

2 can cross atatime \rightarrow true is for slonest only with "flashlight"

Fibonacci Number

$$
\begin{array}{cc}
F_{0}=0 & F_{n}=F_{n-1}+F_{n-2} \\
F_{1}=1 & \forall n \geqslant 2
\end{array}
$$

$$
\begin{array}{ccccccccccl}
F_{0} & F_{1} & F_{2} & F_{3} & F_{4} & F_{5} & F_{6} & F_{7} & F_{8} & F_{4} & F_{10} \\
0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55
\end{array}
$$

Task: Gempute $F_{n}=$ function of $n=$ ingut
(1) Math-foltowing recursine
(A) correct? yes

Fib (n)
(B) how fast? exponential
if $n=1$ return 1 runtine
(efse) return Fib(n-1) $+F \cdot b(n-2)$ $\theta\left(2^{n}\right) ? ?$
(2) Hr ray computation Fib(n)

$$
E=\operatorname{array} E[0]=0, F[1]=1
$$

For $i=2: n$

$$
F[i]=F[i-2]+F[i-2]
$$

return $F[n]$
C. Storage

A correct
$\frac{\text { B hum fast }}{\text { LINEAR }}$
$\theta(n)$
Q: can we store only last 3 revues?
(3) Matrix-Multiplication-based Fivs(n)
$M=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right] \quad$ claim $\quad M^{n}=\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]$
inductor proof base case $M^{1}=M=\left[\begin{array}{ll}F_{2} & F_{1} \\ F_{1} & F_{0}\end{array}\right]$?
inductive step $n \rightarrow n+1$

$$
\begin{aligned}
& \text { Inductive step } \\
& M^{n}=\left[\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right] \Rightarrow\left(M^{n+1}=\left[\begin{array}{ll}
F_{u+2} & F_{n+1} \\
F_{n+1} & F_{n}
\end{array}\right]\right. \\
& \text { ind ind induson }
\end{aligned}
$$ ind conclusion

pros:

$$
\begin{aligned}
& : M_{1}^{n H}=M^{n} \times M_{2}=\left[\frac{F_{n+1}}{F_{n}}\left[\begin{array}{ll}
F_{n} & F_{n-1}
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right. \\
& =\frac{1}{2}\left[\begin{array}{cc}
F_{n+1}+F_{n} & F_{n+1} \\
F_{n}+F_{n-1} & F_{n}
\end{array}\right]=\left[\begin{array}{cc}
F_{n+2} & F_{n+1} \\
F_{n+1} & F_{n}
\end{array}\right]
\end{aligned}
$$

(2) Matrix Tiby (n) R.un Tue?

$$
M=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

compute $M^{n}=A$ exponeutial of ormatix
return $M[1,2]$
$\theta(\log n)$
Fost exponentiation (example)

$$
\begin{array}{ll}
M & M^{32}=M^{16} \cdot M^{16} \\
M^{2}=M \cdot M & M^{64}=M^{32} \cdot M^{32} \\
M^{4}=M^{2} \cdot M^{2} & \underline{\text { Want }} M^{100}=M^{64} \cdot M^{32} \cdot M^{4} \\
M^{8}=M^{4} \cdot M^{4} & M^{171}=M^{128} \cdot M^{32} \cdot M^{8} . \\
M^{16}=M^{8} \cdot M^{8} & M^{2} \cdot M^{1}
\end{array}
$$

(4) Geveratueg Fruction

$$
\begin{aligned}
& F(n)=\frac{\Phi^{n}-\varphi^{n}}{\sqrt{5}} \\
& \$ \text { real number } \in \mathbb{R}
\end{aligned}
$$

$\$$ real nouber $\in \mathbb{R}$
math-aprocessir esturk
ㄴ constat twe.

