
8Mining Stream, Time-Series,
and Sequence Data

Our previous chapters introduced the basic concepts and techniques of data mining. The techniques
studied, however, were for simple and structured data sets, such as data in relational
databases, transactional databases, and data warehouses. The growth of data in various
complex forms (e.g., semi-structured and unstructured, spatial and temporal, hypertext
and multimedia) has been explosive owing to the rapid progress of data collection and
advanced database system technologies, and the World Wide Web. Therefore, an increas-
ingly important task in data mining is to mine complex types of data. Furthermore, many
data mining applications need to mine patterns that are more sophisticated than those
discussed earlier, including sequential patterns, subgraph patterns, and features in inter-
connected networks. We treat such tasks as advanced topics in data mining.

In the following chapters, we examine how to further develop the essential data min-
ing techniques (such as characterization, association, classification, and clustering) and
how to develop new ones to cope with complex types of data. We start off, in this chapter,
by discussing the mining of stream, time-series, and sequence data. Chapter 9 focuses
on the mining of graphs, social networks, and multirelational data. Chapter 10 examines
mining object, spatial, multimedia, text, and Web data. Research into such mining is fast
evolving. Our discussion provides a broad introduction. We expect that many new books
dedicated to the mining of complex kinds of data will become available in the future.

As this chapter focuses on the mining of stream data, time-series data, and sequence
data, let’s look at each of these areas.

Imagine a satellite-mounted remote sensor that is constantly generating data. The
data are massive (e.g., terabytes in volume), temporally ordered, fast changing, and poten-
tially infinite. This is an example of stream data. Other examples include telecommu-
nications data, transaction data from the retail industry, and data from electric power
grids. Traditional OLAP and data mining methods typically require multiple scans of
the data and are therefore infeasible for stream data applications. In Section 8.1, we study
advanced mining methods for the analysis of such constantly flowing data.

A time-series database consists of sequences of values or events obtained over repeated
measurements of time. Suppose that you are given time-series data relating to stock
market prices. How can the data be analyzed to identify trends? Given such data for
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two different stocks, can we find any similarities between the two? These questions are
explored in Section 8.2. Other applications involving time-series data include economic
and sales forecasting, utility studies, and the observation of natural phenomena (such as
atmosphere, temperature, and wind).

A sequence database consists of sequences of ordered elements or events, recorded
with or without a concrete notion of time. Sequential pattern mining is the discovery
of frequently occurring ordered events or subsequences as patterns. An example of a
sequential pattern is “Customers who buy a Canon digital camera are likely to buy an HP
color printer within a month.” Periodic patterns, which recur in regular periods or dura-
tions, are another kind of pattern related to sequences. Section 8.3 studies methods of
sequential pattern mining.

Recent research in bioinformatics has resulted in the development of numerous meth-
ods for the analysis of biological sequences, such as DNA and protein sequences.
Section 8.4 introduces several popular methods, including biological sequence alignment
algorithms and the hidden Markov model.

8.1 Mining Data Streams

Tremendous and potentially infinite volumes of data streams are often generated by
real-time surveillance systems, communication networks, Internet traffic, on-line trans-
actions in the financial market or retail industry, electric power grids, industry pro-
duction processes, scientific and engineering experiments, remote sensors, and other
dynamic environments. Unlike traditional data sets, stream data flow in and out of a
computer system continuously and with varying update rates. They are temporally ordered,
fast changing, massive, and potentially infinite. It may be impossible to store an entire
data stream or to scan through it multiple times due to its tremendous volume. More-
over, stream data tend to be of a rather low level of abstraction, whereas most analysts
are interested in relatively high-level dynamic changes, such as trends and deviations. To
discover knowledge or patterns from data streams, it is necessary to develop single-scan,
on-line, multilevel, multidimensional stream processing and analysis methods.

Such single-scan, on-line data analysis methodology should not be confined to only
stream data. It is also critically important for processing nonstream data that are mas-
sive. With data volumes mounting by terabytes or even petabytes, stream data nicely
capture our data processing needs of today: even when the complete set of data is col-
lected and can be stored in massive data storage devices, single scan (as in data stream
systems) instead of random access (as in database systems) may still be the most realistic
processing mode, because it is often too expensive to scan such a data set multiple times.

In this section, we introduce several on-line stream data analysis and mining methods.
Section 8.1.1 introduces the basic methodologies for stream data processing and query-
ing. Multidimensional analysis of stream data, encompassing stream data cubes and
multiple granularities of time, is described in Section 8.1.2. Frequent-pattern mining
and classification are presented in Sections 8.1.3 and 8.1.4, respectively. The clustering
of dynamically evolving data streams is addressed in Section 8.1.5.
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8.1.1 Methodologies for Stream Data Processing and
Stream Data Systems

As seen from the previous discussion, it is impractical to scan through an entire data
stream more than once. Sometimes we cannot even “look” at every element of a stream
because the stream flows in so fast and changes so quickly. The gigantic size of such
data sets also implies that we generally cannot store the entire stream data set in main
memory or even on disk. The problem is not just that there is a lot of data, it is that the
universes that we are keeping track of are relatively large, where a universe is the domain
of possible values for an attribute. For example, if we were tracking the ages of millions of
people, our universe would be relatively small, perhaps between zero and one hundred
and twenty. We could easily maintain exact summaries of such data. In contrast, the
universe corresponding to the set of all pairs of IP addresses on the Internet is very large,
which makes exact storage intractable. A reasonable way of thinking about data streams
is to actually think of a physical stream of water. Heraclitus once said that you can never
step in the same stream twice,1 and so it is with stream data.

For effective processing of stream data, new data structures, techniques, and algo-
rithms are needed. Because we do not have an infinite amount of space to store stream
data, we often trade off between accuracy and storage. That is, we generally are willing
to settle for approximate rather than exact answers. Synopses allow for this by provid-
ing summaries of the data, which typically can be used to return approximate answers
to queries. Synopses use synopsis data structures, which are any data structures that are
substantially smaller than their base data set (in this case, the stream data). From the
algorithmic point of view, we want our algorithms to be efficient in both space and time.
Instead of storing all or most elements seen so far, using O(N) space, we often want to
use polylogarithmic space, O(logk N), where N is the number of elements in the stream
data. We may relax the requirement that our answers are exact, and ask for approximate
answers within a small error range with high probability. That is, many data stream–
based algorithms compute an approximate answer within a factor ε of the actual answer,
with high probability. Generally, as the approximation factor (1+ε) goes down, the space
requirements go up. In this section, we examine some common synopsis data structures
and techniques.

Random Sampling
Rather than deal with an entire data stream, we can think of sampling the stream at peri-
odic intervals. “To obtain an unbiased sampling of the data, we need to know the length
of the stream in advance. But what can we do if we do not know this length in advance?”
In this case, we need to modify our approach.

1Plato citing Heraclitus: “Heraclitus somewhere says that all things are in process and nothing stays
still, and likening existing things to the stream of a river he says you would not step twice into the same
river.”
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A technique called reservoir sampling can be used to select an unbiased random
sample of s elements without replacement. The idea behind reservoir sampling is rel-
atively simple. We maintain a sample of size at least s, called the “reservoir,” from which
a random sample of size s can be generated. However, generating this sample from the
reservoir can be costly, especially when the reservoir is large. To avoid this step, we main-
tain a set of s candidates in the reservoir, which form a true random sample of the ele-
ments seen so far in the stream. As the data stream flows, every new element has a certain
probability of replacing an old element in the reservoir. Let’s say we have seen N elements
thus far in the stream. The probability that a new element replaces an old one, chosen
at random, is then s/N. This maintains the invariant that the set of s candidates in our
reservoir forms a random sample of the elements seen so far.

Sliding Windows
Instead of sampling the data stream randomly, we can use the sliding window model to
analyze stream data. The basic idea is that rather than running computations on all of
the data seen so far, or on some sample, we can make decisions based only on recent data.
More formally, at every time t, a new data element arrives. This element “expires” at time
t + w, where w is the window “size” or length. The sliding window model is useful for
stocks or sensor networks, where only recent events may be important. It also reduces
memory requirements because only a small window of data is stored.

Histograms
The histogram is a synopsis data structure that can be used to approximate the frequency
distribution of element values in a data stream. A histogram partitions the data into a
set of contiguous buckets. Depending on the partitioning rule used, the width (bucket
value range) and depth (number of elements per bucket) can vary. The equal-width par-
titioning rule is a simple way to construct histograms, where the range of each bucket is
the same. Although easy to implement, this may not sample the probability distribution
function well. A better approach is to use V-Optimal histograms (see Section 2.5.4). Sim-
ilar to clustering, V-Optimal histograms define bucket sizes that minimize the frequency
variance within each bucket, which better captures the distribution of the data. These
histograms can then be used to approximate query answers rather than using sampling
techniques.

Multiresolution Methods
A common way to deal with a large amount of data is through the use of data reduction
methods (see Section 2.5). A popular data reduction method is the use of divide-and-
conquer strategies such as multiresolution data structures. These allow a program to
trade off between accuracy and storage, but also offer the ability to understand a data
stream at multiple levels of detail.
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A concrete example is a balanced binary tree, where we try to maintain this balance as
new data come in. Each level of the tree provides a different resolution. The farther away
we are from the tree root, the more detailed is the level of resolution.

A more sophisticated way to form multiple resolutions is to use a clustering method
to organize stream data into a hierarchical structure of trees. For example, we can use a
typical hierarchical clustering data structure like CF-tree in BIRCH (see Section 7.5.2)
to form a hierarchy of microclusters. With dynamic stream data flowing in and out, sum-
mary statistics of data streams can be incrementally updated over time in the hierarchy
of microclusters. Information in such microclusters can be aggregated into larger macro-
clusters depending on the application requirements to derive general data statistics at
multiresolution.

Wavelets (Section 2.5.3), a technique from signal processing, can be used to build a
multiresolution hierarchy structure over an input signal, in this case, the stream data.
Given an input signal, we would like to break it down or rewrite it in terms of simple,
orthogonal basis functions. The simplest basis is the Haar wavelet. Using this basis cor-
responds to recursively performing averaging and differencing at multiple levels of reso-
lution. Haar wavelets are easy to understand and implement. They are especially good at
dealing with spatial and multimedia data. Wavelets have been used as approximations to
histograms for query optimization. Moreover, wavelet-based histograms can be dynam-
ically maintained over time. Thus, wavelets are a popular multiresolution method for
data stream compression.

Sketches
Synopses techniques mainly differ by how exactly they trade off accuracy for storage.
Sampling techniques and sliding window models focus on a small part of the data,
whereas other synopses try to summarize the entire data, often at multiple levels of detail.
Some techniques require multiple passes over the data, such as histograms and wavelets,
whereas other methods, such as sketches, can operate in a single pass.

Suppose that, ideally, we would like to maintain the full histogram over the universe
of objects or elements in a data stream, where the universe is U = {1, 2, . . . , v} and the
stream is A = {a1, a2, . . . , aN}. That is, for each value i in the universe, we want to main-
tain the frequency or number of occurrences of i in the sequence A. If the universe is large,
this structure can be quite large as well. Thus, we need a smaller representation instead.

Let’s consider the frequency moments of A. These are the numbers, Fk, defined as

Fk =
v

∑
i=1

mk
i , (8.1)

where v is the universe or domain size (as above), mi is the frequency of i in the sequence,
and k ≥ 0. In particular, F0 is the number of distinct elements in the sequence. F1 is
the length of the sequence (that is, N, here). F2 is known as the self-join size, the repeat
rate, or as Gini’s index of homogeneity. The frequency moments of a data set provide
useful information about the data for database applications, such as query answering. In
addition, they indicate the degree of skew or asymmetry in the data (Section 2.2.1), which
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is useful in parallel database applications for determining an appropriate partitioning
algorithm for the data.

When the amount of memory available is smaller than v, we need to employ a synop-
sis. The estimation of the frequency moments can be done by synopses that are known as
sketches. These build a small-space summary for a distribution vector (e.g., histogram)
using randomized linear projections of the underlying data vectors. Sketches provide
probabilistic guarantees on the quality of the approximate answer (e.g., the answer to
the given query is 12± 1 with a probability of 0.90). Given N elements and a universe
U of v values, such sketches can approximate F0, F1, and F2 in O(logv + logN) space.
The basic idea is to hash every element uniformly at random to either zi ∈ {−1, + 1},
and then maintain a random variable, X = ∑i mizi. It can be shown that X2 is a good
estimate for F2. To explain why this works, we can think of hashing elements to −1 or
+1 as assigning each element value to an arbitrary side of a tug of war. When we sum up
to get X , we can think of measuring the displacement of the rope from the center point.
By squaring X , we square this displacement, capturing the data skew, F2.

To get an even better estimate, we can maintain multiple random variables, Xi. Then
by choosing the median value of the square of these variables, we can increase our con-
fidence that the estimated value is close to F2.

From a database perspective, sketch partitioning was developed to improve the
performance of sketching on data stream query optimization. Sketch partitioning uses
coarse statistical information on the base data to intelligently partition the domain of the
underlying attributes in a way that provably tightens the error guarantees.

Randomized Algorithms
Randomized algorithms, in the form of random sampling and sketching, are often used
to deal with massive, high-dimensional data streams. The use of randomization often
leads to simpler and more efficient algorithms in comparison to known deterministic
algorithms.

If a randomized algorithm always returns the right answer but the running times vary,
it is known as a Las Vegas algorithm. In contrast, a Monte Carlo algorithm has bounds
on the running time but may not return the correct result. We mainly consider Monte
Carlo algorithms. One way to think of a randomized algorithm is simply as a probability
distribution over a set of deterministic algorithms.

Given that a randomized algorithm returns a random variable as a result, we would
like to have bounds on the tail probability of that random variable. This tells us that the
probability that a random variable deviates from its expected value is small. One basic
tool is Chebyshev’s Inequality. Let X be a random variable with mean µ and standard
deviation σ (variance σ2). Chebyshev’s inequality says that

P(|X−µ|> k)≤ σ2

k2 (8.2)

for any given positive real number, k. This inequality can be used to bound the variance
of a random variable.
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In many cases, multiple random variables can be used to boost the confidence in our
results. As long as these random variables are fully independent, Chernoff bounds can be
used. Let X1, X2, . . . , Xn be independent Poisson trials. In a Poisson trial, the probability
of success varies from trial to trial. If X is the sum of X1 to Xn, then a weaker version of
the Chernoff bound tells us that

Pr[X < (1 + δ)µ]< e−µδ2/4 (8.3)

where δ ∈ (0, 1]. This shows that the probability decreases exponentially as we move
from the mean, which makes poor estimates much more unlikely.

Data Stream Management Systems and Stream Queries
In traditional database systems, data are stored in finite and persistent databases. However,
stream data are infinite and impossible to store fully in a database. In a Data Stream Man-
agement System (DSMS), there may be multiple data streams. They arrive on-line and
are continuous, temporally ordered, and potentially infinite. Once an element from a data
stream has been processed, it is discarded or archived, and it cannot be easily retrieved
unless it is explicitly stored in memory.

A stream data query processing architecture includes three parts: end user, query pro-
cessor, and scratch space (which may consist of main memory and disks). An end user
issues a query to the DSMS, and the query processor takes the query, processes it using
the information stored in the scratch space, and returns the results to the user.

Queries can be either one-time queries or continuous queries. A one-time query is eval-
uated once over a point-in-time snapshot of the data set, with the answer returned to the
user. A continuous query is evaluated continuously as data streams continue to arrive.
The answer to a continuous query is produced over time, always reflecting the stream
data seen so far. A continuous query can act as a watchdog, as in “sound the alarm if the
power consumption for Block 25 exceeds a certain threshold.” Moreover, a query can be pre-
defined (i.e., supplied to the data stream management system before any relevant data
have arrived) or ad hoc (i.e., issued on-line after the data streams have already begun).
A predefined query is generally a continuous query, whereas an ad hoc query can be
either one-time or continuous.

Stream Query Processing
The special properties of stream data introduce new challenges in query processing.
In particular, data streams may grow unboundedly, and it is possible that queries may
require unbounded memory to produce an exact answer. How can we distinguish
between queries that can be answered exactly using a given bounded amount of memory
and queries that must be approximated? Actually, without knowing the size of the input
data streams, it is impossible to place a limit on the memory requirements for most com-
mon queries, such as those involving joins, unless the domains of the attributes involved
in the query are restricted. This is because without domain restrictions, an unbounded
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number of attribute values must be remembered because they might turn out to join
with tuples that arrive in the future.

Providing an exact answer to a query may require unbounded main memory; therefore
a more realistic solution is to provide an approximate answer to the query. Approximate
query answering relaxes the memory requirements and also helps in handling system
load, because streams can come in too fast to process exactly. In addition, ad hoc queries
need approximate history to return an answer. We have already discussed common syn-
opses that are useful for approximate query answering, such as random sampling, sliding
windows, histograms, and sketches.

As this chapter focuses on stream data mining, we will not go into any further details
of stream query processing methods. For additional discussion, interested readers may
consult the literature recommended in the bibliographic notes of this chapter.

8.1.2 Stream OLAP and Stream Data Cubes

Stream data are generated continuously in a dynamic environment, with huge volume,
infinite flow, and fast-changing behavior. It is impossible to store such data streams com-
pletely in a data warehouse. Most stream data represent low-level information, consisting
of various kinds of detailed temporal and other features. To find interesting or unusual
patterns, it is essential to perform multidimensional analysis on aggregate measures (such
as sum and average). This would facilitate the discovery of critical changes in the data at
higher levels of abstraction, from which users can drill down to examine more detailed
levels, when needed. Thus multidimensional OLAP analysis is still needed in stream data
analysis, but how can we implement it?

