posterior of the latent variables given the documents is

p(β ,θ ,z |w).



Posterior inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

• This is equal to
p(β ,θ ,z,w)

∫

β

∫

θ

∑

z p(β ,θ ,z,w)
.

• We can’t compute the denominator, the marginal p(w).

• This is the crux of the inference problem.



Posterior inference for LDA

θd Zd,n Wd,n
N

D K
βk

α η

• There is a large literature on approximating the posterior, both within topic
modeling and Bayesian statistics in general.

• We will focus on mean-field variational methods.

• We will derive stochastic variational inference, a generic approximate
inference method for very large data sets.



Variational inference

• Variational inference turns posterior inference into optimization.

• The main idea—

• Place a distribution over the hidden variables with free parameters,
called variational parameters.

• Optimize the variational parameters to make the distribution close (in
KL divergence) to the true posterior

• Variational inference can be faster than sampling-based approaches.

• It is easier to handle nonconjugate models with variational inference.
(This is important in the CTM, DTM, and legislative models.)

• It can be scaled up to very large data sets with stochastic optimization.



Stochastic variational inference

• We want to condition on large data sets and approximate the posterior.

• In variational inference, we optimize over a family of distributions to find
the member closest in KL divergence to the posterior.

• Variational inference usually results in an algorithm like this:

• Infer local variables for each data point.
• Based on these local inferences, re-infer global variables.
• Repeat.



Stochastic variational inference

• This is inefficient. We should know something about the global structure
after seeing part of the data.

• And, it assumes a finite amount of data. We want algorithms that can
handle data sources, information arriving in a constant stream.

• With stochastic variational inference, we can condition on large data and
approximate the posterior of complex models.



Stochastic variational inference

• The structure of the algorithm is:

• Subsample the data—one data point or a small batch.
• Infer local variables for the subsample.
• Update the current estimate of the posterior of the global variables.
• Repeat.

• This is efficient—we need only process one data point at a time.

• We will show: Just as easy as “classical” variational inference



Stochastic variational inference for LDA

Sample one document Update the modelAnalyze it

1 Sample a document wd from the collection

2 Infer how wd exhibits the current topics

3 Create intermediate topics, formed as though the wd is the only document.

4 Adjust the current topics according to the intermediate topics.

5 Repeat.



Stochastic variational inference for LDA
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Stochastic variational inference for LDA

Sample one document Update the modelAnalyze it

We have developed stochastic variational inference algorithms for

• Latent Dirichlet allocation

• The hierarchical Dirichlet process

• The discrete infinite logistic normal

• Mixed-membership stochastic blockmodels

• Bayesian nonparametric factor analysis

• Recommendation models and legislative models



Organization

• Describe a generic class of models

• Derive mean-field variational inference in this class

• Derive natural gradients for the variational objective

• Review stochastic optimization

• Derive stochastic variational inference



Organization

n
xizi

β
Global variables

Local variables

• We consider a generic model.

• Hidden variables are local or global.

• We use variational inference.

• Optimize a simple proxy distribution to be close to the posterior
• Closeness is measured with Kullback-Leibler divergence

• Solve the optimization problem with stochastic optimization.

• Stochastic gradients are formed by subsampling from the data.



Generic model

n
xizi

β
Global variables

Local variables

p(β ,z1:n,x1:n) = p(β)
n
∏

i=1

p(zi |β)p(xi |zi ,β)

• The observations are x = x1:n.

• The local variables are z = z1:n.

• Th global variables are β .

• The i th data point xi only depends on zi and β .

• Our goal is to compute p(β ,z |x).



Generic model

n
xizi

β
Global variables

Local variables

p(β ,z1:n,x1:n) = p(β)
n
∏

i=1

p(zi |β)p(xi |zi ,β)

• A complete conditional is the conditional of a latent variable given the
observations and other latent variable.

• Assume each complete conditional is in the exponential family,

p(zi |β ,xi) = h(zi)exp{η`(β ,xi)
>zi −a(η`(β ,xi))}

p(β |z,x) = h(β)exp{ηg(z,x)>β −a(ηg(z,x))}.