$$
\simeq \theta(1)
$$

$$
\begin{aligned}
& \phi=\frac{1+\sqrt{5}}{2} \\
& \varphi=\frac{1-\sqrt{5}}{2} \\
& \text { idea for } \Phi, \varphi \\
& \text { quest } \\
& F(n) \simeq a^{n} \text { ? true } \\
& \text { rec } F b \\
& F_{n+1}=F_{u}+F_{n-1} \\
& a^{n+1}=a^{n}+a^{n-1} \mid \div a^{n+1} \\
& a^{2}=a+1 \\
& \text { quad eq } \Rightarrow \phi, \varphi
\end{aligned}
$$

bis 0 notation

$$
\begin{array}{ll}
f=\theta(g) \\
f(n)=\theta(g(n))
\end{array} \quad \quad, \quad a_{1} c_{2}>0 \text { constants }
$$

$$
\begin{aligned}
& f(n) \\
& 2 r^{2}+3 n+2 \quad \theta\left(n^{2}\right) \\
& n^{2} \operatorname{logn}+n^{3} \quad \theta\left(n^{3}\right) \\
& 2^{n}+5 n^{2}-3 \quad \theta\left(2^{n}\right) \\
& 3^{n}+2^{n} \quad \theta\left(3^{n}\right) \\
& \log _{a} x=b \Leftrightarrow a^{b}=x \\
& f=\log _{2} x \\
& y=\log _{3} x \\
& \log _{3}(x)={ }^{?} \log _{2}(x) \cdot \log _{3} 2 ? \\
& f=\theta(g) \\
& c_{2} \cdot \log _{3}(n) \log _{2}(n) \leq c_{1} \cdot \log _{3}(n) \\
& \left(\frac{3}{2}\right)^{n} \leq c_{1} \\
& \lim (6.5)^{n}=18 \\
& 3^{\log _{3} x} \log _{2} x \cdot \log _{3} 2 \\
& \begin{array}{l}
3=3 \log _{32} \log _{22} x \\
x=\left(3^{2}\right.
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& C_{2}=1 \\
& \log _{3}(n) \leq \log _{2}(n) \leq c_{1} \cdot \log _{3}(n) ? ?^{2} \tag{2}\\
& \log _{2}(n) \leq c_{1} \cdot \log _{2}(n) \cdot \log _{3} 2 \\
& 1 \leqslant c_{1} \cdot \log _{3} 2
\end{align*}
$$

$B S(v, A$, begin, end $) \frac{1}{\text { Sorted }} 2{ }^{3} 456889$ (1)
Find value $V=$ giver in $A[$ begin: end] initially

- $m=\frac{\text { begin }+ \text { end }}{2}$
(indices)
begin =1 end $=10$
of $V=A[m] \Rightarrow$ dove, return $m, A[m]$
if $v<A[m] / /$ search $A[$ begin: $m]$
else
if $v>A(m)$ search $A(m$: end il) $\bar{B} S[v, A, m$, end $]$.
Fix termination
ROT. $T(n)$ - time to search $|A|=n$
$\begin{array}{ll}\text { recurrence } & T(n) \\ \text { due torcurite } \\ \text { call }\end{array} \quad=\theta(1)+T\left(\begin{array}{c}n / 2) \\ (/ 2)^{2} \text { size }\end{array}\right.$

$$
\begin{aligned}
& k=1 T(n)=1+T(n / 2) \quad \forall n \\
& k=1=1+\left[\begin{array}{c}
k \\
1+T(u / 4)
\end{array} \underset{v}{n}=2+T(4 / 4)\right. \\
& k=3=2+[1+T(u / 8)]=3+T(n / 8) \\
& k=A 1=3+[1+T(n / 16)]=4+T(n / 16) \\
& \text { pattern }
\end{aligned}
$$

optional (if messy) induction pros step \longrightarrow step $k+1$

$$
K+T\left(n / 2^{k}\right) \Longrightarrow k+1+T\left(n / 2^{k+1}\right)
$$

$$
\begin{aligned}
T(n) & =k+T\left(\left(4 / 2^{k}\right)\right) \\
\text { last } k & : \frac{n}{2^{k}} \simeq 1 \Rightarrow T\left(n / 2^{k}\right)=T(t)=\text { bace } \\
& n \simeq 2^{k} \\
& k \simeq \log _{2}(n) \\
T(n) & =\log _{2}(n)+\frac{T(1)}{\operatorname{con} s t}=\theta(\log n)
\end{aligned}
$$