Consider the following motivating example.

Example 8.1 Multidimensional analysis for power supply stream data. A power supply station gen-
erates infinite streams of power usage data. Suppose individual user, street address, and
second are the attributes at the lowest level of granularity. Given a large number of users,
it is only realistic to analyze the fluctuation of power usage at certain high levels, such
as by city or street district and by quarter (of an hour), making timely power supply
adjustments and handling unusual situations.

Conceptually, for multidimensional analysis, we can view such stream data as a virtual
data cube, consisting of one or a few measures and a set of dimensions, including one
time dimension, and a few other dimensions, such as location, user-category, and so on.
However, in practice, it is impossible to materialize such a data cube, because the mate-
rialization requires a huge amount of data to be computed and stored. Some efficient
methods must be developed for systematic analysis of such data.

Data warehouse and OLAP technology is based on the integration and consolidation
of data in multidimensional space to facilitate powerful and fast on-line data analysis.
A fundamental difference in the analysis of stream data from that of relational and ware-
house data is that the stream data are generated in huge volume, flowing in and out
dynamically and changing rapidly. Due to limited memory, disk space, and processing
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power, it is impossible to register completely the detailed level of data and compute a fully
materialized cube. A realistic design is to explore several data compression techniques,
including (1) tilted time frame on the time dimension, (2) storing data only at some crit-
ical layers, and (3) exploring efficient computation of a very partially materialized data
cube. The (partial) stream data cubes so constructed are much smaller than those con-
structed from the raw stream data but will still be effective for multidimensional stream
data analysis. We examine such a design in more detail.

Time Dimension with Compressed Time
Scale: Tilted Time Frame
In stream data analysis, people are usually interested in recent changes at a fine scale but
in long-term changes at a coarse scale. Naturally, we can register time at different levels of
granularity. The most recent time is registered at the finest granularity; the more distant
time is registered at a coarser granularity; and the level of coarseness depends on the
application requirements and on how old the time point is (from the current time). Such
a time dimension model is called a tilted time frame. This model is sufficient for many
analysis tasks and also ensures that the total amount of data to retain in memory or to
be stored on disk is small.

There are many possible ways to design a titled time frame. Here we introduce three
models, as illustrated in Figure 8.1: (1) natural tilted time frame model, (2) logarithmic
tilted time frame model, and (3) progressive logarithmic tilted time frame model.

A natural tilted time frame model is shown in Figure 8.1(a), where the time frame
(or window) is structured in multiple granularities based on the “natural” or usual time
scale: the most recent 4 quarters (15 minutes), followed by the last 24 hours, then
31 days, and then 12 months (the actual scale used is determined by the application).
Based on this model, we can compute frequent itemsets in the last hour with the pre-
cision of a quarter of an hour, or in the last day with the precision of an hour, and

Time

Time

tt2t4t8t16t32t64t

Now

Now

4 qtrs24 hours 31 days 12 months 

(b) A logarithmic tilted time frame model.

(a) A natural tilted time frame model.

69 67 65�
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56 40 24

48 16�
64 32
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Snapshots (by clock time)Frame no. 

(c) A progressive logarithmic tilted
time frame table.

Figure 8.1 Three models for tilted time frames.
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so on until the whole year with the precision of a month.2 This model registers only
4 + 24 + 31 + 12 = 71 units of time for a year instead of 365× 24× 4 = 35,040 units,
with an acceptable trade-off of the grain of granularity at a distant time.

The second model is the logarithmic tilted time frame model, as shown in
Figure 8.1(b), where the time frame is structured in multiple granularities according
to a logarithmic scale. Suppose that the most recent slot holds the transactions of the
current quarter. The remaining slots are for the last quarter, the next two quarters (ago),
4 quarters, 8 quarters, 16 quarters, and so on, growing at an exponential rate. According
to this model, with one year of data and the finest precision at a quarter, we would need
log2(365×24×4)+1 = 16.1 units of time instead of 365×24×4 = 35,040 units. That
is, we would just need 17 time frames to store the compressed information.

The third method is the progressive logarithmic tilted time frame model, where snap-
shots are stored at differing levels of granularity depending on the recency. Let T be the
clock time elapsed since the beginning of the stream. Snapshots are classified into differ-
ent frame numbers, which can vary from 0 to max frame, where log2(T )−max capacity≤
max frame ≤ log2(T ), and max capacity is the maximal number of snapshots held in
each frame.

Each snapshot is represented by its timestamp. The rules for insertion of a snapshot
t (at time t) into the snapshot frame table are defined as follows: (1) if (t mod 2i) = 0
but (t mod 2i+1) 6= 0, t is inserted into frame number i if i≤max frame; otherwise (i.e.,
i>max frame), t is inserted into max frame; and (2) each slot has a max capacity. At the
insertion of t into frame number i, if the slot already reaches its max capacity, the oldest
snapshot in this frame is removed and the new snapshot inserted.

Example 8.2 Progressive logarithmic tilted time frame. Consider the snapshot frame table of
Figure 8.1(c), where max frame is 5 and max capacity is 3. Let’s look at how timestamp
64 was inserted into the table. We know (64 mod 26) = 0 but (64 mod 27) 6= 0, that is,
i = 6. However, since this value of i exceeds max frame, 64 was inserted into frame 5 instead
of frame 6. Suppose we now need to insert a timestamp of 70. At time 70, since (70
mod 21) = 0 but (70 mod 22) 6= 0, we would insert 70 into frame number 1. This would
knock out the oldest snapshot of 58, given the slot capacity of 3. From the table, we see that
the closer a timestamp is to the current time, the denser are the snapshots stored.

In the logarithmic and progressive logarithmic models discussed above, we have
assumed that the base is 2. Similar rules can be applied to any base α, where α is an
integer and α > 1. All three tilted time frame models provide a natural way for incre-
mental insertion of data and for gradually fading out older values.

The tilted time frame models shown are sufficient for typical time-related queries,
and at the same time, ensure that the total amount of data to retain in memory and/or
to be computed is small.

2We align the time axis with the natural calendar time. Thus, for each granularity level of the tilted time
frame, there might be a partial interval, which is less than a full unit at that level.
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Depending on the given application, we can provide different fading factors in the
titled time frames, such as by placing more weight on the more recent time frames. We
can also have flexible alternative ways to design the tilted time frames. For example, sup-
pose that we are interested in comparing the stock average from each day of the current
week with the corresponding averages from the same weekdays last week, last month, or
last year. In this case, we can single out Monday to Friday instead of compressing them
into the whole week as one unit.

Critical Layers
Even with the tilted time frame model, it can still be too costly to dynamically compute
and store a materialized cube. Such a cube may have quite a few dimensions, each con-
taining multiple levels with many distinct values. Because stream data analysis has only
limited memory space but requires fast response time, we need additional strategies that
work in conjunction with the tilted time frame model. One approach is to compute and
store only some mission-critical cuboids of the full data cube.

In many applications, it is beneficial to dynamically and incrementally compute and
store two critical cuboids (or layers), which are determined based on their conceptual
and computational importance in stream data analysis. The first layer, called the minimal
interest layer, is the minimally interesting layer that an analyst would like to study. It is
necessary to have such a layer because it is often neither cost effective nor interesting
in practice to examine the minute details of stream data. The second layer, called the
observation layer, is the layer at which an analyst (or an automated system) would like
to continuously study the data. This can involve making decisions regarding the signaling
of exceptions, or drilling down along certain paths to lower layers to find cells indicating
data exceptions.

Example 8.3 Critical layers for a power supply stream data cube. Let’s refer back to Example 8.1
regarding the multidimensional analysis of stream data for a power supply station.
Dimensions at the lowest level of granularity (i.e., the raw data layer) included individ-
ual user, street address, and second. At the minimal interest layer, these three dimensions
are user group, street block, and minute, respectively. Those at the observation layer are
∗ (meaning all user), city, and quarter, respectively, as shown in Figure 8.2.

Based on this design, we would not need to compute any cuboids that are lower than
the minimal interest layer because they would be beyond user interest. Thus, to compute
our base cuboid, representing the cells of minimal interest, we need to compute and store
the (three-dimensional) aggregate cells for the (user group, street block, minute) group-
by. This can be done by aggregations on the dimensions user and address by rolling up
from individual user to user group and from street address to street block, respectively,
and by rolling up on the time dimension from second to minute.

Similarly, the cuboids at the observation layer should be computed dynamically, tak-
ing the tilted time frame model into account as well. This is the layer that an analyst
takes as an observation deck, watching the current stream data by examining the slope
of changes at this layer to make decisions. This layer can be obtained by rolling up the
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observation layer

minimal interest layer

primitive data layer
(individual_user, street_address, second)

(user_group, street_block, minute)

(*, city, quarter)

Figure 8.2 Two critical layers in a “power supply station” stream data cube.

cube along the user dimension to ∗ (for all user), along the address dimension to city, and
along the time dimension to quarter. If something unusual is observed, the analyst can
investigate by drilling down to lower levels to find data exceptions.

Partial Materialization of a Stream Cube
“What if a user needs a layer that would be between the two critical layers?” Materializing
a cube at only two critical layers leaves much room for how to compute the cuboids in
between. These cuboids can be precomputed fully, partially, or not at all (i.e., leave every-
thing to be computed on the fly). An interesting method is popular path cubing, which
rolls up the cuboids from the minimal interest layer to the observation layer by following
one popular drilling path, materializes only the layers along the path, and leaves other
layers to be computed only when needed. This method achieves a reasonable trade-off
between space, computation time, and flexibility, and has quick incremental aggregation
time, quick drilling time, and small space requirements.

To facilitate efficient computation and storage of the popular path of the stream cube,
a compact data structure needs to be introduced so that the space taken in the compu-
tation of aggregations is minimized. A hyperlinked tree structure called H-tree is revised
and adopted here to ensure that a compact structure is maintained in memory for effi-
cient computation of multidimensional and multilevel aggregations.

Each branch of the H-tree is organized in the same order as the specified popular
path. The aggregate cells are stored in the nonleaf nodes of the H-tree, forming
the computed cuboids along the popular path. Aggregation for each corresponding
slot in the tilted time frame is performed from the minimal interest layer all the
way up to the observation layer by aggregating along the popular path. The step-
by-step aggregation is performed while inserting the new generalized tuples into the
corresponding time slots.
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The H-tree ordering is based on the popular drilling path given by users or experts.
This ordering facilitates the computation and storage of the cuboids along the path.
The aggregations along the drilling path from the minimal interest layer to the obser-
vation layer are performed during the generalizing of the stream data to the minimal
interest layer, which takes only one scan of stream data. Because all the cells to be
computed are the cuboids along the popular path, and the cuboids to be computed are
the nonleaf nodes associated with the H-tree, both space and computation overheads
are minimized.

Although it is impossible to materialize all the cells of a stream cube, the stream data
cube so designed facilitates fast on-line drilling along any single dimension or along
combinations of a small number of dimensions. The H-tree-based architecture facili-
tates incremental updating of stream cubes as well.

8.1.3 Frequent-Pattern Mining in Data Streams

As discussed in Chapter 5, frequent-pattern mining finds a set of patterns that occur
frequently in a data set, where a pattern can be a set of items (called an itemset),
a subsequence, or a substructure. A pattern is considered frequent if its count sat-
isfies a minimum support. Scalable methods for mining frequent patterns have been
extensively studied for static data sets. However, mining such patterns in dynamic
data streams poses substantial new challenges. Many existing frequent-pattern min-
ing algorithms require the system to scan the whole data set more than once, but
this is unrealistic for infinite data streams. How can we perform incremental updates
of frequent itemsets for stream data since an infrequent itemset can become frequent
later on, and hence cannot be ignored? Moreover, a frequent itemset can become
infrequent as well. The number of infrequent itemsets is exponential and so it is
impossible to keep track of all of them.

To overcome this difficulty, there are two possible approaches. One is to keep
track of only a predefined, limited set of items and itemsets. This method has very
limited usage and expressive power because it requires the system to confine the
scope of examination to only the set of predefined itemsets beforehand. The sec-
ond approach is to derive an approximate set of answers. In practice, approximate
answers are often sufficient. A number of approximate item or itemset counting
algorithms have been developed in recent research. Here we introduce one such
algorithm: the Lossy Counting algorithm. It approximates the frequency of items
or itemsets within a user-specified error bound, ε. This concept is illustrated as
follows.

Example 8.4 Approximate frequent items. A router is interested in all items whose frequency is at least
1% (min support) of the entire traffic stream seen so far. It is felt that 1/10 of min support
(i.e., ε = 0.1%) is an acceptable margin of error. This means that all frequent items with
a support of at least min support will be output, but that some items with a support of
at least (min support− ε) will also be output.
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Lossy Counting Algorithm
We first introduce the Lossy Counting algorithm for frequent items. This algorithm is
fairly simple but quite efficient. We then look at how the method can be extended to find
approximate frequent itemsets.

“How does the Lossy Counting algorithm find frequent items?” A user first provides two
input parameters: (1) the min support threshold, σ, and (2) the error bound mentioned
previously, denoted as ε. The incoming stream is conceptually divided into buckets of
width w = d1/εe. Let N be the current stream length, that is, the number of items seen so
far. The algorithm uses a frequency-list data structure for all items with frequency greater
than 0. For each item, the list maintains f , the approximate frequency count, and ∆, the
maximum possible error of f .

The algorithm processes buckets of items as follows. When a new bucket comes in, the
items in the bucket are added to the frequency list. If a given item already exists in the
list, we simply increase its frequency count, f . Otherwise, we insert it into the list with a
frequency count of 1. If the new item is from the bth bucket, we set ∆, the maximum pos-
sible error on the frequency count of the item, to be b−1. Based on our discussion so far,
the item frequency counts hold the actual frequencies rather than approximations. They
become approximates, however, because of the next step. Whenever a bucket “bound-
ary” is reached (that is, N has reached a multiple of width w, such as w, 2w, 3w, etc.), the
frequency list is examined. Let b be the current bucket number. An item entry is deleted
if, for that entry, f + ∆ ≤ b. In this way, the algorithm aims to keep the frequency list
small so that it may fit in main memory. The frequency count stored for each item will
either be the true frequency of the item or an underestimate of it.

“By how much can a frequency count be underestimated?” One of the most important
factors in approximation algorithms is the approximation ratio (or error bound). Let’s
look at the case where an item is deleted. This occurs when f +∆≤ b for an item, where
b is the current bucket number. We know that b ≤ N/w, that is, b ≤ εN. The actual
frequency of an item is at most f +∆. Thus, the most that an item can be underestimated
is εN. If the actual support of this item is σ (this is the minimum support or lower bound
for it to be considered frequent), then the actual frequency is σN, and the frequency, f ,
on the frequency list should be at least (σN− εN). Thus, if we output all of the items in
the frequency list having an f value of at least (σN− εN), then all of the frequent items
will be output. In addition, some subfrequent items (with an actual frequency of at least
σN− εN but less than σN) will be output, too.

The Lossy Counting algorithm has three nice properties: (1) there are no false neg-
atives, that is, there is no true frequent item that is not output; (2) false positives are
quite “positive” as well, since the output items will have a frequency of at least σN−εN;
and (3) the frequency of a frequent item can be underestimated by at most εN. For fre-
quent items, this underestimation is only a small fraction of its true frequency, so this
approximation is acceptable.

“How much space is needed to save the frequency list?” It has been shown that the
algorithm takes at most 1

ε log(εN) entries in computation, where N is the stream
length so far. If we assume that elements with very low frequency tend to occur
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more or less uniformly at random, then it has been shown that Lossy Counting
requires no more than 7

ε space. Thus, the space requirement for this algorithm is
reasonable.

It is much more difficult to find frequent itemsets than to find frequent items in data
streams, because the number of possible itemsets grows exponentially with that of dif-
ferent items. As a consequence, there will be many more frequent itemsets. If we still
process the data bucket by bucket, we will probably run out of memory. An alternative
is to process as many buckets as we can at a time.

To find frequent itemsets, transactions are still divided by buckets with bucket size,
w = d1/εe. However, this time, we will read as many buckets as possible into main
memory. As before, we maintain a frequency list, although now it pertains to itemsets
rather than items. Suppose we can read β buckets into main memory. After that, we
update the frequency list by all these buckets as follows. If a given itemset already
exists in the frequency list, we update f by counting the occurrences of the itemset
among the current batch of β buckets. If the updated entry satisfies f + ∆≤ b, where
b is the current bucket number, we delete the entry. If an itemset has frequency f ≥ β
and does not appear in the list, it is inserted as a new entry where ∆ is set to b−β as
the maximum error of f .

In practice, β will be large, such as greater than 30. This approach will save memory
because all itemsets with frequency less than β will not be recorded in the frequency list
anymore. For smaller values of β (such as 1 for the frequent item version of the algorithm
described earlier), more spurious subsets will find their way into the frequency list. This
would drastically increase the average size and refresh rate of the frequency list and harm
the algorithm’s efficiency in both time and space.

In general, Lossy Counting is a simple but effective algorithm for finding frequent
items and itemsets approximately. Its limitations lie in three aspects: (1) the space
bound is insufficient because the frequency list may grow infinitely as the stream goes
on; (2) for frequent itemsets, the algorithm scans each transaction many times and the
size of main memory will greatly impact the efficiency of the algorithm; and (3) the
output is based on all of the previous data, although users can be more interested
in recent data than that in the remote past. A tilted time frame model with different
time granularities can be integrated with Lossy Counting in order to emphasize the
recency of the data.