Generic model

n
xizi

β
Global variables

Local variables

p(β ,z1:n,x1:n) = p(β)
n
∏

i=1

p(zi |β)p(xi |zi ,β)

• Bayesian mixture models

• Time series models
(variants of HMMs, Kalman filters)

• Factorial models

• Matrix factorization
(e.g., factor analysis, PCA, CCA)

• Dirichlet process mixtures, HDPs

• Multilevel regression
(linear, probit, Poisson)

• Stochastic blockmodels

• Mixed-membership models
(LDA and some variants)



Mean-field variational inference

n
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β β
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zi

λ

φi

ELBO

• Introduce a variational distribution over the latent variables q(β ,z).

• We optimize the evidence lower bound (ELBO) with respect to q,

logp(x)≥Eq[logp(β ,Z ,x)]−Eq[logq(β ,Z)].

• Up to a constant, this is the negative KL between q and the posterior.



Mean-field variational inference
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φi

ELBO

We can derive the ELBO with Jensen’s inequality:

logp(x) = log

∫

p(β ,Z ,X)dZdβ

= log

∫

p(β ,Z ,X)
q(β ,Z)

q(β ,Z)
dZdβ

≥
∫

q(β ,Z) log
p(β ,Z ,X)

q(Z)
dZdβ

= Eq[logp(β ,Z ,x)]−Eq[logq(β ,Z)].



Mean-field variational inference

n
xizi

β β

n
zi

λ

φi

ELBO

• We specify q(β ,z) to be a fully factored variational distribution,

q(β ,z) = q(β |λ)
∏n

i=1 q(zi |φi).

• Each instance of each variable has its own distribution.

• Each component is in the same family as the model conditional,

p(β |z,x) = h(β)exp{ηg(z,x)>β −a(ηg(z,x))}
q(β |λ) = h(β)exp{λ>β −a(λ)}

(And, same for the local variational parameters.)



Mean-field variational inference
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ELBO

• We optimize the ELBO with respect to these parameters,

L (λ,φ1:n) = Eq[logp(β ,Z ,x)]−Eq[logq(β ,Z)].

• Same as finding the q(β ,z) that is closest in KL divergence to p(β ,z |x)

• The ELBO links the observations/model to the variational distribution.



Mean-field variational inference
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ELBO

• Coordinate ascent: Iteratively update each parameter, holding others fixed.

• With respect to the global parameter, the gradient is

∇λL = a′′(λ)(Eφ[ηg(Z ,x)]−λ).

This leads to a simple coordinate update

λ∗= Eφ
�

ηg(Z ,x)
�

.

• The local parameter is analogous.



Mean-field variational inference

Initialize λ randomly.
Repeat until the ELBO converges

1 For each data point, update the local variational parameters:

φ
(t)
i = Eλ(t−1) [η`(β ,xi)] for i ∈ {1, . . . ,n}.

2 Update the global variational parameters:

λ(t) = Eφ(t) [ηg(Z1:n,x1:n)].



Mean-field variational inference for LDA

θd Zd,n Wd,n
N

D K

βk

γd φd,n λk

• Document variables: Topic proportions θ and topic assignments z1:N .

• Corpus variables: Topics β1:K

• The variational distribution is

q(β ,θ ,z) =
K
∏

k=1

q(βk |λk )
D
∏

d=1

q(θd |γd )
N
∏

n=1

q(zd ,n |φd ,n)



Mean-field variational inference for LDA

θd Zd,n Wd,n
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γd φd,n λk

• In the “local step” we iteratively update the parameters for each document,
holding the topic parameters fixed.

γ(t+1) = α+
∑N

n=1φ
(t)
n

φ
(t+1)
n ∝ exp{Eq[logθ ] +Eq[logβ.,wn ]}.



Mean-field variational inference for LDA
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Mean-field variational inference for LDA

θd Zd,n Wd,n
N

D K

βk

γd φd,n λk

• In the “global step” we aggregate the parameters computed from the local
step and update the parameters for the topics,

λk =η+
∑

d

∑

n

wd ,nφd ,n.