Merge Sort $A(b: c)$
$m=\frac{\text { Bort }}{}$ Atray A split $\ln ^{2} A(b \cdot m)$

L	R
sorted	corted

$$
\begin{array}{r}
\text { split } \ln ^{2} A(b: m) \\
A[\text { mH: }:]
\end{array}
$$

Mergefort ($A[b: m]) \quad T(a / 2)$
Mergefort (A $[m+1, e]) T(n / 2)$
Merge/Combine corted-A[s:m) (r)ed $A(m+1: e]$

$$
\begin{gather*}
i=1(L) \quad j=1(k) \quad t=1 \\
c[i]<R[j] \\
c[t]=L[i], \\
i=i+1 \tag{n}
\end{gather*}
$$

Celse
$C(t): R[j]$

$$
\begin{aligned}
& \quad L^{j=j+1} \\
& t=t+1
\end{aligned}
$$

wutil both ornays thusked

$$
\begin{aligned}
& k=1 \\
& k=2 \quad=2[2 T(n / 4)+n / 2]+n=4 \pi(n / 4)+2 n \\
& k=3=4[2 T(n / 8)+n / 4]+2 n=8 T(n / 8)+3 n \\
& k=4=8[2 T(n / 16)+n / 8]+3 n=16 T(n / 16)+4 n \\
& k \text { pattern } \quad=2 \frac{k}{T}\left(\frac{n}{2 k}\right)+k n
\end{aligned}
$$

last $k: \frac{n}{2^{k}} \cong 1$ bat $\Leftrightarrow k \simeq \log _{2} n$

$$
\begin{aligned}
T(n)= & 2^{\log _{2} n} T(1)+\log _{2}(n) \cdot n \\
= & n \text { cost }+n \log _{2} n \\
& \theta\left(n \log _{3} n\right) .
\end{aligned}
$$

HW| $3.1-1 \max (f, g)=\theta(f+g)$

$$
\left.\left.\begin{array}{l}
\text { Def } \theta \quad c_{2}(f+g) \leq \max (f, g) \leq c_{1}(f+g) \\
c_{1} c_{2}>0 \\
\text { quess } c_{1}=2 \\
c_{2}=y_{3}
\end{array}\right\} \Leftrightarrow 7 \frac{1}{3}(f+g) \leq \max (f, g) \leqslant 2(f+g)\right)
$$

$\max ^{(f(u)} g(u)=\left\{\begin{array}{l}f(u) \text { if } f(n) \geqslant g(v) \\ g(n)\end{array}\right.$

$$
\begin{aligned}
& \frac{a^{\text {any fuction } \operatorname{win}(f, g) \leq f \leq \max (f(g)}}{\ln \ln \left(n^{2}\right)} \\
& \ln \left(\ln \left(n^{2}\right)\right)<n^{\ln (n)} \ln (n) \\
& \text { explaucton }
\end{aligned}
$$

© Non Parametric Learning

2 K -nearest neighbours
K-nearest neighbours

- K-nn Algorithm
K-nn Algorithm
K-nn Regression
- Advantages
© Non Parametric Learning

> (2) K-nearest neighbours - K-nn Algorithm - K-nn Regression - Advantages and drawbacks - Application

- In the models that we have seen, we select a hypothesis space and adjust a fixed set of parameters with the training data $\left(h_{\alpha}(x)\right)$
- We assume that the parameters α summarize the training and we can forget about it
- This methods are called parametric models
- When we have a small amount of data it makes sense to have a sma set of parameters and to constraint the complexity of the model (avoiding overfitting)
- When we have a large quantity of data, overfitting is less an issue
- If data shows that the hipothesis has to be complex, we can try to
adjust to that complexity
- A non parametric model is one that can not be characterized by a
fixed set of parameters
- A family of non parametric models is Instance Based Learning

Instance Based Learning

- Instance based learning is based on the memorization of the dataset
- The number of parameters is unbounded and grows with the size of the data
- There is not a model associated to the learned concepts
- The classification is obtained by looking into the memorized examples
- The cost of the learning process is 0 , all the cost is in the
computation of the prediction
- This kind learning is also known as lazy learning
(1) Non Parametric Learning
(2) K-nearest neighbours