8.1.4 Classification of Dynamic Data Streams

In Chapter 6, we studied several methods for the classification of static data. Classifica-
tion is a two-step process consisting of learning, or model construction (where a model is
constructed based on class-labeled tuples from a training data set), and classification, or
model usage (where the model is used to predict the class labels of tuples from new data
sets). The latter lends itself to stream data, as new examples are immediately classified by
the model as they arrive.

“So, does this mean we can apply traditional classification methods to stream data as
well?” In a traditional setting, the training data reside in a relatively static database. Many
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classification methods will scan the training data multiple times. Therefore, the first
step of model construction is typically performed off-line as a batch process. With data
streams, however, there is typically no off-line phase. The data flow in so quickly that
storage and multiple scans are infeasible.

To further illustrate how traditional classification methods are inappropriate for
stream data, consider the practice of constructing decision trees as models. Most decision
tree algorithms tend to follow the same basic top-down, recursive strategy, yet differ in
the statistical measure used to choose an optimal splitting attribute. To review, a decision
tree consists of internal (nonleaf) nodes, branches, and leaf nodes. An attribute selection
measure is used to select the splitting attribute for the current node. This is taken to be
the attribute that best discriminates the training tuples according to class. In general,
branches are grown for each possible value of the splitting attribute, the training tuples
are partitioned accordingly, and the process is recursively repeated at each branch. How-
ever, in the stream environment, it is neither possible to collect the complete set of data
nor realistic to rescan the data, thus such a method has to be re-examined.

Another distinguishing characteristic of data streams is that they are time-varying,
as opposed to traditional database systems, where only the current state is stored. This
change in the nature of the data takes the form of changes in the target classification
model over time and is referred to as concept drift. Concept drift is an important con-
sideration when dealing with stream data.

Several methods have been proposed for the classification of stream data. We intro-
duce four of them in this subsection. The first three, namely the Hoeffding tree algorithm,
Very Fast Decision Tree (VFDT), and Concept-adapting Very Fast Decision Tree (CVFDT),
extend traditional decision tree induction. The fourth uses a classifier ensemble approach,
in which multiple classifiers are considered using a voting method.

Hoeffding Tree Algorithm
The Hoeffding tree algorithm is a decision tree learning method for stream data classi-
fication. It was initially used to track Web clickstreams and construct models to predict
which Web hosts and Web sites a user is likely to access. It typically runs in sublinear
time and produces a nearly identical decision tree to that of traditional batch learners.
It uses Hoeffding trees, which exploit the idea that a small sample can often be enough
to choose an optimal splitting attribute. This idea is supported mathematically by the
Hoeffding bound (or additive Chernoff bound). Suppose we make N independent obser-
vations of a random variable r with range R, where r is an attribute selection measure.
(For a probability, R is one, and for an information gain, it is log c, where c is the number
of classes.) In the case of Hoeffding trees, r is information gain. If we compute the mean,
r, of this sample, the Hoeffding bound states that the true mean of r is at least r−ε, with
probability 1−δ, where δ is user-specified and

ε =

√

R2ln(1/δ)
2N

. (8.4)
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The Hoeffding tree algorithm uses the Hoeffding bound to determine, with high
probability, the smallest number, N, of examples needed at a node when selecting a split-
ting attribute. This attribute would be the same as that chosen using infinite examples!
We’ll see how this is done shortly. The Hoeffding bound is independent of the probability
distribution, unlike most other bound equations. This is desirable, as it may be impossi-
ble to know the probability distribution of the information gain, or whichever attribute
selection measure is used.

“How does the Hoeffding tree algorithm use the Hoeffding bound?” The algorithm takes
as input a sequence of training examples, S, described by attributes A, and the accuracy
parameter, δ. In addition, the evaluation function G(Ai) is supplied, which could be
information gain, gain ratio, Gini index, or some other attribute selection measure. At
each node in the decision tree, we need to maximize G(Ai) for one of the remaining
attributes, Ai. Our goal is to find the smallest number of tuples, N, for which the Hoeffd-
ing bound is satisfied. For a given node, let Aa be the attribute that achieves the highest
G, and Ab be the attribute that achieves the second highest G. If G(Aa)−G(Ab) > ε,
where ε is calculated from Equation (8.4), we can confidently say that this difference is
larger than zero. We select Aa as the best splitting attribute with confidence 1−δ.

The only statistics that must be maintained in the Hoeffding tree algorithm are the
counts nijk for the value v j of attribute Ai with class label yk. Therefore, if d is the number
of attributes, v is the maximum number of values for any attribute, c is the number of
classes, and l is the maximum depth (or number of levels) of the tree, then the total
memory required is O(ldvc). This memory requirement is very modest compared to
other decision tree algorithms, which usually store the entire training set in memory.

“How does the Hoeffding tree compare with trees produced by traditional decision trees
algorithms that run in batch mode?” The Hoeffding tree becomes asymptotically close
to that produced by the batch learner. Specifically, the expected disagreement between
the Hoeffding tree and a decision tree with infinite examples is at most δ/p, where p
is the leaf probability, or the probability that an example will fall into a leaf. If the two
best splitting attributes differ by 10% (i.e., ε/R = 0.10), then by Equation (8.4), it would
take 380 examples to ensure a desired accuracy of 90% (i.e., δ = 0.1). For δ = 0.0001,
it would take only 725 examples, demonstrating an exponential improvement in δ with
only a linear increase in the number of examples. For this latter case, if p = 1%, the
expected disagreement between the trees would be at most δ/p = 0.01%, with only 725
examples per node.

In addition to high accuracy with a small sample, Hoeffding trees have other attrac-
tive properties for dealing with stream data. First, multiple scans of the same data
are never performed. This is important because data streams often become too large
to store. Furthermore, the algorithm is incremental, which can be seen in Figure 8.3
(adapted from [GGR02]). The figure demonstrates how new examples are integrated
into the tree as they stream in. This property contrasts with batch learners, which wait
until the data are accumulated before constructing the model. Another advantage of
incrementally building the tree is that we can use it to classify data even while it is being
built. The tree will continue to grow and become more accurate as more training data
stream in.
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Figure 8.3 The nodes of the Hoeffding tree are created incrementally as more samples stream in.

There are, however, weaknesses to the Hoeffding tree algorithm. For example,
the algorithm spends a great deal of time with attributes that have nearly identical
splitting quality. In addition, the memory utilization can be further optimized. Finally,
the algorithm cannot handle concept drift, because once a node is created, it can never
change.

Very Fast Decision Tree (VFDT) and Concept-adapting
Very Fast Decision Tree (CVFDT)
The VFDT (Very Fast Decision Tree) algorithm makes several modifications to the
Hoeffding tree algorithm to improve both speed and memory utilization. The
modifications include breaking near-ties during attribute selection more aggressively,
computing the G function after a number of training examples, deactivating the least
promising leaves whenever memory is running low, dropping poor splitting attributes,
and improving the initialization method. VFDT works well on stream data and also com-
pares extremely well to traditional classifiers in both speed and accuracy. However, it still
cannot handle concept drift in data streams.

“What can we do to manage concept drift?” Basically, we need a way to identify
in a timely manner those elements of the stream that are no longer consistent with
the current concepts. A common approach is to use a sliding window. The intuition
behind it is to incorporate new examples yet eliminate the effects of old ones. We
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can repeatedly apply a traditional classifier to the examples in the sliding window.
As new examples arrive, they are inserted into the beginning of the window; a
corresponding number of examples is removed from the end of the window, and
the classifier is reapplied. This technique, however, is sensitive to the window size, w.
If w is too large, the model will not accurately represent the concept drift. On the
other hand, if w is too small, then there will not be enough examples to construct
an accurate model. Moreover, it will become very expensive to continually construct
a new classifier model.

To adapt to concept-drifting data streams, the VFDT algorithm was further developed
into the Concept-adapting Very Fast Decision Tree algorithm (CVFDT). CVFDT also
uses a sliding window approach; however, it does not construct a new model from scratch
each time. Rather, it updates statistics at the nodes by incrementing the counts associated
with new examples and decrementing the counts associated with old ones. Therefore, if
there is a concept drift, some nodes may no longer pass the Hoeffding bound. When this
happens, an alternate subtree will be grown, with the new best splitting attribute at the
root. As new examples stream in, the alternate subtree will continue to develop, without
yet being used for classification. Once the alternate subtree becomes more accurate than
the existing one, the old subtree is replaced.

Empirical studies show that CVFDT achieves better accuracy than VFDT with
time-changing data streams. In addition, the size of the tree in CVFDT is much
smaller than that in VFDT, because the latter accumulates many outdated examples.

A Classifier Ensemble Approach to Stream
Data Classification
Let’s look at another approach to classifying concept drifting data streams, where we
instead use a classifier ensemble. The idea is to train an ensemble or group of classifiers
(using, say, C4.5, or naïve Bayes) from sequential chunks of the data stream. That is,
whenever a new chunk arrives, we build a new classifier from it. The individual clas-
sifiers are weighted based on their expected classification accuracy in a time-changing
environment. Only the top-k classifiers are kept. The decisions are then based on the
weighted votes of the classifiers.

“Why is this approach useful?” There are several reasons for involving more than
one classifier. Decision trees are not necessarily the most natural method for han-
dling concept drift. Specifically, if an attribute near the root of the tree in CVFDT
no longer passes the Hoeffding bound, a large portion of the tree must be regrown.
Many other classifiers, such as naïve Bayes, are not subject to this weakness. In
addition, naïve Bayesian classifiers also supply relative probabilities along with the
class labels, which expresses the confidence of a decision. Furthermore, CVFDT’s
automatic elimination of old examples may not be prudent. Rather than keeping
only the most up-to-date examples, the ensemble approach discards the least accu-
rate classifiers. Experimentation shows that the ensemble approach achieves greater
accuracy than any one of the single classifiers.
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8.1.5 Clustering Evolving Data Streams

Imagine a huge amount of dynamic stream data. Many applications require the
automated clustering of such data into groups based on their similarities. Examples
include applications for network intrusion detection, analyzing Web clickstreams, and
stock market analysis. Although there are many powerful methods for clustering static
data sets (Chapter 7), clustering data streams places additional constraints on such algo-
rithms. As we have seen, the data stream model of computation requires algorithms to
make a single pass over the data, with bounded memory and limited processing time,
whereas the stream may be highly dynamic and evolving over time.

For effective clustering of stream data, several new methodologies have been devel-
oped, as follows:

Compute and store summaries of past data: Due to limited memory space and
fast response requirements, compute summaries of the previously seen data, store
the relevant results, and use such summaries to compute important statistics when
required.

Apply a divide-and-conquer strategy: Divide data streams into chunks based on order
of arrival, compute summaries for these chunks, and then merge the summaries. In
this way, larger models can be built out of smaller building blocks.

Incremental clustering of incoming data streams: Because stream data enter the sys-
tem continuously and incrementally, the clusters derived must be incrementally
refined.

Perform microclustering as well as macroclustering analysis: Stream clusters can
be computed in two steps: (1) compute and store summaries at the microcluster
level, where microclusters are formed by applying a hierarchical bottom-up clustering
algorithm (Section 7.5.1), and (2) compute macroclusters (such as by using another
clustering algorithm to group the microclusters) at the user-specified level. This two-
step computation effectively compresses the data and often results in a smaller margin
of error.

Explore multiple time granularity for the analysis of cluster evolution: Because the
more recent data often play a different role from that of the remote (i.e., older) data in
stream data analysis, use a tilted time frame model to store snapshots of summarized
data at different points in time.

Divide stream clustering into on-line and off-line processes: While data are stream-
ing in, basic summaries of data snapshots should be computed, stored, and incremen-
tally updated. Therefore, an on-line process is needed to maintain such dynamically
changing clusters. Meanwhile, a user may pose queries to ask about past, current, or
evolving clusters. Such analysis can be performed off-line or as a process independent
of on-line cluster maintenance.

Several algorithms have been developed for clustering data streams. Two of them,
namely, STREAM and CluStream, are introduced here.
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STREAM: A k-Medians-based Stream Clustering
Algorithm
Given a data stream model of points, X1, . . . ,XN , with timestamps, T1, . . . , TN , the objec-
tive of stream clustering is to maintain a consistently good clustering of the sequence
seen so far using a small amount of memory and time.

STREAM is a single-pass, constant factor approximation algorithm that was devel-
oped for the k-medians problem. The k-medians problem is to cluster N data points into
k clusters or groups such that the sum squared error (SSQ) between the points and the
cluster center to which they are assigned is minimized. The idea is to assign similar points
to the same cluster, where these points are dissimilar from points in other clusters.

Recall that in the stream data model, data points can only be seen once, and memory
and time are limited. To achieve high-quality clustering, the STREAM algorithm pro-
cesses data streams in buckets (or batches) of m points, with each bucket fitting in main
memory. For each bucket, bi, STREAM clusters the bucket’s points into k clusters. It then
summarizes the bucket information by retaining only the information regarding the k
centers, with each cluster center being weighted by the number of points assigned to its
cluster. STREAM then discards the points, retaining only the center information. Once
enough centers have been collected, the weighted centers are again clustered to produce
another set of O(k) cluster centers. This is repeated so that at every level, at most m points
are retained. This approach results in a one-pass, O(kN)-time, O(Nε)-space (for some
constant ε< 1), constant-factor approximation algorithm for data stream k-medians.

STREAM derives quality k-medians clusters with limited space and time. However,
it considers neither the evolution of the data nor time granularity. The clustering can
become dominated by the older, outdated data of the stream. In real life, the nature of
the clusters may vary with both the moment at which they are computed, as well as the
time horizon over which they are measured. For example, a user may wish to examine
clusters occurring last week, last month, or last year. These may be considerably differ-
ent. Therefore, a data stream clustering algorithm should also provide the flexibility to
compute clusters over user-defined time periods in an interactive manner. The following
algorithm, CluStream, addresses these concerns.

CluStream: Clustering Evolving Data Streams
CluStream is an algorithm for the clustering of evolving data streams based on user-
specified, on-line clustering queries. It divides the clustering process into on-line and off-
line components. The on-line component computes and stores summary statistics about
the data stream using microclusters, and performs incremental on-line computation and
maintenance of the microclusters. The off-line component does macroclustering and
answers various user questions using the stored summary statistics, which are based on
the tilted time frame model.

To cluster evolving data streams based on both historical and current stream data
information, the tilted time frame model (such as a progressive logarithmic model) is
adopted, which stores the snapshots of a set of microclusters at different levels of
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granularity depending on recency. The intuition here is that more information will be
needed for more recent events as opposed to older events. The stored information can
be used for processing history-related, user-specific clustering queries.

A microcluster in CluStream is represented as a clustering feature. CluStream extends
the concept of the clustering feature developed in BIRCH (see Section 7.5.2) to include the
temporal domain. As a temporal extension of the clustering feature, a microcluster for a set
of d-dimensional points, X1, . . . , Xn, with timestamps, T1, . . . , Tn, is defined as the (2d +3)
tuple (CF2x,CF1x,CF2t , CF1t , n), wherein CF2x and CF1x are d-dimensional vectors
while CF2t , CF1t , and n are scalars. CF2x maintains the sum of the squares of the data
values per dimension, that is, ∑n

i=1 X2
i . Similarly, for each dimension, the sum of the data

values is maintained in CF1x. From a statistical point of view, CF2x and CF1x represent
the second- and first-order moments (Section 8.1.1) of the data, respectively. The sum of
squaresof the timestamps ismaintained inCF2t .Thesumof the timestamps ismaintained
in CF1t . Finally, the number of data points in the microcluster is maintained in n.

Clustering features have additive and subtractive properties that make them very use-
ful for data stream cluster analysis. For example, two microclusters can be merged by
adding their respective clustering features. Furthermore, a large number of microclusters
can be maintained without using a great deal of memory. Snapshots of these microclus-
ters are stored away at key points in time based on the tilted time frame.

The on-line microcluster processing is divided into two phases: (1) statistical data
collection and (2) updating of microclusters. In the first phase, a total of q microclus-
ters, M1, . . . , Mq, are maintained, where q is usually significantly larger than the number
of natural clusters and is determined by the amount of available memory. In the second
phase, microclusters are updated. Each new data point is added to either an existing clus-
ter or a new one. To decide whether a new cluster is required, a maximum boundary for
each cluster is defined. If the new data point falls within the boundary, it is added to the
cluster; otherwise, it is the first data point in a new cluster. When a data point is added to
an existing cluster, it is “absorbed” because of the additive property of the microclusters.
When a data point is added to a new cluster, the least recently used existing cluster has
to be removed or two existing clusters have to be merged, depending on certain criteria,
in order to create memory space for the new cluster.

The off-line component can perform user-directed macroclustering or cluster evolu-
tion analysis. Macroclustering allows a user to explore the stream clusters over different
time horizons. A time horizon, h, is a history of length h of the stream. Given a user-
specified time horizon, h, and the number of desired macroclusters, k, macroclustering
finds k high-level clusters over h. This is done as follows: First, the snapshot at time tc−h
is subtracted from the snapshot at the current time, tc. Clusters older than the begin-
ning of the horizon are not included. The microclusters in the horizon are considered as
weighted pseudo-points and are reclustered in order to determine higher-level clusters.
Notice that the clustering process is similar to the method used in STREAM but requires
only two snapshots (the beginning and end of the horizon) and is more flexible over a
range of user queries.