Mean-field variational inference for LDA

“Genetics” “Evolution” “Disease” “Computers”

human evolution disease computer
genome evolutionary host models

dna species bacteria information
genetic organisms diseases data
genes life resistance computers

sequence origin bacterial system
gene biology new network

molecular groups strains systems
sequencing phylogenetic control model

map living infectious parallel
information diversity malaria methods

genetics group parasite networks
mapping new parasites software
project two united new

sequences common tuberculosis simulations



Mean-field variational inference for LDA

1: Initialize topics randomly.
2: repeat
3: for each document do
4: repeat
5: Update the topic assignment variational parameters.
6: Update the topic proportions variational parameters.
7: until document objective converges
8: end for
9: Update the topics from aggregated per-document parameters.

10: until corpus objective converges.



Mean-field variational inference

Initialize λ randomly.
Repeat until the ELBO converges

1 Update the local variational parameters for each data point,

φ
(t)
i = Eλ(t−1) [η`(β ,xi)] for i ∈ {1, . . . ,n}.

2 Update the global variational parameters,

λ(t) = Eφ(t) [ηg(Z1:n,x1:n)].

• Note the relationship to existing algorithms like EM and Gibbs sampling.

• But we must analyze the whole data set before completing one iteration.



Mean-field variational inference

Initialize λ randomly.
Repeat until the ELBO converges

1 Update the local variational parameters for each data point,

φ
(t)
i = Eλ(t−1) [η`(β ,xi)] for i ∈ {1, . . . ,n}.

2 Update the global variational parameters,

λ(t) = Eφ(t) [ηg(Z1:n,x1:n)].

To make this more efficient, we need two ideas:

• Natural gradients

• Stochastic optimization



The natural gradient
RIEMANNIAN CONJUGATE GRADIENT FOR VB

!
"
#$%&'()*
+'(,%))'%)-#$%&'()*

Figure 1: Gradient and Riemannian gradient directions are shown for the mean of distribution q.
VB learning with a diagonal covariance is applied to the posterior p(x,y) ! exp[−9(xy−
1)2− x2− y2]. The Riemannian gradient strengthens the updates in the directions where
the uncertainty is large.

the conjugate gradient algorithm with their Riemannian counterparts: Riemannian inner products
and norms, parallel transport of gradient vectors between different tangent spaces as well as line
searches and steps along geodesics in the Riemannian space. In practical algorithms some of these
can be approximated by their flat-space counterparts. We shall apply the approximate Riemannian
conjugate gradient (RCG) method which implements Riemannian (natural) gradients, inner products
and norms but uses flat-space approximations of the others as our optimisation algorithm of choice
throughout the paper. As shown in Appendix A, these approximations do not affect the asymptotic
convergence properties of the algorithm. The difference between gradient and conjugate gradient
methods is illustrated in Figure 2.

In this paper we propose using the Riemannian structure of the distributions q("""|###) to derive
more efficient algorithms for approximate inference and especially VB using approximations with
a fixed functional form. This differs from the traditional natural gradient learning by Amari (1998)
which uses the Riemannian structure of the predictive distribution p(XXX |"""). The proposed method
can be used to jointly optimise all the parameters ### of the approximation q("""|###), or in conjunction
with VB EM for some parameters.

3239

(from Honkela et al., 2010)

• In natural gradient ascent, we premultiply the gradient by the inverse of a
Riemannian metric. Amari (1998) showed this is the steepest direction.

• For distributions, the Riemannian metric is the Fisher information.



The natural gradient
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• In the exponential family, the Fisher information is the second derivative of
the log normalizer,

G = a′′(λ).

• So, the natural gradient of the ELBO is

∇̂λL = Eφ[ηg(Z ,x)]−λ.

• We can compute the natural gradient by computing the coordinate updates
in parallel and subtracting the current variational parameters.



Stochastic optimization

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

• Why waste time with the real gradient, when a cheaper noisy estimate of
the gradient will do (Robbins and Monro, 1951)?

• Idea: Follow a noisy estimate of the gradient with a step-size.

• By decreasing the step-size according to a certain schedule, we guarantee
convergence to a local optimum.



Stochastic optimization
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• We will use stochastic optimization for global variables.

• Let ∇λLt be a realization of a random variable whose expectation is ∇λL .

• Iteratively set
λ(t) =λ(t−1) +εt∇λLt

• This leads to a local optimum when
∑∞

t=1εt = ∞
∑∞

t=1ε
2
t < ∞

• Next step: Form a noisy gradient.



