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O Non Parametric Learning

O K-nearest neighbours
o K-nn Algorithm
o K-nn Regression
o Advantages and drawbacks
o Application
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Non Parametric Learning

o In the models that we have seen, we select a hypothesis space and
adjust a fixed set of parameters with the training data (hq(x))

o We assume that the parameters o summarize the training and we can
forget about it

o This methods are called parametric models

o When we have a small amount of data it makes sense to have a small
set of parameters and to constraint the complexity of the model
(avoiding overfitting)
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Non Parametric Learning

o When we have a large quantity of data, overfitting is less an issue

o If data shows that the hipothesis has to be complex, we can try to
adjust to that complexity

o A non parametric model is one that can not be characterized by a
fixed set of parameters

o A family of non parametric models is Instance Based Learning
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Non Parametric Learning

o Instance based learning is based on the memorization of the dataset

o The number of parameters is unbounded and grows with the size of
the data

o There is not a model associated to the learned concepts
o The classification is obtained by looking into the memorized examples

o The cost of the learning process is 0, all the cost is in the
computation of the prediction

o This kind learning is also known as lazy learning
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K-nearest neighbours

O K-nearest neighbours
o K-nn Algorithm
o K-nn Regression
o Advantages and drawbacks
o Application
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K-nearest neighbours

o K-nearest neighbours uses the local neighborhood to obtain a
prediction

o The K memorized examples more similar to the one that is being
classified are retrieved

A distance function is needed to compare the examples similarity

o Euclidean distance (d(xj, xk) = />_;(Xj,i — x«,i)?)

o Mahnattan distance (d(x;j, xx) = >_; |Xj,i — Xk,i|)

This means that if we change the distance function, we change how
examples are classified

©
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K-nearest neighbours K-nn Algorithm

Neghbooluood -
o Training: Store all the examples / N (XV‘E‘J") -

%)fu otes®

. . AN
o The parameters of the algorithm are the number k of nelghbou;\s:(e:n Mf
the procedure for combining the predictions of the k examples

o Prediction: h(xpew)
et be xq, ..., xx the k more similar examples to X,ew
o ‘H(Xpew )= combine_predictions(xi, ..., Xk)

o The value of k has to be adjusted (crossvalidation)

o We can overfit (k too low)
o We can underfit (k too high)
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Looking for neighbours

o Looking for the K-nearest examples for a new example can be
expensive

o The straightforward algorithm has a cost O(nlog(k)), not good if the
dataset is large
o We can use indexing with k-d trees (multidimensional binary search
trees)
o They are good only if we have around 2¢™ examples, so not good for
high dimensionality
o We can use locality sensitive hashing (approximate k-nn)
o Examples are inserted in multiple hash tables that use hash functions
that with high probability put together examples that are close
o We retrieve from all the hash tables the examples that are in the bin of

the query example
o We compute the k-nn only with these examples
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K-nearest neighbours K-nn Algorithm

o There are different possibilities for computing the class from the k
nearest neighbours
o Majority vote
o Distance weighted vote
o Inverse of the distance
o Inverse of the square of the distance
o Kernel functions (gaussian kernel, tricube kernel, ...)

o Once we use weights for the prediction we can relax the constraint of
using only k neighbours
@ We can use k examples (local model)
Q We can use all examples (global model)
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K-nearest neighbours K-nn Regression

o We can extend this method from classification to regression

o Instead of combining the discrete predictions of k-neighbours we have
to combine continuous predictions
o This predictions can be obtained in different ways:

o Simple interpolation

o Averaging

o Local linear regression

o Local weighted regression

o The time complexity of the prediction will depend on the method
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K-nearest neighbours K-nn Regression

Simple interpolation K-nn averaging
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K-nearest neighbours K-nn Regression

o K-nn linear regression fits the best line between the neighbors

o A linear regression problem has to be solved for each query (least
squares regression)
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K-nearest neighbours K-nn Regression

o Local weighted regression uses a function to weight the contribution
of the neighbours depending on the distance, this is done using a

kernel function
1 —_

0.5 ]

4
o Kernel functions have a width parameter that determines the decay of
the weight (it has to be adjusted)
o Too narrow = overfitting
o Too wide = underfitting

o A weighted linear regression problem has to be solved for each query
(gradient descent search)
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K-nearest neighbours K-nn Regression
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K-nearest neighbours Advantages and drawbacks

o The cost of the learning process is zero

o No assumptions about the characteristics of the concepts to learn
have to be done

o Complex concepts can be learned by local approximation using simple
procedures
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K-nearest neighbours Advantages and drawbacks

o The model can not be interpreted (there is no description of the
learned concepts)

o It is computationally expensive to find the k nearest neighbours when
the dataset is very large

o Performance depends on the number of dimensions that we have
(curse of dimensionality) = Attribute Selection
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K-nearest neighbours Advantages and drawbacks

o The more dimensions we have, the more examples we need to
approximate a hypothesis

o The number of examples that we have in a volume of space decreases
exponentially with the number of dimensions

o This is specially bad for k-nearest neighbors

o If the number of dimensions is very high the nearest neighbours can be
very far away
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K-nearest neighbours Application

Optical Character Recognition

A o OCR capital letters

o 14 Attributes (All continuous)

o Attributes: horizontal position of box,
vertical position of box, width of box,
height of box, total num on pixels,
mean x of on pixels in box, ...

A & ? o 20000 instances

o 26 classes (A-Z)

o Validation: 10 fold cross validation
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K-nearest neighbours Application

o K-nn 1 (Euclidean distance, weighted): accuracy 96.0%
o K-nn 5 (Manhattan distance, weighted): accuracy 95.9%

o K-nn 1 (Correlation distance, weighted): accuracy 95.1%
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