“What if a user wants to see how clusters have changed over, say, the last quarter or the
last year?” Cluster evolution analysis looks at how clusters change over time. Given a
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user-specified time horizon, h, and two clock times, t1 and t2 (where t1 < t2), cluster
evolution analysis examines the evolving nature of the data arriving between (t2−h, t2)
and that arriving between (t1−h, t1). This involves answering questions like whether new
clusters in the data at time t1 were not present at time t2, or whether some of the original
clusters were lost. This also involves analyzing whether some of the original clusters at
time t1 shifted in position and nature. With the available microcluster information, this
can be done by computing the net snapshots of the microclusters, N(t1, h) and N(t2, h),
and then computing the snapshot changes over time. Such evolution analysis of the data
over time can be used for network intrusion detection to identify new types of attacks
within the network.

CluStream was shown to derive high-quality clusters, especially when the changes are
dramatic. Moreover, it offers rich functionality to the user because it registers the essen-
tial historical information with respect to cluster evolution. The tilted time frame along
with the microclustering structure allow for better accuracy and efficiency on real data.
Finally, it maintains scalability in terms of stream size, dimensionality, and the number
of clusters.

In general, stream data mining is still a fast-evolving research field. With the mas-
sive amount of data streams populating many applications, it is expected that many
new stream data mining methods will be developed, especially for data streams contain-
ing additional semantic information, such as time-series streams, spatiotemporal data
streams, and video and audio data streams.

8.2 Mining Time-Series Data

“What is a time-series database?” A time-series database consists of sequences of val-
ues or events obtained over repeated measurements of time. The values are typically
measured at equal time intervals (e.g., hourly, daily, weekly). Time-series databases are
popular in many applications, such as stock market analysis, economic and sales fore-
casting, budgetary analysis, utility studies, inventory studies, yield projections, work-
load projections, process and quality control, observation of natural phenomena (such
as atmosphere, temperature, wind, earthquake), scientific and engineering experiments,
and medical treatments. A time-series database is also a sequence database. However, a
sequence database is any database that consists of sequences of ordered events, with or
without concrete notions of time. For example, Web page traversal sequences and cus-
tomer shopping transaction sequences are sequence data, but they may not be time-series
data. The mining of sequence data is discussed in Section 8.3.

With the growing deployment of a large number of sensors, telemetry devices, and
other on-line data collection tools, the amount of time-series data is increasing rapidly,
often in the order of gigabytes per day (such as in stock trading) or even per minute
(such as from NASA space programs). How can we find correlation relationships within
time-series data? How can we analyze such huge numbers of time series to find similar
or regular patterns, trends, bursts (such as sudden sharp changes), and outliers, with
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fast or even on-line real-time response? This has become an increasingly important and
challenging problem. In this section, we examine several aspects of mining time-series
databases, with a focus on trend analysis and similarity search.

8.2.1 Trend Analysis

A time series involving a variable Y , representing, say, the daily closing price of a share in
a stock market, can be viewed as a function of time t, that is, Y = F(t). Such a function
can be illustrated as a time-series graph, as shown in Figure 8.4, which describes a point
moving with the passage of time.

“How can we study time-series data?” In general, there are two goals in time-series
analysis: (1) modeling time series (i.e., to gain insight into the mechanisms or underlying
forces that generate the time series), and (2) forecasting time series (i.e., to predict the
future values of the time-series variables).

Trend analysis consists of the following four major components or movements for
characterizing time-series data:

Trend or long-term movements: These indicate the general direction in which a time-
series graph is moving over a long interval of time. This movement is displayed by a
trend curve, or a trend line. For example, the trend curve of Figure 8.4 is indicated by
a dashed curve. Typical methods for determining a trend curve or trend line include
the weighted moving average method and the least squares method, discussed later.

Cyclic movements or cyclic variations: These refer to the cycles, that is, the long-term
oscillations about a trend line or curve, which may or may not be periodic. That is,
the cycles need not necessarily follow exactly similar patterns after equal intervals of
time.

pr
ic

e

time

AllElectronics stock
10 day moving average

Figure 8.4 Time-series data of the stock price of AllElectronics over time. The trend is shown with a
dashed curve, calculated by a moving average.
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Seasonal movements or seasonal variations: These are systematic or calendar related.
Examples include events that recur annually, such as the sudden increase in sales of
chocolates and flowers before Valentine’s Day or of department store items before
Christmas. The observed increase in water consumption in summer due to warm
weather is another example. In these examples, seasonal movements are the identical
or nearly identical patterns that a time series appears to follow during corresponding
months of successive years.

Irregular or random movements: These characterize the sporadic motion of time
series due to random or chance events, such as labor disputes, floods, or announced
personnel changes within companies.

Note that regression analysis has been a popular tool for modeling time series, finding
trends and outliers in such data sets. Regression is a fundamental topic in statistics and
is described in many textbooks. Thus, we will not spend much time on this theme.3

However, pure regression analysis cannot capture all of the four movements described
above that occur in real-world applications. Hence, our discussion of trend analysis and
modeling time series focuses on the above movements.

The trend, cyclic, seasonal, and irregular movements are represented by the variables
T , C, S, I, respectively. Time-series modeling is also referred to as the decomposition of a
time series into these four basic movements. The time-series variable Y can be modeled
as either the product of the four variables (i.e., Y = T ×C× S× I) or their sum. This
choice is typically empirical.

“Given a sequence of values for Y (i.e., y1, y2, y3, . . .) for analysis, how can we adjust the
data for seasonal fluctuations?” This can be performed by estimating and then removing
from the time series the influences of the data that are systematic or calendar related.
In many business transactions, for example, there are expected regular seasonal fluctua-
tions, such as higher sales volumes during the Christmas season. Such fluctuations can
conceal both the true underlying movement of the series as well as certain nonseasonal
characteristics that may be of interest. Therefore, it is important to identify such seasonal
variations and “deseasonalize” the data. For this purpose, the concept of seasonal index
is introduced, as a set of numbers showing the relative values of a variable during the
months of a year. For example, if the sales during October, November, and December are
80%, 120%, and 140% of the average monthly sales for the whole year, respectively, then
80, 120, and 140 are the seasonal index numbers for the year. If the original monthly data
are divided by the corresponding seasonal index numbers, the resulting data are said to
be deseasonalized, or adjusted for seasonal variations. Such data still include trend, cyclic,
and irregular movements.

To detect seasonal patterns, we can also look for correlations between each ith element
of the series and (i−k)th element (where k is referred to as the lag) using autocorrelation
analysis. For example, we can measure the correlation in sales for every twelfth month,

3A simple introduction to regression is included in Chapter 6: Classification and Prediction.
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where here, k = 12. The correlation coefficient given in Chapter 2 (Equation (2.8)) can
be used. Let 〈y1, y2, . . . , yN〉 be the time series. To apply Equation (2.8), the two attributes
in the equation respectively refer to the two random variables representing the time series
viewed with lag k. These times series are 〈y1, y2, . . . , yN−k〉 and 〈yk+1, yk+2, . . . , yN〉. A zero
value indicates that there is no correlation relationship. A positive value indicates a positive
correlation, that is, both variables increase together. A negative value indicates a negative
correlation, that is, one variable increases as the other decreases. The higher the positive
(or negative) value is, the greater is the positive (or negative) correlation relationship.

“How can we determine the trend of the data?” A common method for determining
trend is to calculate a moving average of order n as the following sequence of arithmetic
means:

y1 + y2 + · · ·+ yn

n
,

y2 + y3 + · · ·+ yn+1

n
,

y3 + y4 + · · ·+ yn+2

n
, · · · (8.5)

A moving average tends to reduce the amount of variation present in the data set. Thus
the process of replacing the time series by its moving average eliminates unwanted fluc-
tuations and is therefore also referred to as the smoothing of time series. If weighted
arithmetic means are used in Sequence (8.5), the resulting sequence is called a weighted
moving average of order n.

Example 8.5 Moving averages. Given a sequence of nine values, we can compute its moving average
of order 3, and its weighted moving average of order 3 using the weights (1, 4, 1). This
information can be displayed in tabular form, where each value in the moving average
is the mean of the three values immediately above it, and each value in the weighted
moving average is the weighted average of the three values immediately above it.

Original data: 3 7 2 0 4 5 9 7 2

Moving average of order 3: 4 3 2 3 6 7 6

Weighted (1, 4, 1) moving average of order 3: 5.5 2.5 1 3.5 5.5 8 6.5

Using the first equation in Sequence 8.5, we calculate the first moving average as
3 + 7 + 2

3 = 4. The first weighted average value is calculated as 1×3 + 4×7 + 1×2
1 + 4 + 1 = 5.5.

The weighted average typically assigns greater weights to the central elements in order
to offset the smoothing effect.

A moving average loses the data at the beginning and end of a series; may some-
times generate cycles or other movements that are not present in the original data; and
may be strongly affected by the presence of extreme values. Notice that the influence of
extreme values can be reduced by employing a weighted moving average with appropriate
weights as shown in Example 8.5. An appropriate moving average can help smooth out
irregular variations in the data. In general, small deviations tend to occur with large fre-
quency, whereas large deviations tend to occur with small frequency, following a normal
distribution.

“Are there other ways to estimate the trend?” Yes, one such method is the freehand
method, where an approximate curve or line is drawn to fit a set of data based on the
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user’s own judgment. This method is costly and barely reliable for any large-scale data
mining. An alternative is the least squares method,4 where we consider the best-fitting
curveC as the least squares curve, that is, the curve having the minimum of ∑n

i=1 d2
i , where

the deviation or error, di, is the difference between the value yi of a point (xi, yi) and the
corresponding value as determined from the curve C.

The data can then be adjusted for trend by dividing the data by their corresponding
trend values. As mentioned earlier, an appropriate moving average will smooth out the
irregular variations. This leaves us with only cyclic variations for further analysis. If peri-
odicity or approximate periodicity of cycles occurs, cyclic indexes can be constructed in
a manner similar to that for seasonal indexes.

In practice, it is useful to first graph the time series and qualitatively estimate the
presence of long-term trends, seasonal variations, and cyclic variations. This may help
in selecting a suitable method for analysis and in comprehending its results.

Time-series forecasting finds a mathematical formula that will approximately gen-
erate the historical patterns in a time series. It is used to make long-term or short-
term predictions of future values. There are several models for forecasting: ARIMA
(Auto-Regressive Integrated Moving Average), also known as the Box-Jenkins method-
ology (after its creators), is a popular example. It is powerful yet rather complex to
use. The quality of the results obtained may depend on the user’s level of experience.
Interested readers may consult the bibliographic notes for references to the technique.

8.2.2 Similarity Search in Time-Series Analysis

“What is a similarity search?” Unlike normal database queries, which find data that match
the given query exactly, a similarity search finds data sequences that differ only slightly
from the given query sequence. Given a set of time-series sequences, S, there are two
types of similarity searches: subsequence matching and whole sequence matching. Subse-
quence matching finds the sequences in S that contain subsequences that are similar
to a given query sequence x, while whole sequence matching finds a set of sequences
in S that are similar to each other (as a whole). Subsequence matching is a more fre-
quently encountered problem in applications. Similarity search in time-series analysis is
useful for financial market analysis (e.g., stock data analysis), medical diagnosis (e.g., car-
diogram analysis), and in scientific or engineering databases (e.g., power consumption
analysis).

Data Reduction and Transformation Techniques
Due to the tremendous size and high-dimensionality of time-series data, data reduction
often serves as the first step in time-series analysis. Data reduction leads to not only much
smaller storage space but also much faster processing. As discussed in Chapter 2, major

4The least squares method was introduced in Section 6.11.1 under the topic of linear regression.
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strategies for data reduction include attribute subset selection (which removes
irrelevant or redundant attributes or dimensions), dimensionality reduction (which typi-
callyemployssignalprocessingtechniquestoobtainareducedversionof theoriginaldata),
and numerosity reduction (where data are replaced or estimated by alternative, smaller rep-
resentations, such as histograms, clustering, and sampling). Because time series can be
viewed as data of very high dimensionality where each point of time can be viewed as a
dimension, dimensionality reduction is our major concern here. For example, to compute
correlations between two time-series curves, the reduction of the time series from length
(i.e., dimension) n to k may lead to a reduction from O(n) to O(k) in computational com-
plexity. If k� n, the complexity of the computation will be greatly reduced.

Several dimensionality reduction techniques can be used in time-series analysis.
Examples include (1) the discrete Fourier transform (DFT) as the classical data reduction
technique, (2) more recently developed discrete wavelet transforms (DWT), (3) Singu-
lar Value Decomposition (SVD) based on Principle Components Analysis (PCA),5 and
(4) random projection-based sketch techniques (as discussed in Section 8.1.1), which
can also give a good-quality synopsis of data. Because we have touched on these topics
earlier in this book, and because a thorough explanation is beyond our scope, we will not
go into great detail here. The first three techniques listed are signal processing techniques.
A given time series can be considered as a finite sequence of real values (or coefficients),
recorded over time in some object space. The data or signal is transformed (using a spe-
cific transformation function) into a signal in a transformed space. A small subset of the
“strongest” transformed coefficients are saved as features. These features form a feature
space, which is simply a projection of the transformed space. This representation is sparse
so that operations that can take advantage of data sparsity are computationally very fast
if performed in feature space. The features can be transformed back into object space,
resulting in a compressed approximation of the original data.

Many techniques for signal analysis require the data to be in the frequency domain.
Therefore, distance-preserving orthonormal transformations are often used to trans-
form the data from the time domain to the frequency domain. Usually, a data-independent
transformation is applied, where the transformation matrix is determined a priori, inde-
pendent of the input data. Because the distance between two signals in the time domain
is the same as their Euclidean distance in the frequency domain, the DFT does a good
job of preserving essentials in the first few coefficients. By keeping only the first few (i.e.,
“strongest”) coefficients of the DFT, we can compute the lower bounds of the actual
distance.

Indexing Methods for Similarity Search
“Once the data are transformed by, say, a DFT, how can we provide support for efficient
search in time-series data?” For efficient accessing, a multidimensional index can be

5The Discrete Fourier transform, wavelet transforms, and principal components analysis are briefly
introduced in Section 2.5.3.
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constructed using the first few Fourier coefficients. When a similarity query is submitted
to the system, the index can be used to retrieve the sequences that are at most a certain
small distance away from the query sequence. Postprocessing is then performed by com-
puting the actual distance between sequences in the time domain and discarding any
false matches.

For subsequence matching, each sequence can be broken down into a set of “pieces”
of windows with length w. In one approach, the features of the subsequence inside each
window are then extracted. Each sequence is mapped to a “trail” in the feature space.
The trail of each sequence is divided into “subtrails,” each represented by a minimum
bounding rectangle. A multipiece assembly algorithm can then be used to search for
longer sequence matches.

Various kinds of indexing methods have been explored to speed up the similarity
search. For example, R-trees and R?-trees have been used to store the minimal bounding
rectangles mentioned above. In addition, the ε-kdB tree has been developed for faster spa-
tial similarity joins on high-dimensional points, and suffix trees have also been explored.
References are given in the bibliographic notes.

Similarity Search Methods
The above trail-based approach to similarity search was pioneering, yet has a number of
limitations. In particular, it uses the Euclidean distance as a similarity measure, which is
sensitive to outliers. Furthermore, what if there are differences in the baseline and scale of
the two time series being compared? What if there are gaps? Here, we discuss an approach
that addresses these issues.

For similarity analysis of time-series data, Euclidean distance is typically used as a
similarity measure. Here, the smaller the distance between two sets of time-series data,
the more similar are the two series. However, we cannot directly apply the Euclidean
distance. Instead, we need to consider differences in the baseline and scale (or amplitude)
of our two series. For example, one stock’s value may have a baseline of around $20 and
fluctuate with a relatively large amplitude (such as between $15 and $25), while another
could have a baseline of around $100 and fluctuate with a relatively small amplitude
(such as between $90 and $110). The distance from one baseline to another is referred
to as the offset.

A straightforward approach to solving the baseline and scale problem is to apply a nor-
malization transformation. For example, a sequence X = 〈x1, x2, . . . , xn〉 can be replaced
by a normalized sequence X ′ = 〈x′1, x′2, . . . , x′n〉, using the following formula,

x′i =
xi−µ

σ
(8.6)

where µ is the mean value of the sequence X and σ is the standard deviation of X . We
can transform other sequences using the same formula, and then compare them for
similarity.

Most real-world applications do not require the matching subsequences to be
perfectly aligned along the time axis. In other words, we should allow for pairs of
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subsequences to match if they are of the same shape, but differ due to the presence
of gaps within a sequence (where one of the series may be missing some of the
values that exist in the other) or differences in offsets or amplitudes. This is partic-
ularly useful in many similar sequence analyses, such as stock market analysis and
cardiogram analysis.

“How can subsequence matching be performed to allow for such differences?” Users
or experts can specify parameters such as a sliding window size, the width of an
envelope for similarity, the maximum gap, a matching fraction, and so on. Figure 8.5
illustrates the process involved, starting with two sequences in their original form.
First, gaps are removed. The resulting sequences are normalized with respect to offset
translation (where one time series is adjusted to align with the other by shifting the
baseline or phase) and amplitude scaling. For this normalization, techniques such
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Figure 8.5 Subsequence matching in time-series data: The original sequences are of the same shape,
yet adjustments need to be made to deal with differences in gaps, offsets, and amplitudes.
These adjustments allow subsequences to be matched within an envelope of width ε. Based
on [ALSS95].
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as those described in Section 2.4.2 may be used. Two subsequences are considered
similar and can be matched if one lies within an envelope of ε width around the
other (where ε is a small number, specified by a user or expert), ignoring outliers.
Two sequences are similar if they have enough nonoverlapping time-ordered pairs of
similar subsequences.