K-nn Algorithm
K-nn Regression

- Advantages
- K-nearest neighbours uses the local neighborhood to obtain a prediction
- The K memorized examples more similar to the one that is being classified are retrieved
- A distance function is needed to compare the examples similarity
- Euclidean distance $\left(d\left(x_{j}, x_{k}\right)=\sqrt{\sum_{i}\left(x_{j, i}-x_{k, i}\right)^{2}}\right.$

This means that if we change the distance function, we change how examples are classified

K-nearest neighbours - Algorithm

- Training: Store all the examples
- Prediction: $h\left(x_{\text {new }}\right)$ \square - Let be x_{1}, \ldots, x_{k} the k more similar examples to $x_{\text {new }}$ h($\left.x_{\text {new }}\right)=$ combine_predictions $\left(x_{1}, \ldots, x_{k}\right) \quad\left\{\begin{array}{c} \\ k\end{array}\right.$
- The parameters of the algorithm are the number k of neighbours and
the procedure for combining the predictions of the k examples
- The value of k has to be adjusted (crossvalidation)
- We can overfit (k too low)
- We can underfit (k too high)

K-nearest neighbours - Prediction

Weighted version

- $f(x, z)=$ simitanty (x, z)

Looking for neighbours

- Looking for the K -nearest examples for a new example can be expensive
- The straightforward algorithm has a cost $O(n \log (k))$, not good if the dataset is large
- We can use indexing with k - d trees (multidimensional binary search trees)
They are good only if we have around $2^{\text {dim }}$ examples, so not good for high dimensionality
- We can use locality sensitive hashing (approximate $k-n n$) Examples are inserted in multiple hash tables that use hash fun
that with high probability put together examples that are close - We retrieve from all the hut together examples that are close the query example
We compute the k-nn only with these examples
- There are different possibilities for computing the class from the k nearest neighbours
- Majority vote
- Distance weighted vote
- Inverse of the square of the distance

Kernel functions (gaussian kernel, tricube kernel, ...)

- Once we use weights for the prediction we can relax the constraint of using only k neighbours
- We can use k examples (local model)

```
K-nearest neighbours - Regression
```

- We can extend this method from classification to regression
- Instead of combining the discrete predictions of k-neighbours we have
to combine continuous predictions
- This predictions can be obtained in different ways:
- Simple interpol
- Averaging
- Local linear regression
- Local weighted regression
- The time complexity of the prediction will depend on the method


```
K-nearest neighbours - Regression (LWR)
- Local weighted regression uses a function to weight the contribution of the neighbours depending on the distance, this is done using a kernel function
```



```
Kernel functions have a width parameter that determines the decay of he weight (it has to be adjusted)
Too narrow \(\Longrightarrow\) overfitting
- Too wide \(\Rightarrow\) underitting
A weighted linear regression problem has to be solved for each query (gradient descent search)
```



```
K-nearest neighbours - Advantages
```

- The cost of the learning process is zero
- No assumptions about the characteristics of the concepts to learn have to be done
- Complex concepts can be learned by local approximation using simple procedures

K-nearest neighbours - Drawbacks

- The model can not be interpreted (there is no description of the learned concepts)
- It is computationally expensive to find the k nearest neighbours when the dataset is very large
- Performance depends on the number of dimensions that we have (curse of dimensionality) \Longrightarrow Attribute Selection

The Curse of dimensionality

- The more dimensions we have, the more examples we need to
approximate a hypothesis
- The number of examples that we have in a volume of space decreases exponentially with the number of dimensions
- This is specially bad for k-nearest neighbors
- If the number of dimensions is very high the nearest neighbours can be very far away

Optical Character Recognition: Models

- K-nn 1 (Euclidean distance, weighted): accuracy 96.0\% - K-nn 5 (Manhattan distance, weighted): accuracy 95.9%
- K-nn 1 (Correlation distance, weighted): accuracy 95.1%
ilea: $\frac{\text { change of varable }}{\ln ^{2} n}$

$$
m=2^{\ln ^{2} n} \quad(\ln (n))!
$$