A noisy natural gradient

n
xizi

β β

n
zi

λ

φi

ELBO

• We need to look more closely at the conditional distribution of the global
hidden variable given the local hidden variables and observations.

• The form of the local joint distribution is

p(zi ,xi |β) = h(zi ,xi)exp{β>f (zi ,xi)−a(β)}.

This means the conditional parameter of β is

ηg(z1:n,x1:n) = 〈α1 +
∑n

i=1 f (zi ,xi),α2 + n〉.

• See the discussion of conjugacy in Bernardo and Smith (1994).



A noisy natural gradient

• With local and global variables, we decompose the ELBO

L = E[logp(β)]−E[logq(β)] +
∑n

i=1 E[logp(zi ,xi |β)]−E[logq(zi)]

• Sample a single data point t uniformly from the data and define

Lt = E[logp(β)]−E[logq(β)] + n(E[logp(zt ,xt |β)]−E[logq(zt)]).

1. The ELBO is the expectation ofLt with respect to the sample.
2. The gradient of the t-ELBO is a noisy gradient of the ELBO.
3. The t-ELBO is like an ELBO where we saw xt repeatedly.



A noisy natural gradient

• Define the conditional as though our whole data set is n replications of xt ,

ηt(zt ,xt) = 〈α1 + n · f (zt ,xt),α2 + n〉

• The noisy natural gradient of the ELBO is

∇λL̂t = Eφt [ηt(Zt ,xt)]−λ.

• This only requires the local variational parameters of one data point.

• In contrast, the full natural gradient requires all local parameters.



Stochastic variational inference

Initialize global parameters λ randomly.
Set the step-size schedule εt appropriately.
Repeat forever

1 Sample a data point uniformly,

xt ∼Uniform(x1, . . . ,xn).

2 Compute its local variational parameter,

φ= Eλ(t−1) [η`(β ,xt)].

3 Pretend its the only data point in the data set,

λ̂= Eφ[ηt(Zt ,xt)].

4 Update the current global variational parameter,

λ(t) = (1−εt)λ
(t−1) +εt λ̂.



Stochastic variational inference in LDA

θd Zd,n Wd,n
N

D K

βk

γd φd,n λk

1 Sample a document

2 Estimate the local variational parameters using the current topics

3 Form “fake topics” from those local parameters

4 Update the topics to be a weighted average of “fake” and current topics



Stochastic variational inference in LDA

1: Define ρt ¬ (τ0 + t)−κ

2: Initialize λ randomly.
3: for t = 0 to∞ do
4: Choose a random document wt

5: Initialize γtk = 1. (The constant 1 is arbitrary.)
6: repeat
7: Set φt ,n ∝ exp{Eq[logθt ] +Eq[logβ·,wn ]}
8: Set γt =α+

∑

nφt ,n

9: until 1
K

∑

k |change in γt ,k |<ε
10: Compute λ̃k =η+ D

∑

n wt ,nφt ,n

11: Set λk = (1−ρt)λk +ρt λ̃k .
12: end for



Stochastic variational inference in LDA
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Stochastic variational inference
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We defined a generic algorithm for scalable variational inference.

• Bayesian mixture models

• Time series models
(variants of HMMs, Kalman filters)

• Factorial models

• Matrix factorization
(e.g., factor analysis, PCA, CCA)

• Dirichlet process mixtures, HDPs

• Multilevel regression
(linear, probit, Poisson)

• Stochastic blockmodels

• Mixed-membership models
(LDA and some variants)



Stochastic variational inference
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• See Hoffman et al. (2010) for LDA (and code).

• See Wang et al. (2010) for Bayesian nonparametric models (and code).

• See Sato (2001) for the original stochastic variational inference.

• See Honkela et al. (2010) for natural gradients and variational inference.



Stochastic variational inference

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check

• Many applications posit a model, condition on data, and use the posterior.

• We can now apply this kind of data analysis to very large data sets.



Nonconjugate variational inference

• The class of conditionally conjugate models is very flexible.

• However, some models—like the CTM and DTM—do not fit in.

• In the past, researchers developed tailored optimization procedures for
fitting the variational objective.

• We recently developed a more general approach that subsumes many of
these strategies.