Based on the above, a similarity search that handles gaps and differences in offsets and
amplitudes can be performed by the following steps:

1. Atomic matching: Normalize the data. Find all pairs of gap-free windows of a small
length that are similar.

2. Window stitching: Stitch similar windows to form pairs of large similar subsequences,
allowing gaps between atomic matches.

3. Subsequence ordering: Linearly order the subsequence matches to determine whether
enough similar pieces exist.

With such processing, sequences of similar shape but with gaps or differences in offsets
or amplitudes can be found to match each other or to match query templates.

Query Languages for Time Sequences
“How can I specify the similarity search to be performed?” We need to design and
develop powerful query languages to facilitate the specification of similarity searches
in time sequences. A time-sequence query language should be able to specify not only
simple similarity queries like “Find all of the sequences similar to a given subsequence
Q,” but also sophisticated queries like “Find all of the sequences that are similar to
some sequence in class C1, but not similar to any sequence in class C2.” Moreover,
it should be able to support various kinds of queries, such as range queries and
nearest-neighbor queries.

An interesting kind of time-sequence query language is a shape definition lan-
guage. It allows users to define and query the overall shape of time sequences using
human-readable series of sequence transitions or macros, while ignoring the specific
details.

Example 8.6 Using a shape definition language. The pattern up, Up, UP can be used to describe
increasing degrees of rising slopes. A macro, such as spike, can denote a sequence like
(SteepUps, flat, SteepDowns), where SteepUps is defined as ({Up, UP}, {Up, UP},
{Up, UP}), which means that one SteepUps consists of three steep up-slopes, each cor-
responding to either Up or UP. SteepDowns is similarly defined.

Such a shape definition language increases the users’ flexibility at specifying queries
of desired shapes for sequence similarity search.
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8.3 Mining Sequence Patterns in Transactional Databases

A sequence database consists of sequences of ordered elements or events, recorded with
or without a concrete notion of time. There are many applications involving sequence
data. Typical examples include customer shopping sequences, Web clickstreams, bio-
logical sequences, sequences of events in science and engineering, and in natural and
social developments. In this section, we study sequential pattern mining in transactional
databases. In particular, we start with the basic concepts of sequential pattern mining in
Section 8.3.1. Section 8.3.2 presents several scalable methods for such mining.
Constraint-based sequential pattern mining is described in Section 8.3.3. Periodicity
analysis for sequence data is discussed in Section 8.3.4. Specific methods for mining
sequence patterns in biological data are addressed in Section 8.4.

8.3.1 Sequential Pattern Mining: Concepts and Primitives

“What is sequential pattern mining?” Sequential pattern mining is the mining of fre-
quently occurring ordered events or subsequences as patterns. An example of a sequen-
tial pattern is “Customers who buy a Canon digital camera are likely to buy an HP color
printer within a month.” For retail data, sequential patterns are useful for shelf placement
and promotions. This industry, as well as telecommunications and other businesses, may
also use sequential patterns for targeted marketing, customer retention, and many other
tasks. Other areas in which sequential patterns can be applied include Web access pat-
tern analysis, weather prediction, production processes, and network intrusion detec-
tion. Notice that most studies of sequential pattern mining concentrate on categorical (or
symbolic) patterns, whereas numerical curve analysis usually belongs to the scope of trend
analysis and forecasting in statistical time-series analysis, as discussed in Section 8.2.

The sequential pattern mining problem was first introduced by Agrawal and Srikant
in 1995 [AS95] based on their study of customer purchase sequences, as follows: “Given a
set of sequences, where each sequence consists of a list of events (or elements) and each event
consists of a set of items, and given a user-specified minimum support threshold of min sup,
sequential pattern mining finds all frequent subsequences, that is, the subsequences whose
occurrence frequency in the set of sequences is no less than min sup.”

Let’s establish some vocabulary for our discussion of sequential pattern mining. Let
I = {I1, I2, . . . , Ip} be the set of all items. An itemset is a nonempty set of items.
A sequence is an ordered list of events. A sequence s is denoted 〈e1e2e3 · · ·el〉, where
event e1 occurs before e2, which occurs before e3, and so on. Event e j is also called an
element of s. In the case of customer purchase data, an event refers to a shopping trip in
which a customer bought items at a certain store. The event is thus an itemset, that is,
an unordered list of items that the customer purchased during the trip. The itemset (or
event) is denoted (x1x2 · · ·xq), where xk is an item. For brevity, the brackets are omitted
if an element has only one item, that is, element (x) is written as x. Suppose that a cus-
tomer made several shopping trips to the store. These ordered events form a sequence
for the customer. That is, the customer first bought the items in s1, then later bought
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the items in s2, and so on. An item can occur at most once in an event of a sequence,
but can occur multiple times in different events of a sequence. The number of instances
of items in a sequence is called the length of the sequence. A sequence with length l is
called an l-sequence. A sequence α = 〈a1a2 · · ·an〉 is called a subsequence of another
sequence β = 〈b1b2 · · ·bm〉, and β is a supersequence of α, denoted as α v β, if there
exist integers 1≤ j1 < j2 < · · ·< jn ≤ m such that a1 ⊆ b j1 , a2 ⊆ b j2 , . . . , an ⊆ b jn . For
example, if α = 〈(ab), d〉 and β = 〈(abc), (de)〉, where a, b, c, d, and e are items, then α
is a subsequence of β and β is a supersequence of α.

A sequence database, S, is a set of tuples, 〈SID, s〉, where SID is a sequence ID and
s is a sequence. For our example, S contains sequences for all customers of the store.
A tuple 〈SID, s〉 is said to contain a sequence α, if α is a subsequence of s. The support
of a sequence α in a sequence database S is the number of tuples in the database con-
taining α, that is, supportS(α) = | {〈SID, s〉|(〈SID, s〉 ∈ S)∧(αv s)} |. It can be denoted
as support(α) if the sequence database is clear from the context. Given a positive inte-
ger min sup as the minimum support threshold, a sequence α is frequent in sequence
database S if supportS(α)≥min sup. That is, for sequence α to be frequent, it must occur
at least min sup times in S. A frequent sequence is called a sequential pattern. A sequen-
tial pattern with length l is called an l-pattern. The following example illustrates these
concepts.

Example 8.7 Sequential patterns. Consider the sequence database, S, given in Table 8.1, which will
be used in examples throughout this section. Let min sup = 2. The set of items in the
database is {a, b, c, d, e, f , g}. The database contains four sequences.

Let’s look at sequence 1, which is 〈a(abc)(ac)d(cf )〉. It has five events, namely (a),
(abc), (ac), (d), and (cf ), which occur in the order listed. Items a and c each appear
more than once in different events of the sequence. There are nine instances of items in
sequence 1; therefore, it has a length of nine and is called a 9-sequence. Item a occurs three
times in sequence 1 and so contributes three to the length of the sequence. However,
the entire sequence contributes only one to the support of 〈a〉. Sequence 〈a(bc)df 〉 is
a subsequence of sequence 1 since the events of the former are each subsets of events
in sequence 1, and the order of events is preserved. Consider subsequence s = 〈(ab)c〉.
Looking at the sequence database, S, we see that sequences 1 and 3 are the only ones that
contain the subsequence s. The support of s is thus 2, which satisfies minimum support.

Table 8.1 A sequence database

Sequence ID Sequence

1 〈a(abc)(ac)d(c f )〉
2 〈(ad)c(bc)(ae)〉
3 〈(e f )(ab)(d f )cb〉
4 〈eg(a f )cbc〉
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Therefore, s is frequent, and so we call it a sequential pattern. It is a 3-pattern since it is a
sequential pattern of length three.

This model of sequential pattern mining is an abstraction of customer-shopping
sequence analysis. Scalable methods for sequential pattern mining on such data are
described in Section 8.3.2, which follows. Many other sequential pattern mining appli-
cations may not be covered by this model. For example, when analyzing Web clickstream
sequences, gaps between clicks become important if one wants to predict what the next
click might be. In DNA sequence analysis, approximate patterns become useful since
DNA sequences may contain (symbol) insertions, deletions, and mutations. Such diverse
requirements can be viewed as constraint relaxation or enforcement. In Section 8.3.3, we
discuss how to extend the basic sequential mining model to constrained sequential pat-
tern mining in order to handle these cases.

8.3.2 Scalable Methods for Mining Sequential Patterns

Sequential pattern mining is computationally challenging because such mining may gen-
erate and/or test a combinatorially explosive number of intermediate subsequences.

“How can we develop efficient and scalable methods for sequential pattern mining?”
Recent developments have made progress in two directions: (1) efficient methods for
mining the full set of sequential patterns, and (2) efficient methods for mining only
the set of closed sequential patterns, where a sequential pattern s is closed if there exists
no sequential pattern s′ where s′ is a proper supersequence of s, and s′ has the same
(frequency) support as s.6 Because all of the subsequences of a frequent sequence are
also frequent, mining the set of closed sequential patterns may avoid the generation of
unnecessary subsequences and thus lead to more compact results as well as more effi-
cient methods than mining the full set. We will first examine methods for mining the
full set and then study how they can be extended for mining the closed set. In addition,
we discuss modifications for mining multilevel, multidimensional sequential patterns
(i.e., with multiple levels of granularity).

The major approaches for mining the full set of sequential patterns are similar to
those introduced for frequent itemset mining in Chapter 5. Here, we discuss three such
approaches for sequential pattern mining, represented by the algorithms GSP, SPADE,
and PrefixSpan, respectively. GSP adopts a candidate generate-and-test approach using
horizonal data format (where the data are represented as 〈sequence ID : sequence of
itemsets〉, as usual, where each itemset is an event). SPADE adopts a candidate generate-
and-test approach using vertical data format (where the data are represented as 〈itemset :
(sequence ID, event ID)〉). The vertical data format can be obtained by transforming
from a horizontally formatted sequence database in just one scan. PrefixSpan is a pat-
tern growth method, which does not require candidate generation.

6Closed frequent itemsets were introduced in Chapter 5. Here, the definition is applied to sequential
patterns.
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All three approaches either directly or indirectly explore the Apriori property, stated
as follows: every nonempty subsequence of a sequential pattern is a sequential pattern.
(Recall that for a pattern to be called sequential, it must be frequent. That is, it must sat-
isfy minimum support.) The Apriori property is antimonotonic (or downward-closed)
in that, if a sequence cannot pass a test (e.g., regarding minimum support), all of its
supersequences will also fail the test. Use of this property to prune the search space can
help make the discovery of sequential patterns more efficient.

GSP: A Sequential Pattern Mining Algorithm
Based on Candidate Generate-and-Test
GSP (Generalized Sequential Patterns) is a sequential pattern mining method that
was developed by Srikant and Agrawal in 1996. It is an extension of their seminal
algorithm for frequent itemset mining, known as Apriori (Section 5.2). GSP uses the
downward-closure property of sequential patterns and adopts a multiple-pass, candi-
date generate-and-test approach. The algorithm is outlined as follows. In the first scan
of the database, it finds all of the frequent items, that is, those with minimum sup-
port. Each such item yields a 1-event frequent sequence consisting of that item. Each
subsequent pass starts with a seed set of sequential patterns—the set of sequential
patterns found in the previous pass. This seed set is used to generate new potentially
frequent patterns, called candidate sequences. Each candidate sequence contains one
more item than the seed sequential pattern from which it was generated (where each
event in the pattern may contain one or multiple items). Recall that the number of
instances of items in a sequence is the length of the sequence. So, all of the candidate
sequences in a given pass will have the same length. We refer to a sequence with
length k as a k-sequence. Let Ck denote the set of candidate k-sequences. A pass
over the database finds the support for each candidate k-sequence. The candidates
in Ck with at least min sup form Lk, the set of all frequent k-sequences. This set then
becomes the seed set for the next pass, k+1. The algorithm terminates when no new
sequential pattern is found in a pass, or no candidate sequence can be generated.

The method is illustrated in the following example.

Example 8.8 GSP: Candidate generate-and-test (using horizontal data format). Suppose we are given
the same sequence database, S, of Table 8.1 from Example 8.7, with min sup = 2. Note
that the data are represented in horizontal data format. In the first scan (k = 1), GSP
collects the support for each item. The set of candidate 1-sequences is thus (shown
here in the form of “sequence:support”): 〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 3, 〈d〉 : 3, 〈e〉 : 3,
〈 f 〉 : 3, 〈g〉 : 1.

The sequence 〈g〉 has a support of only 1 and is the only sequence that does not satisfy
minimum support. By filtering it out, we obtain the first seed set, L1 = {〈a〉, 〈b〉, 〈c〉, 〈d〉,
〈e〉, 〈 f 〉}. Each member in the set represents a 1-event sequential pattern. Each subsequent
pass starts with the seed set found in the previous pass and uses it to generate new candidate
sequences, which are potentially frequent.
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Using L1 as the seed set, this set of six length-1 sequential patterns generates a set of
6× 6 + 6 × 5

2 = 51 candidate sequences of length 2, C2 = {〈aa〉, 〈ab〉, . . . , 〈a f 〉, 〈ba〉,
〈bb〉, . . . , 〈 f f 〉, 〈(ab)〉, 〈(ac)〉, . . . , 〈(e f )〉}.

In general, the set of candidates is generated by a self-join of the sequential patterns
found in the previous pass (see Section 5.2.1 for details). GSP applies the Apriori property
to prune the set of candidates as follows. In the k-th pass, a sequence is a candidate only
if each of its length-(k−1) subsequences is a sequential pattern found at the (k−1)-th
pass. A new scan of the database collects the support for each candidate sequence and
finds a new set of sequential patterns, Lk. This set becomes the seed for the next pass. The
algorithm terminates when no sequential pattern is found in a pass or when no candidate
sequence is generated. Clearly, the number of scans is at least the maximum length of
sequential patterns. GSP needs one more scan if the sequential patterns obtained in the
last scan still generate new candidates (none of which are found to be frequent).

Although GSP benefits from the Apriori pruning, it still generates a large number of
candidates. In this example, six length-1 sequential patterns generate 51 length-2 candi-
dates; 22 length-2 sequential patterns generate 64 length-3 candidates; and so on. Some
candidates generated by GSP may not appear in the database at all. In this example, 13
out of 64 length-3 candidates do not appear in the database, resulting in wasted time.

The example shows that although an Apriori-like sequential pattern mining method,
such as GSP, reduces search space, it typically needs to scan the database multiple times.
It will likely generate a huge set of candidate sequences, especially when mining long
sequences. There is a need for more efficient mining methods.

SPADE: An Apriori-Based Vertical Data Format
Sequential Pattern Mining Algorithm
The Apriori-like sequential pattern mining approach (based on candidate generate-and-
test) can also be explored by mapping a sequence database into vertical data format. In
vertical data format, the database becomes a set of tuples of the form 〈itemset :
(sequence ID, event ID)〉. That is, for a given itemset, we record the sequence identifier
and corresponding event identifier for which the itemset occurs. The event identifier
serves as a timestamp within a sequence. The event ID of the ith itemset (or event) in
a sequence is i. Note than an itemset can occur in more than one sequence. The set of
(sequence ID, event ID) pairs for a given itemset forms the ID list of the itemset. The
mapping from horizontal to vertical format requires one scan of the database. A major
advantage of using this format is that we can determine the support of any k-sequence
by simply joining the ID lists of any two of its (k−1)-length subsequences. The length
of the resulting ID list (i.e., unique sequence ID values) is equal to the support of the
k-sequence, which tells us whether the sequence is frequent.

SPADE (Sequential PAttern Discovery using Equivalent classes) is an Apriori-based
sequential pattern mining algorithm that uses vertical data format. As with GSP, SPADE
requires one scan to find the frequent 1-sequences. To find candidate 2-sequences,
we join all pairs of single items if they are frequent (therein, it applies the Apriori



8.3 Mining Sequence Patterns in Transactional Databases 503

property), if they share the same sequence identifier, and if their event identifiers follow a
sequential ordering. That is, the first item in the pair must occur as an event before the
second item, where both occur in the same sequence. Similarly, we can grow the length
of itemsets from length 2 to length 3, and so on. The procedure stops when no frequent
sequences can be found or no such sequences can be formed by such joins. The following
example helps illustrate the process.

Example 8.9 SPADE: Candidate generate-and-test using vertical data format. Let min sup = 2. Our
running example sequence database, S, of Table 8.1 is in horizonal data format. SPADE
first scans S and transforms it into vertical format, as shown in Figure 8.6(a). Each item-
set (or event) is associated with its ID list, which is the set of SID (sequence ID) and EID
(event ID) pairs that contain the itemset. The ID list for individual items, a, b, and so
on, is shown in Figure 8.6(b). For example, the ID list for item b consists of the follow-
ing (SID, EID) pairs: {(1, 2), (2, 3), (3, 2), (3, 5), (4, 5)}, where the entry (1, 2) means
that b occurs in sequence 1, event 2, and so on. Items a and b are frequent. They can
be joined to form the length-2 sequence, 〈a, b〉. We find the support of this sequence
as follows. We join the ID lists of a and b by joining on the same sequence ID wher-
ever, according to the event IDs, a occurs before b. That is, the join must preserve the
temporal order of the events involved. The result of such a join for a and b is shown
in the ID list for ab of Figure 8.6(c). For example, the ID list for 2-sequence ab is a
set of triples, (SID, EID(a), EID(b)), namely {(1, 1, 2), (2, 1, 3), (3, 2, 5), (4, 3, 5)}. The
entry (2, 1, 3), for example, shows that both a and b occur in sequence 2, and that a
(event 1 of the sequence) occurs before b (event 3), as required. Furthermore, the fre-
quent 2-sequences can be joined (while considering the Apriori pruning heuristic that
the (k-1)-subsequences of a candidate k-sequence must be frequent) to form 3-sequences,
as in Figure 8.6(d), and so on. The process terminates when no frequent sequences can
be found or no candidate sequences can be formed. Additional details of the method can
be found in Zaki [Zak01].

The use of vertical data format, with the creation of ID lists, reduces scans of the
sequence database. The ID lists carry the information necessary to find the support of
candidates. As the length of a frequent sequence increases, the size of its ID list decreases,
resulting in very fast joins. However, the basic search methodology of SPADE and GSP
is breadth-first search (e.g., exploring 1-sequences, then 2-sequences, and so on) and
Apriori pruning. Despite the pruning, both algorithms have to generate large sets of
candidates in breadth-first manner in order to grow longer sequences. Thus, most of
the difficulties suffered in the GSP algorithm recur in SPADE as well.

PrefixSpan: Prefix-Projected Sequential Pattern Growth
Pattern growth is a method of frequent-pattern mining that does not require candi-
date generation. The technique originated in the FP-growth algorithm for transaction
databases, presented in Section 5.2.4. The general idea of this approach is as follows: it
finds the frequent single items, then compresses this information into a frequent-pattern
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SID EID itemset

1 1 a

1 2 abc

1 3 ac

1 4 d

1 5 cf

2 1 ad

2 2 c

2 3 bc

2 4 ae

3 1 ef

3 2 ab

3 3 df

3 4 c

3 5 b

4 1 e

4 2 g

4 3 af

4 4 c

4 5 b

4 6 c

(a) vertical format database

a b · · ·
SID EID SID EID · · ·

1 1 1 2

1 2 2 3

1 3 3 2

2 1 3 5

2 4 4 5

3 2

4 3

(b) ID lists for some 1-sequences

ab ba · · ·
SID EID(a) EID(b) SID EID(b) EID(a) · · ·

1 1 2 1 2 3

2 1 3 2 3 4

3 2 5

4 3 5

(c) ID lists for some 2-sequences

aba · · ·
SID EID(a) EID(b) EID(a) · · ·

1 1 2 3

2 1 3 4

(d) ID lists for some 3-sequences

Figure 8.6 The SPADE mining process: (a) vertical format database; (b) to (d) show fragments of the
ID lists for 1-sequences, 2-sequences, and 3-sequences, respectively.

tree, or FP-tree. The FP-tree is used to generate a set of projected databases, each associ-
ated with one frequent item. Each of these databases is mined separately. The algorithm
builds prefix patterns, which it concatenates with suffix patterns to find frequent pat-
terns, avoiding candidate generation. Here, we look at PrefixSpan, which extends the
pattern-growth approach to instead mine sequential patterns.

Suppose that all the items within an event are listed alphabetically. For example,
instead of listing the items in an event as, say, (bac), we list them as (abc) without loss of
generality. Given a sequence α = 〈e1e2 · · ·en〉 (where each ei corresponds to a frequent
event in a sequence database, S), a sequence β = 〈e′1e′2 · · ·e′m〉 (m ≤ n) is called a prefix
of α if and only if (1) e′i = ei for (i≤ m−1); (2) e′m ⊆ em; and (3) all the frequent items
in (em− e′m) are alphabetically after those in e′m. Sequence γ = 〈e′′mem+1 · · ·en〉 is called
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the suffix of α with respect to prefix β, denoted as γ = α/β, where e′′m = (em− e′m).7 We
also denote α = β · γ. Note if β is not a subsequence of α, the suffix of α with respect to
β is empty.

We illustrate these concepts with the following example.

Example 8.10 Prefix and suffix. Let sequences = 〈a(abc)(ac)d(c f )〉,whichcorresponds tosequence1of
our running example sequence database. 〈a〉, 〈aa〉, 〈a(ab)〉, and 〈a(abc)〉 are four prefixes
of s. 〈(abc)(ac)d(c f )〉 is the suffix of s with respect to the prefix 〈a〉; 〈( bc)(ac)d(c f )〉 is
its suffix with respect to the prefix 〈aa〉; and 〈( c)(ac)d(c f )〉 is its suffix with respect to
the prefix 〈a(ab)〉.

Based on the concepts of prefix and suffix, the problem of mining sequential patterns
can be decomposed into a set of subproblems as shown:

1. Let {〈x1〉, 〈x2〉, . . . , 〈xn〉} be the complete set of length-1 sequential patterns in a
sequence database, S. The complete set of sequential patterns in S can be partitioned
into n disjoint subsets. The ith subset (1≤ i≤ n) is the set of sequential patterns with
prefix 〈xi〉.

2. Let α be a length-l sequential pattern and {β1, β2, . . . , βm} be the set of all length-
(l +1) sequential patterns with prefix α. The complete set of sequential patterns with
prefix α, except for α itself, can be partitioned into m disjoint subsets. The jth subset
(1≤ j ≤ m) is the set of sequential patterns prefixed with β j.

Based on this observation, the problem can be partitioned recursively. That is, each
subset of sequential patterns can be further partitioned when necessary. This forms a
divide-and-conquer framework. To mine the subsets of sequential patterns, we construct
corresponding projected databases and mine each one recursively.

Let’s use our running example to examine how to use the prefix-based projection
approach for mining sequential patterns.

Example 8.11 PrefixSpan: A pattern-growth approach. Using the same sequence database, S, of Table 8.1
with min sup = 2, sequential patterns in S can be mined by a prefix-projection method
in the following steps.

1. Find length-1 sequential patterns. Scan S once to find all of the frequent items in
sequences. Each of these frequent items is a length-1 sequential pattern. They are
〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, and 〈 f 〉 : 3, where the notation “〈pattern〉 : count”
represents the pattern and its associated support count.

7If e′′m is not empty, the suffix is also denoted as 〈( items in e′′m)em+1 · · ·en〉.
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Table 8.2 Projected databases and sequential patterns

prefix projected database sequential patterns

〈a〉 〈(abc)(ac)d(c f )〉,
〈( d)c(bc)(ae)〉,
〈( b)(d f )eb〉, 〈( f )cbc〉

〈a〉, 〈aa〉, 〈ab〉, 〈a(bc)〉, 〈a(bc)a〉, 〈aba〉,
〈abc〉, 〈(ab)〉, 〈(ab)c〉, 〈(ab)d〉, 〈(ab) f 〉,
〈(ab)dc〉, 〈ac〉, 〈aca〉, 〈acb〉, 〈acc〉, 〈ad〉,
〈adc〉, 〈a f 〉

〈b〉 〈( c)(ac)d(c f )〉,
〈( c)(ae)〉, 〈(d f )cb〉,
〈c〉

〈b〉, 〈ba〉, 〈bc〉, 〈(bc)〉, 〈(bc)a〉, 〈bd〉, 〈bdc〉,
〈b f 〉

〈c〉 〈(ac)d(c f )〉,
〈(bc)(ae)〉, 〈b〉, 〈bc〉

〈c〉, 〈ca〉, 〈cb〉, 〈cc〉

〈d〉 〈(c f )〉, 〈c(bc)(ae)〉,
〈( f )cb〉

〈d〉, 〈db〉, 〈dc〉, 〈dcb〉

〈e〉 〈( f )(ab)(d f )cb〉,
〈(a f )cbc〉

〈e〉, 〈ea〉, 〈eab〉, 〈eac〉, 〈eacb〉, 〈eb〉, 〈ebc〉,
〈ec〉, 〈ecb〉, 〈e f 〉, 〈e f b〉, 〈e f c〉, 〈e f cb〉.

〈 f 〉 〈(ab)(d f )cb〉, 〈cbc〉 〈 f 〉, 〈 f b〉, 〈 f bc〉, 〈 f c〉, 〈 f cb〉

2. Partition the search space. The complete set of sequential patterns can be partitioned
into the following six subsets according to the six prefixes: (1) the ones with prefix
〈a〉, (2) the ones with prefix 〈b〉, . . . , and (6) the ones with prefix 〈 f 〉.

3. Find subsets of sequential patterns. The subsets of sequential patterns mentioned
in step 2 can be mined by constructing corresponding projected databases and
mining each recursively. The projected databases, as well as the sequential patterns
found in them, are listed in Table 8.2, while the mining process is explained as
follows:

(a) Find sequential patterns with prefix 〈a〉. Only the sequences containing 〈a〉 should
be collected. Moreover, in a sequence containing 〈a〉, only the subsequence prefixed
with the first occurrence of 〈a〉 should be considered. For example, in sequence
〈(e f )(ab)(d f )cb〉, only the subsequence 〈( b)(d f )cb〉 should be considered for
mining sequential patterns prefixed with 〈a〉. Notice that ( b) means that the last
event in the prefix, which is a, together with b, form one event.
The sequences in S containing 〈a〉 are projected with respect to 〈a〉 to form the
〈a〉-projected database, which consists of four suffix sequences: 〈(abc)(ac)d(c f )〉,
〈( d)c(bc)(ae)〉, 〈( b)(d f )cb〉, and 〈( f )cbc〉.
By scanning the 〈a〉-projected database once, its locally frequent items are iden-
tified as a : 2, b : 4, b : 2, c : 4, d : 2, and f : 2. Thus all the length-2 sequential
patterns prefixed with 〈a〉 are found, and they are: 〈aa〉 : 2, 〈ab〉 : 4, 〈(ab)〉 : 2,
〈ac〉 : 4, 〈ad〉 : 2, and 〈a f 〉 : 2.
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Recursively, all sequential patterns with prefix 〈a〉 can be partitioned into six
subsets: (1) those prefixed with 〈aa〉, (2) those with 〈ab〉, . . . , and finally, (6) those
with 〈af 〉. These subsets can be mined by constructing respective projected data-
bases and mining each recursively as follows:

i. The 〈aa〉-projected database consists of two nonempty (suffix) subsequences
prefixed with 〈aa〉: {〈( bc)(ac)d(c f )〉, {〈( e)〉}. Because there is no hope of
generating any frequent subsequence from this projected database, the pro-
cessing of the 〈aa〉-projected database terminates.

ii. The 〈ab〉-projected database consists of three suffix sequences: 〈( c)(ac)d
(cf )〉, 〈( c)a〉, and 〈c〉. Recursively mining the 〈ab〉-projected database
returns four sequential patterns: 〈( c)〉, 〈( c)a〉, 〈a〉, and 〈c〉 (i.e., 〈a(bc)〉,
〈a(bc)a〉, 〈aba〉, and 〈abc〉.) They form the complete set of sequential pat-
terns prefixed with 〈ab〉.

iii. The 〈(ab)〉-projected database contains only two sequences: 〈( c)(ac) d(c f )〉
and 〈(df )cb〉, which leads to the finding of the following sequential patterns
prefixed with 〈(ab)〉: 〈c〉, 〈d〉, 〈 f 〉, and 〈dc〉.

iv. The 〈ac〉-, 〈ad〉-, and 〈af 〉- projected databases can be constructed and recur-
sively mined in a similar manner. The sequential patterns found are shown in
Table 8.2.

(b) Find sequential patterns with prefix 〈b〉, 〈c〉, 〈d〉, 〈e〉, and 〈 f 〉, respectively. This
can be done by constructing the 〈b〉-, 〈c〉-, 〈d〉-, 〈e〉-, and 〈 f 〉-projected databases
and mining them respectively. The projected databases as well as the sequential
patterns found are also shown in Table 8.2.

4. The set of sequential patterns is the collection of patterns found in the above recursive
mining process.

The method described above generates no candidate sequences in the mining pro-
cess. However, it may generate many projected databases, one for each frequent prefix-
subsequence. Forming a large number of projected databases recursively may become the
major cost of the method, if such databases have to be generated physically. An impor-
tant optimization technique is pseudo-projection, which registers the index (or identi-
fier) of the corresponding sequence and the starting position of the projected suffix in
the sequence instead of performing physical projection. That is, a physical projection
of a sequence is replaced by registering a sequence identifier and the projected posi-
tion index point. Pseudo-projection reduces the cost of projection substantially when
such projection can be done in main memory. However, it may not be efficient if the
pseudo-projection is used for disk-based accessing because random access of disk space
is costly. The suggested approach is that if the original sequence database or the projected
databases are too big to fit in memory, the physical projection should be applied; how-
ever, the execution should be swapped to pseudo-projection once the projected databases
can fit in memory. This methodology is adopted in the PrefixSpan implementation.
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Figure 8.7 A backward subpattern and a backward superpattern.

A performance comparison of GSP, SPADE, and PrefixSpan shows that PrefixSpan has
the best overall performance. SPADE, although weaker than PrefixSpan in most cases,
outperforms GSP. Generating huge candidate sets may consume a tremendous amount
of memory, thereby causing candidate generate-and-test algorithms to become very slow.
The comparison also found that when there is a large number of frequent subsequences,
all three algorithms run slowly. This problem can be partially solved by closed sequential
pattern mining.

Mining Closed Sequential Patterns
Because mining the complete set of frequent subsequences can generate a huge number
of sequential patterns, an interesting alternative is to mine frequent closed subsequences
only, that is, those containing no supersequence with the same support. Mining closed
sequential patterns can produce a significantly less number of sequences than the full set
of sequential patterns. Note that the full set of frequent subsequences, together with their
supports, can easily be derived from the closed subsequences. Thus, closed subsequences
have the same expressive power as the corresponding full set of subsequences. Because
of their compactness, they may also be quicker to find.

CloSpan is an efficient closed sequential pattern mining method. The method is based
on a property of sequence databases, called equivalence of projected databases, stated as
follows: Two projected sequence databases, S|α = S|β,8 αv β (i.e.,α is a subsequence of β),
are equivalent if and only if the total number of items in S|α is equal to the total number of
items in S|β.

Based on this property, CloSpan can prune the nonclosed sequences from further
consideration during the mining process. That is, whenever we find two prefix-based
projected databases that are exactly the same, we can stop growing one of them. This
can be used to prune backward subpatterns and backward superpatterns as indicated in
Figure 8.7.

8In S|α, a sequence database S is projected with respect to sequence (e.g., prefix) α. The notation S|β can
be similarly defined.
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After such pruning and mining, a postprocessing step is still required in order to delete
nonclosed sequential patterns that may exist in the derived set. A later algorithm called
BIDE (which performs a bidirectional search) can further optimize this process to avoid
such additional checking.

Empirical results show that CloSpan often derives a much smaller set of sequential
patterns in a shorter time than PrefixSpan, which mines the complete set of sequential
patterns.

Mining Multidimensional, Multilevel Sequential Patterns
Sequence identifiers (representing individual customers, for example) and sequence
items (such as products bought) are often associated with additional pieces of infor-
mation. Sequential pattern mining should take advantage of such additional informa-
tion to discover interesting patterns in multidimensional, multilevel information space.
Take customer shopping transactions, for instance. In a sequence database for such data,
the additional information associated with sequence IDs could include customer age,
address, group, and profession. Information associated with items could include item
category, brand, model type, model number, place manufactured, and manufacture date.
Mining multidimensional, multilevel sequential patterns is the discovery of interesting
patterns in such a broad dimensional space, at different levels of detail.

Example 8.12 Multidimensional, multilevel sequential patterns. The discovery that “Retired customers
who purchase a digital camera are likely to purchase a color printer within a month” and
that “Young adults who purchase a laptop are likely to buy a flash drive within two weeks”
are examples of multidimensional, multilevel sequential patterns. By grouping customers
into “retired customers” and “young adults” according to the values in the age dimension,
and by generalizing items to, say, “digital camera” rather than a specific model, the pat-
terns mined here are associated with additional dimensions and are at a higher level of
granularity.

“Can a typical sequential pattern algorithm such as PrefixSpan be extended to efficiently
mine multidimensional, multilevel sequential patterns?” One suggested modification is to
associate the multidimensional, multilevel information with the sequence ID and
item ID, respectively, which the mining method can take into consideration when find-
ing frequent subsequences. For example, (Chicago, middle aged, business) can be asso-
ciated with sequence ID 1002 (for a given customer), whereas (Digital camera, Canon,
Supershot, SD400, Japan, 2005) can be associated with item ID 543005 in the sequence.
A sequential pattern mining algorithm will use such information in the mining process
to find sequential patterns associated with multidimensional, multilevel information.

8.3.3 Constraint-Based Mining of Sequential Patterns

As shown in our study of frequent-pattern mining in Chapter 5, mining that is performed
without user- or expert-specified constraints may generate numerous patterns that are
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of no interest. Such unfocused mining can reduce both the efficiency and usability of
frequent-pattern mining. Thus, we promote constraint-based mining, which incorpo-
rates user-specified constraints to reduce the search space and derive only patterns that
are of interest to the user.