Nonconjugate variational inference

• Bishop (2006) showed that the optimal mean-field variational distribution is

q∗(z) ∝ exp
¦

Eq(β) [logp(z |β ,x)]
©

q∗(β) ∝ exp
¦

Eq(z) [logp(β |z,x)]
©

• In conjugate models, we can compute these expectations.
This determines the form of the optimal variational distribution.

• In nonconjugate models we can’t compute the expectations.

• But, under certain conditions, we can use Taylor approximations.
This leads to Gaussian variational distributions.



Using and Checking Topic Models



Using and checking topic models

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check

• We have collected data, selected a model, and inferred the posterior.

• How do we use the topic model?



Using and checking topic models

Make assumptions

Infer the posterior

Explore

Collect data

Predict

Check

• Using a model means doing something with the posterior inference.

• E.g., visualization, prediction, assessing document similarity,
using the representation in a downstream task (like IR)



Using and checking topic models
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• Questions we ask when evaluating a model:

• Does my model work? Is it better than another model?
• Which topic model should I choose? Should I make a new one?

• These questions are tied up in the application at hand.

• Sometimes evaluation is straightforward, especially in prediction tasks.



Using and checking topic models

• But a promise of topic models is that they give good exploratory tools.
Evaluation is complicated, e.g., is this a good navigator of my collection?

• And this leads to more questions:

• How do I interpret a topic model?
• What quantities help me understand what it says about the data?



Using and checking topic models

• How to interpret and evaluate topic models is an active area of research.

• Visualizing topic models
• Naming topics
• Matching topic models to human judgements
• Matching topic models to external ontologies
• Computing held out likelihoods in different ways

• I will discuss two components:

• Predictive scores for evaluating topic models
• Posterior predictive checks for topic modeling



The predictive score

• Assess how well a model can predict future data

• In text, a natural setting is one where we observe part of a new document
and want to predict the remainder.

• The predictive distribution is a distribution conditioned on the corpus and
the partial document,

p(w |D,wobs) =

∫

β

∫

θ

�

∑K
k=1θkβk ,w

�

p(θ |wobs,β)p(β |D)

≈
∫

β

∫

θ

�

∑K
k=1θkβk ,w

�

q(θ )q(β)

= Eq[θ |wobs]
>Eq[β·,w |D].



The predictive score

• The predictive score evaluates the remainder of the document
independently under this distribution.

s =
∑

w∈wheld out

logp(w |D,wobs) (1)

• In the predictive distribution, q is any approximate poterior. This puts
various models and inference procedures on the same scale.

• (In contrast, perplexity of entire held out documents requires different
approximations for each inference method.)



The predictive score

Nature New York Times Wikipedia
LDA 100 -7.26 -7.66 -7.41
LDA 200 -7.50 -7.78 -7.64
LDA 300 -7.86 -7.98 -7.74

HDP -6.97 -7.38 -7.07

The predictive score on large corpora using stochastic variational inference



Posterior predictive checks

• The predictive score and other model selection criteria are good for
choosing among several models.

• But they don’t help with the model building process; they don’t tell us how a
model is misfit. (E.g. should I go from LDA to a DTM or LDA to a CTM?)

• Further, prediction is not always important in exploratory or descriptive
tasks. We may want models that capture other aspects of the data.

• Posterior predictive checks are a technique from Bayesian statistics that
help with these issues.



Posterior predictive checks

– This feels even more relevant today. I think of modeling as piecing together
various modules, rather than choosing among a population of models.

– Machine learning has given us many new building blocks, but has little to say
about how to diagnose models.

– This is especially important in exploratory analysis, e.g., to form hypotheses or
organize data. Many exploratory tasks do not have clear measures of quality.

• Automating model building is a tall order. Even BNP methods do not automate it.

– They help define flexible models, but it is up to the modeler to define likelihood
functions, dependencies between the observed data and latent variables, etc.

2 The predictive check

• Box (1980) describes a predictive check, which tells the story. (Though this story will be
refined in a posterior predictive check.)

• All the intuitions about how to assess a model are in this picture:

• The set up from Box (1980) is the following.

– The data are y; the hidden variables are θ; the model is M.

– Each point of the hidden variable θ yields a distribution of data.

– The joint distribution combines the prior and the likelihood

p(y,θ |M)= p(y |θ)p(θ |M) (1)

2

This is a predictive check from Box (1980).