Constraints can be expressed in many forms. They may specify desired relation-
ships between attributes, attribute values, or aggregates within the resulting patterns
mined. Regular expressions can also be used as constraints in the form of “pattern
templates,” which specify the desired form of the patterns to be mined. The gen-
eral concepts introduced for constraint-based frequent pattern mining in Section 5.5.1
apply to constraint-based sequential pattern mining as well. The key idea to note is that
these kinds of constraints can be used during the mining process to confine the search
space, thereby improving (1) the efficiency of the mining and (2) the interestingness
of the resulting patterns found. This idea is also referred to as “pushing the constraints
deep into the mining process.”

We now examine some typical examples of constraints for sequential pattern mining.
First, constraints can be related to the duration, T , of a sequence. The duration may
be the maximal or minimal length of the sequence in the database, or a user-specified
duration related to time, such as the year 2005. Sequential pattern mining can then be
confined to the data within the specified duration, T .

Constraints relating to the maximal or minimal length (duration) can be treated as
antimonotonic or monotonic constraints, respectively. For example, the constraint T ≤ 10
is antimonotonic since, if a sequence does not satisfy this constraint, then neither will
any of its supersequences (which are, obviously, longer). The constraint T > 10 is mono-
tonic. This means that if a sequence satisfies the constraint, then all of its supersequences
will also satisfy the constraint. We have already seen several examples in this chapter
of how antimonotonic constraints (such as those involving minimum support) can be
pushed deep into the mining process to prune the search space. Monotonic constraints
can be used in a way similar to its frequent-pattern counterpart as well.

Constraints related to a specific duration, such as a particular year, are considered
succinct constraints. A constraint is succinct if we can enumerate all and only those
sequences that are guaranteed to satisfy the constraint, even before support counting
begins. Suppose, here, T = 2005. By selecting the data for which year = 2005, we can
enumerate all of the sequences guaranteed to satisfy the constraint before mining begins.
In other words, we don’t need to generate and test. Thus, such constraints contribute
toward efficiency in that they avoid the substantial overhead of the generate-and-test
paradigm.

Durations may also be defined as being related to sets of partitioned sequences, such
as every year, or every month after stock dips, or every two weeks before and after an
earthquake. In such cases, periodic patterns (Section 8.3.4) can be discovered.

Second, the constraint may be related to an event folding window, w. A set of events
occurring within a specified period can be viewed as occurring together. If w is set to be as
long as the duration, T , it finds time-insensitive frequent patterns—these are essentially
frequent patterns, such as “In 1999, customers who bought a PC bought a digital camera
as well” (i.e., without bothering about which items were bought first). If w is set to 0
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(i.e., no event sequence folding), sequential patterns are found where each event occurs
at a distinct time instant, such as “A customer who bought a PC and then a digital camera
is likely to buy an SD memory chip in a month.” If w is set to be something in between
(e.g., for transactions occurring within the same month or within a sliding window of
24 hours), then these transactions are considered as occurring within the same period,
and such sequences are “folded” in the analysis.

Third, a desired (time) gap between events in the discovered patterns may be speci-
fied as a constraint. Possible cases are: (1) gap = 0 (no gap is allowed), which is to find
strictly consecutive sequential patterns like ai−1aiai+1. For example, if the event fold-
ing window is set to a week, this will find frequent patterns occurring in consecutive
weeks; (2) min gap ≤ gap ≤ max gap, which is to find patterns that are separated by at
least min gap but at most max gap, such as “If a person rents movie A, it is likely she will
rent movie B within 30 days” implies gap ≤ 30 (days); and (3) gap = c 6= 0, which is to
find patterns with an exact gap, c. It is straightforward to push gap constraints into the
sequential pattern mining process. With minor modifications to the mining process, it
can handle constraints with approximate gaps as well.

Finally, a user can specify constraints on the kinds of sequential patterns by provid-
ing “pattern templates” in the form of serial episodes and parallel episodes using regular
expressions. A serial episode is a set of events that occurs in a total order, whereas a paral-
lel episode is a set of events whose occurrence ordering is trivial. Consider the following
example.

Example 8.13 Specifying serial episodes and parallel episodes with regular expressions. Let the nota-
tion (E , t) represent event type E at time t. Consider the data (A, 1), (C, 2), and (B, 5) with
an event folding window width of w = 2, where the serial episode A→ B and the parallel
episode A & C both occur in the data. The user can specify constraints in the form of a
regular expression, such as (A|B)C ∗ (D|E), which indicates that the user would like to
find patterns where event A and B first occur (but they are parallel in that their relative
ordering is unimportant), followed by one or a set of events C, followed by the events D
and E (where D can occur either before or after E). Other events can occur in between
those specified in the regular expression.

A regular expression constraint may be neither antimonotonic nor monotonic. In
such cases, we cannot use it to prune the search space in the same ways as described above.
However, by modifying the PrefixSpan-based pattern-growth approach, such constraints
can be handled elegantly. Let’s examine one such example.

Example 8.14 Constraint-based sequential pattern mining with a regular expression constraint. Sup-
pose that our task is to mine sequential patterns, again using the sequence database, S,
of Table 8.1. This time, however, we are particularly interested in patterns that match the
regular expression constraint, C = 〈a?{bb|(bc)d|dd}〉, with minimum support.

Such a regular expression constraint is neither antimonotonic, nor monotonic, nor
succinct. Therefore, it cannot be pushed deep into the mining process. Nonetheless, this
constraint can easily be integrated with the pattern-growth mining process as follows.
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First, only the 〈a〉-projected database, S|〈a〉, needs to be mined, since the regular

expression constraint C starts with a. Retain only the sequences in S|〈a〉 that contain

items within the set {b, c, d}. Second, the remaining mining can proceed from the suf-
fix. This is essentially the SuffixSpan algorithm, which is symmetric to PrefixSpan in that
it grows suffixes from the end of the sequence forward. The growth should match the
suffix as the constraint, 〈{bb|(bc)d|dd}〉. For the projected databases that match these
suffixes, we can grow sequential patterns either in prefix- or suffix-expansion manner to
find all of the remaining sequential patterns.

Thus, we have seen several ways in which constraints can be used to improve the
efficiency and usability of sequential pattern mining.

8.3.4 Periodicity Analysis for Time-Related Sequence Data

“What is periodicity analysis?” Periodicity analysis is the mining of periodic patterns, that
is, the search for recurring patterns in time-related sequence data. Periodicity analysis can
be applied to many important areas. For example, seasons, tides, planet trajectories, daily
power consumptions, daily traffic patterns, and weekly TV programs all present certain
periodic patterns. Periodicity analysis is often performed over time-series data, which
consists of sequences of values or events typically measured at equal time intervals (e.g.,
hourly, daily, weekly). It can also be applied to other time-related sequence data where
the value or event may occur at a nonequal time interval or at any time (e.g., on-line
transactions). Moreover, the items to be analyzed can be numerical data, such as daily
temperature or power consumption fluctuations, or categorical data (events), such as
purchasing a product or watching a game.

The problem of mining periodic patterns can be viewed from different perspectives.
Based on the coverage of the pattern, we can categorize periodic patterns into full versus
partial periodic patterns:

A full periodic pattern is a pattern where every point in time contributes (precisely
or approximately) to the cyclic behavior of a time-related sequence. For example, all
of the days in the year approximately contribute to the season cycle of the year.

A partial periodic pattern specifies the periodic behavior of a time-related sequence
at some but not all of the points in time. For example, Sandy reads the New York
Times from 7:00 to 7:30 every weekday morning, but her activities at other times do
not have much regularity. Partial periodicity is a looser form of periodicity than full
periodicity and occurs more commonly in the real world.

Based on the precision of the periodicity, a pattern can be either synchronous or asyn-
chronous, where the former requires that an event occur at a relatively fixed offset in
each “stable” period, such as 3 p.m. every day, whereas the latter allows that the event
fluctuates in a somewhat loosely defined period. A pattern can also be either precise or
approximate, depending on the data value or the offset within a period. For example, if
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Sandy reads the newspaper at 7:00 on some days, but at 7:10 or 7:15 on others, this is an
approximate periodic pattern.

Techniques for full periodicity analysis for numerical values have been studied in
signal analysis and statistics. Methods like FFT (Fast Fourier Transformation) are com-
monly used to transform data from the time domain to the frequency domain in order
to facilitate such analysis.

Mining partial, categorical, and asynchronous periodic patterns poses more challeng-
ing problems in regards to the development of efficient data mining solutions. This is
because most statistical methods or those relying on time-to-frequency domain trans-
formations are either inapplicable or expensive at handling such problems.

Take mining partial periodicity as an example. Because partial periodicity mixes peri-
odic events and nonperiodic events together in the same period, a time-to-frequency
transformation method, such as FFT, becomes ineffective because it treats the time series
as an inseparable flow of values. Certain periodicity detection methods can uncover
some partial periodic patterns, but only if the period, length, and timing of the segment
(subsequence of interest) in the partial patterns have certain behaviors and are explicitly
specified. For the newspaper reading example, we need to explicitly specify details such
as “Find the regular activities of Sandy during the half-hour after 7:00 for a period of
24 hours.” A naïve adaptation of such methods to the partial periodic pattern mining
problem would be prohibitively expensive, requiring their application to a huge number
of possible combinations of the three parameters of period, length, and timing.

Most of the studies on mining partial periodic patterns apply the Apriori property
heuristic and adopt some variations of Apriori-like mining methods. Constraints can
also be pushed deep into the mining process. Studies have also been performed on the
efficient mining of partially periodic event patterns or asynchronous periodic patterns
with unknown or with approximate periods.

Mining partial periodicity may lead to the discovery of cyclic or periodic association
rules, which are rules that associate a set of events that occur periodically. An exam-
ple of a periodic association rule is “Based on day-to-day transactions, if afternoon tea is
well received between 3:00 to 5:00 p.m., dinner will sell well between 7:00 to 9:00 p.m. on
weekends.”

Due to the diversity of applications of time-related sequence data, further develop-
ment of efficient algorithms for mining various kinds of periodic patterns in sequence
databases is desired.

8.4 Mining Sequence Patterns in Biological Data

Bioinformatics is a promising young field that applies computer technology in molecu-
lar biology and develops algorithms and methods to manage and analyze biological data.
Because DNA and protein sequences are essential biological data and exist in huge vol-
umes as well, it is important to develop effective methods to compare and align biological
sequences and discover biosequence patterns.
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Before we get into further details, let’s look at the type of data being analyzed. DNA and
proteins sequences are long linear chains of chemical components. In the case of DNA,
these components or “building blocks” are four nucleotides (also called bases), namely
adenine (A), cytosine (C), guanine (G), and thymine (T). In the case of proteins, the com-
ponents are 20 amino acids, denoted by 20 different letters of the alphabet. A gene is a
sequence of typically hundreds of individual nucleotides arranged in a particular order.
A genome is the complete set of genes of an organism. When proteins are needed, the cor-
responding genes are transcribed into RNA. RNA is a chain of nucleotides. DNA directs
the synthesis of a variety of RNA molecules, each with a unique role in cellular function.

“Why is it useful to compare and align biosequences?” The alignment is based on the fact
that all living organisms are related by evolution. This implies that the nucleotide (DNA,
RNA) and proteins sequences of the species that are closer to each other in evolution
should exhibit more similarities. An alignment is the process of lining up sequences to
achieve a maximal level of identity, which also expresses the degree of similarity between
sequences. Two sequences are homologous if they share a common ancestor. The degree
of similarity obtained by sequence alignment can be useful in determining the possibility
of homology between two sequences. Such an alignment also helps determine the relative
positions of multiple species in an evolution tree, which is called a phylogenetic tree.

In Section 8.4.1, we first study methods for pairwise alignment (i.e., the alignment
of two biological sequences). This is followed by methods for multiple sequence align-
ment. Section 8.4.2 introduces the popularly used Hidden Markov Model (HMM) for
biological sequence analysis.

8.4.1 Alignment of Biological Sequences

The problem of alignment of biological sequences can be described as follows: Given
two or more input biological sequences, identify similar sequences with long conserved sub-
sequences. If the number of sequences to be aligned is exactly two, it is called pairwise
sequence alignment; otherwise, it is multiple sequence alignment. The sequences to be
compared and aligned can be either nucleotides (DNA/RNA) or amino acids (proteins).
For nucleotides, two symbols align if they are identical. However, for amino acids, two
symbols align if they are identical, or if one can be derived from the other by substitutions
that are likely to occur in nature. There are two kinds of alignments: local alignments ver-
sus global alignments. The former means that only portions of the sequences are aligned,
whereas the latter requires alignment over the entire length of the sequences.

For either nucleotides or amino acids, insertions, deletions, and substitutions occur
in nature with different probabilities. Substitution matrices are used to represent the
probabilities of substitutions of nucleotides or amino acids and probabilities of inser-
tions and deletions. Usually, we use the gap character, “−”, to indicate positions where
it is preferable not to align two symbols. To evaluate the quality of alignments, a scor-
ing mechanism is typically defined, which usually counts identical or similar symbols as
positive scores and gaps as negative ones. The algebraic sum of the scores is taken as the
alignment measure. The goal of alignment is to achieve the maximal score among all the
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possible alignments. However, it is very expensive (more exactly, an NP-hard problem)
to find optimal alignment. Therefore, various heuristic methods have been developed to
find suboptimal alignments.

Pairwise Alignment

Example 8.15 Pairwise alignment. Suppose we have two amino acid sequences as follows, and the sub-
stitution matrix of amino acids for pairwise alignment is shown in Table 8.3.

Suppose the penalty for initiating a gap (called the gap penalty) is −8 and that for
extending a gap (i.e., gap extension penalty) is also−8. We can then compare two poten-
tial sequence alignment candidates, as shown in Figure 8.8 (a) and (b) by calculating
their total alignment scores.

The total score of the alignment for Figure 8.8(a) is (−2) + (−8) + (5) + (−8) +
(−8) + (15) + (−8) + (10) + (6) + (−8) + (6) = 0, whereas that for Figure 8.8(b) is

Table 8.3 The substitution matrix of amino acids.

HEAGAWGHEE

PAWHEAE

A E G H W

A 5 −1 0 −2 −3

E −1 6 −3 0 −3

H −2 0 −2 10 −3

P −1 −1 −2 −2 −4

W −3 −3 −3 −3 15

H E A G A W G H E − E

| | | | |
P − A − − W − H E A E

(a)

H E A G A W G H E − E

| | | | |
− − P − A W − H E A E

(b)

Figure 8.8 Scoring two potential pairwise alignments, (a) and (b), of amino acids.
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(−8) + (−8) + (−1) + (−8) + (5) + (15) + (−8) + (10) + (6) + (−8) + (6) = 1. Thus
the alignment of Figure 8.8(b) is slightly better than that in Figure 8.8(a).

Biologists have developed 20 × 20 triangular matrices that provide the weights for
comparing identical and different amino acids as well as the penalties that should be
attributed to gaps. Two frequently used matrices are PAM (Percent Accepted Mutation)
and BLOSUM (BlOcks SUbstitution Matrix). These substitution matrices represent the
weights obtained by comparing the amino acid substitutions that have occurred through
evolution.

For global pairwise sequence alignment, two influential algorithms have been pro-
posed: the Needleman-Wunsch Algorithm and the Smith-Waterman Algorithm. The for-
mer uses weights for the outmost edges that encourage the best overall global alignment,
whereas the latter favors the contiguity of segments being aligned. Both build up “opti-
mal” alignment from “optimal” alignments of subsequences. Both use the methodology
of dynamic programming. Since these algorithms use recursion to fill in an intermediate
results table, it takes O(mn) space and O(n2) time to execute them. Such computational
complexity could be feasible for moderate-sized sequences but is not feasible for align-
ing large sequences, especially for entire genomes, where a genome is the complete set
of genes of an organism. Another approach called dot matrix plot uses Boolean matri-
ces to represent possible alignments that can be detected visually. The method is simple
and facilitates easy visual inspection. However, it still takes O(n2) in time and space to
construct and inspect such matrices.

To reduce the computational complexity, heuristic alignment algorithms have been
proposed. Heuristic algorithms speed up the alignment process at the price of possibly
missing the best scoring alignment. There are two influential heuristic alignment pro-
grams: (1) BLAST (Basic Local Alignment Search Tool), and (2) FASTA (Fast Alignment
Tool). Both find high-scoring local alignments between a query sequence and a target
database. Their basic idea is to first locate high-scoring short stretches and then extend
them to achieve suboptimal alignments. Because the BLAST algorithm has been very
popular in biology and bioinformatics research, we examine it in greater detail here.

The BLAST Local Alignment Algorithm
The BLAST algorithm was first developed by Altschul, Gish, Miller, et al. around 1990
at the National Center for Biotechnology Information (NCBI). The software, its tutori-
als, and a wealth of other information can be accessed at www.ncbi.nlm.nih.gov/BLAST/.
BLAST finds regions of local similarity between biosequences. The program compares
nucleotide or protein sequences to sequence databases and calculates the statistical signif-
icance of matches. BLAST can be used to infer functional and evolutionary relationships
between sequences as well as to help identify members of gene families.

The NCBI website contains many common BLAST databases. According to their con-
tent, they are grouped into nucleotide and protein databases. NCBI also provides spe-
cialized BLAST databases such as the vector screening database, a variety of genome
databases for different organisms, and trace databases.
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BLAST applies a heuristic method to find the highest local alignments between a
query sequence and a database. BLAST improves the overall speed of search by breaking
the sequences to be compared into sequences of fragments (referred to as words) and
initially seeking matches between these words. In BLAST, the words are considered as
k-tuples. For DNA nucleotides, a word typically consists of 11 bases (nucleotides),
whereas for proteins, a word typically consists of 3 amino acids. BLAST first creates a hash
table of neighborhood (i.e., closely matching) words, while the threshold for “closeness”
is set based on statistics. It starts from exact matches to neighborhood words. Because
good alignments should contain many close matches, we can use statistics to determine
which matches are significant. By hashing, we can find matches in O(n) (linear) time. By
extending matches in both directions, the method finds high-quality alignments consist-
ing of many high-scoring and maximum segment pairs.