Posterior predictive checks

• Three stages to model building: estimation, criticism, and revision.

• In criticism, the model “confronts” our data.

• Suppose we observe a data set y. The predictive distribution is the
distribution of data if the model is true:

p(y |M) =

∫

θ

p(y |θ )p(θ )

• Locating y in the predictive distribution indicates if we can “trust” the model.

• Or, locating a discrepancy function g(y) in its predictive distribution
indicates if what is important to us is captured in the model.



Posterior predictive checks

• Rubin (1984) located the data y in the posterior p(y |y,M).

• Gelman, Meng, Stern (1996) expanded this idea to “realized discrepancies”
that include hidden variables g(y,z).

• We might make modeling decisions based on a variety of simplifying
considerations (e.g., algorithmic). But we can design the realized
discrepancy function to capture what we really care about.

• Further, realized discrepancies let us consider which parts of the model fit
well and which parts don’t. This is apt in exploratory tasks.



Posterior predictive checks in topic models

• Consider a decomposition of a corpus into topics, i.e., {wd ,n,zd ,n}. Note
that zd ,n is a latent variable.

• For all the observations assigned to a topic, consider the variable {wd ,n,d}.
This is the observed word and the document it appeared in.

• One measure of how well a topic model fits the LDA assumptions is to look
at the per-topic mutual information between w and d .

• If the words from the topic are independently generated then we expect
lower mutual information.

• What is “low”? To answer that, we can shuffle the words and recompute.
This gives values of the MI when the words are independent.



Posterior predictive checks in topic models
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where qd,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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• This realized discrepancy measures model fitness
• Can use it to measure model fitness per topic.
• Helps us explore parts of the model that fit well.



Discussion



Probabilistic topic models

• What are topic models?

• What kinds of things can they do?

• How do I compute with a topic model?

• How do I evaluate and check a topic model?

• What are some unanswered questions in this field?

• How can I learn more?



Introduction to topic modeling

gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

• LDA assumes that there are K topics shared by the collection.

• Each document exhibits the topics with different proportions.

• Each word is drawn from one topic.

• We discover the structure that best explain a corpus.



Extensions of LDA
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Topic models can be adapted to many settings

• relax assumptions

• combine models

• model more complex data



Posterior inference
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• Posterior inference is the central computational problem.

• Stochastic variational inference is a scalable algorithm.

• We can handle nonconjugacy with Laplace inference.

• (Note: There are many types of inference we didn’t discuss.)
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where qd,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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Probabilistic models
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Implementations of LDA

There are many available implementations of topic modeling.
Here is an incomplete list—

LDA-C∗ A C implementation of LDA
HDP∗ A C implementation of the HDP (“infinite LDA”)
Online LDA∗ A python package for LDA on massive data
LDA in R∗ Package in R for many topic models
LingPipe Java toolkit for NLP and computational linguistics
Mallet Java toolkit for statistical NLP
TMVE∗ A python package to build browsers from topic models

∗ available at www.cs.princeton.edu/∼blei/



Research opportunities in topic modeling

• New applications of topic modeling
What methods should we develop to solve problems in the computational
social sciences? The digital humanties? Digital medical records?

• Interfaces and downstream applications of topic modeling
What can I do with an annotated corpus? How can I incorporate latent
variables into a user interface? How should I visualize a topic model?

• Model interpretation and model checking
Which model should I choose for which task? What does the model tell me
about my corpus?



Research opportunities in topic modeling

• Incorporating corpus, discourse, or linguistic structure
How can our knowledge of language help inform better topic models?

• Prediction from text
What is the best way to link topics to prediction?

• Theoretical understanding of approximate inference
What do we know about variational inference? Can we analyze it from
either the statistical or learning perspective? What are the relative
advantages of the many inference methods?

• And many specific problems
E.g., sensitivity to the vocabulary, modeling word contagion, modeling
complex trends in dynamic models, robust topic modeling, combining graph
models with relational models, ...



“We should seek out unfamiliar summaries of observational material, and
establish their useful properties... And still more novelty can come from finding,
and evading, still deeper lying constraints.”

(J. Tukey, The Future of Data Analysis, 1962)



“Despite all the computations, you could just dance to the rock ’n’ roll station.”

(The Velvet Underground, Rock & Roll, 1969)