There are many versions and extensions of the BLAST algorithms. For example,
MEGABLAST, Discontiguous MEGABLAST, and BLASTN all can be used to identify a
nucleotide sequence. MEGABLAST is specifically designed to efficiently find long align-
ments between very similar sequences, and thus is the best tool to use to find the identical
match to a query sequence. Discontiguous MEGABLAST is better at finding nucleotide
sequencesthataresimilar,butnotidentical(i.e.,gappedalignments), toanucleotidequery.
One of the important parameters governing the sensitivity of BLAST searches is the length
of the initial words, or word size. The word size is adjustable in BLASTN and can be reduced
from the default value to a minimum of 7 to increase search sensitivity. Thus BLASTN
is better than MEGABLAST at finding alignments to related nucleotide sequences from
other organisms. For protein searches, BLASTP, PSI-BLAST, and PHI-BLAST are popular.
Standard protein-protein BLAST (BLASTP) is used for both identifying a query amino
acid sequence and for finding similar sequences in protein databases. Position-Specific
Iterated (PSI)-BLAST is designed for more sensitive protein-protein similarity searches.
It is useful for finding very distantly related proteins. Pattern-Hit Initiated (PHI)-BLAST
can do a restricted protein pattern search. It is designed to search for proteins that contain
a pattern specified by the user and are similar to the query sequence in the vicinity of the
pattern. This dual requirement is intended to reduce the number of database hits that
contain the pattern, but are likely to have no true homology to the query.

Multiple Sequence Alignment Methods
Multiple sequence alignment is usually performed on a set of sequences of amino acids
that are believed to have similar structures. The goal is to find common patterns that are
conserved among all the sequences being considered.

The alignment of multiple sequences has many applications. First, such an alignment
may assist in the identification of highly conserved residues (amino acids), which are
likely to be essential sites for structure and function. This will guide or help pairwise
alignment as well. Second, it will help build gene or protein families using conserved
regions, forming a basis for phylogenetic analysis (i.e., the inference of evolutionary rela-
tionships between genes). Third, conserved regions can be used to develop primers for
amplifying DNA sequences and probes for DNA microarray analysis.
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From the computational point of view, it is more challenging to align multiple
sequences than to perform pairwise alignment of two sequences. This is because mul-
tisequence alignment can be considered as a multidimensional alignment problem, and
there are many more possibilities for approximate alignments of subsequences in multi-
ple dimensions.

There are two major approaches for approximate multiple sequence alignment. The
first method reduces a multiple alignment to a series of pairwise alignments and then
combines the result. The popular Feng-Doolittle alignment method belongs to this
approach. Feng-Doolittle alignment first computes all of the possible pairwise align-
ments by dynamic programming and converts or normalizes alignment scores to dis-
tances. It then constructs a “guide tree” by clustering and performs progressive alignment
based on the guide tree in a bottom-up manner. Following this approach, a multiple
alignment tool, Clustal W, and its variants have been developed as software packages for
multiple sequence alignments. The software handles a variety of input/output formats
and provides displays for visual inspection.

The second multiple sequence alignment method uses hidden Markov models
(HMMs). Due to the extensive use and popularity of hidden Markov models, we devote
an entire section to this approach. It is introduced in Section 8.4.2, which follows.

From the above discussion, we can see that several interesting methods have been
developed for multiple sequence alignment. Due to its computational complexity, the
development of effective and scalable methods for multiple sequence alignment remains
an active research topic in biological data mining.

8.4.2 Hidden Markov Model for Biological Sequence Analysis

Given a biological sequence, such as a DNA sequence or an amino acid (protein),
biologists would like to analyze what that sequence represents. For example, is a given
DNA sequence a gene or not? Or, to which family of proteins does a particular amino
acid sequence belong? In general, given sequences of symbols from some alphabet, we
would like to represent the structure or statistical regularities of classes of sequences. In
this section, we discuss Markov chains and hidden Markov models—probabilistic mod-
els that are well suited for this type of task. Other areas of research, such as speech and
pattern recognition, are faced with similar sequence analysis tasks.

ToillustrateourdiscussionofMarkovchainsandhiddenMarkovmodels,weuseaclassic
problem in biological sequence analysis—that of finding CpG islands in a DNA sequence.
Here, the alphabet consists of four nucleotides, namely, A (adenine), C (cytosine), G (gua-
nine),andT(thymine).CpGdenotesapair(orsubsequence)ofnucleotides,whereGappears
immediately after C along a DNA strand. The C in a CpG pair is often modified by a process
knownasmethylation(wheretheCisreplacedbymethyl-C,whichtendstomutatetoT).As
aresult,CpGpairsoccurinfrequentlyinthehumangenome.However,methylationisoften
suppressed around promotors or “start” regions of many genes. These areas contain a rela-
tivelyhighconcentrationofCpGpairs, collectivelyreferredtoalongachromosomeas CpG
islands, which typically vary in length from a few hundred to a few thousand nucleotides
long. CpG islands are very useful in genome mapping projects.
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Two important questions that biologists have when studying DNA sequences are
(1) given a short sequence, is it from a CpG island or not? and (2) given a long sequence,
can we find all of the CpG islands within it? We start our exploration of these questions
by introducing Markov chains.

Markov Chain
A Markov chain is a model that generates sequences in which the probability of a sym-
bol depends only on the previous symbol. Figure 8.9 is an example Markov chain model.
A Markov chain model is defined by (a) a set of states, Q, which emit symbols and (b) a
set of transitions between states. States are represented by circles and transitions are rep-
resented by arrows. Each transition has an associated transition probability, ai j, which
represents the conditional probability of going to state j in the next step, given that the
current state is i. The sum of all transition probabilities from a given state must equal 1,
that is, ∑ j∈Q ai j = 1 for all j ∈ Q. If an arc is not shown, it is assumed to have a 0 prob-
ability. The transition probabilities can also be written as a transition matrix, A = {ai j}.

Example 8.16 Markov chain. The Markov chain in Figure 8.9 is a probabilistic model for CpG islands.
The states are A, C, G, and T. For readability, only some of the transition probabilities
are shown. For example, the transition probability from state G to state T is 0.14, that is,
P(xi = T|xi−1 = G) = 0.14. Here, the emitted symbols are understood. For example, the
symbol C is emitted when transitioning from state C. In speech recognition, the symbols
emitted could represent spoken words or phrases.

Given some sequence x of length L, how probable is x given the model? If x is a DNA
sequence, we could use our Markov chain model to determine how probable it is that x
is from a CpG island. To do so, we look at the probability of x as a path, x1x2 . . .xL, in
the chain. This is the probability of starting in the first state, x1, and making successive
transitions to x2, x3, and so on, to xL. In a Markov chain model, the probability of xL

A G

TC

0.14

0.44
0.36

Figure 8.9 A Markov chain model.



520 Chapter 8 Mining Stream, Time-Series, and Sequence Data

depends on the value of only the previous one state, xL−1, not on the entire previous
sequence.9 This characteristic is known as the Markov property, which can be written as

P(x) = P(xL|xL−1)P(xL−1|xL−2) · · ·P(x2|x1)P(x1)
(8.7)

= P(x1)
L

∏
i=2

P(xi|xi−1).

That is, the Markov chain can only “remember” the previous one state of its history.
Beyond that, it is “memoryless.”

In Equation (8.7), we need to specify P(x1), the probability of the starting state. For
simplicity, we would like to model this as a transition too. This can be done by adding
a begin state, denoted 0, so that the starting state becomes x0 = 0. Similarly, we can add
an end state, also denoted as 0. Note that P(xi|xi−1) is the transition probability, axi−1xi .
Therefore, Equation (8.7) can be rewritten as

P(x) =
L

∏
i=1

axi−1xi , (8.8)

which computes the probability that sequence x belongs to the given Markov chain model,
that is, P(x|model). Note that the begin and end states are silent in that they do not emit
symbols in the path through the chain.

We can use the Markov chain model for classification. Suppose that we want to distin-
guish CpG islands from other “non-CpG” sequence regions. Given training sequences
from CpG islands (labeled “+”) and from non-CpG islands (labeled “−”), we can con-
struct two Markov chain models—the first, denoted “+”, to represent CpG islands, and
the second, denoted “−”, to represent non-CpG islands. Given a sequence, x, we use the
respective models to compute P(x|+), the probability that x is from a CpG island, and
P(x|−), the probability that it is from a non-CpG island. The log-odds ratio can then be
used to classify x based on these two probabilities.

“But first, how can we estimate the transition probabilities for each model?” Before we
can compute the probability of x being from either of the two models, we need to estimate
the transition probabilities for the models. Given the CpG (+) training sequences, we can
estimate the transition probabilities for the CpG island model as

a+
i j =

c+
i j

∑k c+
ik

, (8.9)

where c+
i j is the number of times that nucleotide j follows nucleotide i in the given

sequences labeled “+”. For the non-CpG model, we use the non-CpG island sequences
(labeled “−”) in a similar way to estimate a−i j .

9This is known as a first-order Markov chain model, since xL depends only on the previous state, xL−1.
In general, for the k-th-order Markov chain model, the probability of xL depends on the values of only
the previous k states.
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To determine whether x is from a CpG island or not, we compare the models using
the logs-odds ratio, defined as

log
P(x|+)
P(x|−)

=
L

∑
i=1

log
a+

xi−1xi

a−xi−1xi

. (8.10)

If this ratio is greater than 0, then we say that x is from a CpG island.

Example 8.17 Classification using a Markov chain. Our model for CpG islands and our model for
non-CpG islands both have the same structure, as shown in our example Markov chain
of Figure 8.9. Let CpG+ be the transition matrix for the CpG island model. Similarly,
CpG− is the transition matrix for the non-CpG island model. These are (adapted from
Durbin, Eddy, Krogh, and Mitchison [DEKM98]):

CpG+ =

















A C G T

A 0.20 0.26 0.44 0.10

C 0.16 0.36 0.28 0.20

G 0.15 0.35 0.36 0.14

T 0.09 0.37 0.36 0.18

















(8.11)

CpG− =

















A C G T

A 0.27 0.19 0.31 0.23

C 0.33 0.31 0.08 0.28

G 0.26 0.24 0.31 0.19

T 0.19 0.25 0.28 0.28

















(8.12)

Notice that the transition probability a+
CG = 0.28 is higher than a−CG = 0.08. Suppose we

are given the sequence x = CGCG. The log-odds ratio of x is

log
0.28
0.08

+ log
0.35
0.24

+ log
0.28
0.08

= 1.25> 0.

Thus, we say that x is from a CpG island.

In summary, we can use a Markov chain model to determine if a DNA sequence, x, is
from a CpG island. This was the first of our two important questions mentioned at the
beginning of this section. To answer the second question, that of finding all of the CpG
islands in a given sequence, we move on to hidden Markov models.

Hidden Markov Model
Given a long DNA sequence, how can we find all CpG islands within it? We could try
the Markov chain method above, using a sliding window. For each window, we could
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compute the log-odds ratio. CpG islands within intersecting windows could be merged
to determine CpG islands within the long sequence. This approach has some difficulties:
It is not clear what window size to use, and CpG islands tend to vary in length.

What if, instead, we merge the two Markov chains from above (for CpG islands and
non-CpG islands, respectively) and add transition probabilities between the two chains?
The result is a hidden Markov model, as shown in Figure 8.10. The states are renamed
by adding “+” and “−” labels to distinguish them. For readability, only the transitions
between “+” and “−” states are shown, in addition to those for the begin and end states.
Let π = π1π2 . . .πL be a path of states that generates a sequence of symbols, x = x1x2 . . .xL.
In a Markov chain, the path through the chain for x is unique. With a hidden Markov
model, however, different paths can generate the same sequence. For example, the states
C+ and C− both emit the symbol C. Therefore, we say the model is “hidden” in that
we do not know for sure which states were visited in generating the sequence. The tran-
sition probabilities between the original two models can be determined using training
sequences containing transitions between CpG islands and non-CpG islands.

A Hidden Markov Model (HMM) is defined by

a set of states, Q

a set of transitions, where transition probability akl = P(πi = l|πi−1 = k) is the prob-
ability of transitioning from state k to state l for k, l ∈ Q

an emission probability, ek(b) = P(xi = b|πi = k), for each state, k, and each symbol,
b, where ek(b) is the probability of seeing symbol b in state k. The sum of all emission
probabilities at a given state must equal 1, that is, ∑b ek = 1 for each state, k.

Example 8.18 A hidden Markov model. The transition matrix for the hidden Markov model of
Figure 8.10 is larger than that of Example 8.16 for our earlier Markov chain example.

G+C+

G–C–

T+A+

T–A–

O O

Figure 8.10 A hidden Markov model.
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It contains the states A+, C+, G+, T+, A−, C−, G−, T− (not shown). The transition
probabilities between the “+” states are as before. Similarly, the transition probabili-
ties between the “−” states are as before. The transition probabilities between “+” and
“−” states can be determined as mentioned above, using training sequences containing
known transitions from CpG islands to non-CpG islands, and vice versa. The emis-
sion probabilities are eA+(A) = 1, eA+(C) = 0, eA+(G) = 0, eA+(T ) = 0, eA−(A) = 1,
eA−(C) = 0, eA−(G) = 0, eA−(T ) = 0, and so on. Although here the probability of emit-
ting a symbol at a state is either 0 or 1, in general, emission probabilities need not be
zero-one.

Tasks using hidden Markov models include:

Evaluation: Given a sequence, x, determine the probability, P(x), of obtaining x in the
model.

Decoding: Given a sequence, determine the most probable path through the model
that produced the sequence.

Learning: Given a model and a set of training sequences, find the model parameters
(i.e., the transition and emission probabilities) that explain the training sequences
with relatively high probability. The goal is to find a model that generalizes well to
sequences we have not seen before.

Evaluation, decoding, and learning can be handled using the forward algorithm,
Viterbi algorithm, and Baum-Welch algorithm, respectively. These algorithms are dis-
cussed in the following sections.

Forward Algorithm
What is the probability, P(x), that sequence x was generated by a given hidden Markov
model (where, say, the model represents a sequence class)? This problem can be solved
using the forward algorithm.

Let x = x1x2 . . . xL be our sequence of symbols. A path is a sequence of states. Many
paths can generate x. Consider one such path, which we denote π = π1π2 . . .πL. If we
incorporate the begin and end states, denoted as 0, we can write π as π0 = 0, π1π2 . . .πL,
πL+1 = 0. The probability that the model generated sequence x using path π is

P(x, π) = a0π1 eπ1(x1) ·aπ1π2 eπ2(x2) · · · ·aπL−1πL eπL(xL) ·aπL0

(8.13)
= a0π1

L

∏
i=1

eπi(xi)aπiπi+1

where πL+1 = 0. We must, however, consider all of the paths that can generate x. There-
fore, the probability of x given the model is

P(x) = ∑
π

P(x, π). (8.14)

That is, we add the probabilities of all possible paths for x.
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Algorithm: Forward algorithm. Find the probability, P(x), that sequence x was generated by the given hidden
Markov model.

Input:

A hidden Markov model, defined by a set of states, Q, that emit symbols, and by transition and emission
probabilities;

x, a sequence of symbols.

Output: Probability, P(x).

Method:

(1) Initialization (i = 0): f0(0) = 1, fk(0) = 0 for k > 0
(2) Recursion (i = 1 . . .L): fl(i) = el(xi)∑k fk(i−1)akl

(3) Termination: P(x) = ∑k fk(L)ak0

Figure 8.11 Forward algorithm.

Unfortunately, the number of paths can be exponential with respect to the length,
L, of x, so brute force evaluation by enumerating all paths is impractical. The forward
algorithm exploits a dynamic programming technique to solve this problem. It defines
forward variables, fk(i), to be the probability of being in state k having observed the first
i symbols of sequence x. We want to compute fπL+1=0(L), the probability of being in the
end state having observed all of sequence x.

The forward algorithm is shown in Figure 8.11. It consists of three steps. In step 1,
the forward variables are initialized for all states. Because we have not viewed any part of
the sequence at this point, the probability of being in the start state is 1 (i.e., f0(0) = 1),
and the probability of being in any other state is 0. In step 2, the algorithm sums over all
the probabilities of all the paths leading from one state emission to another. It does this
recursively for each move from state to state. Step 3 gives the termination condition. The
whole sequence (of length L) has been viewed, and we enter the end state, 0. We end up
with the summed-over probability of generating the required sequence of symbols.

Viterbi Algorithm
Given a sequence, x, what is the most probable path in the model that generates x? This
problem of decoding can be solved using the Viterbi algorithm.

Many paths can generate x. We want to find the most probable one, π?, that is, the
path that maximizes the probability of having generated x. This is π? = argmaxπP(π|x).10

It so happens that this is equal to argmaxπP(x, π). (The proof is left as an exercise for the
reader.) We saw how to compute P(x, π) in Equation (8.13). For a sequence of length L,
there are |Q|L possible paths, where |Q| is the number of states in the model. It is

10In mathematics, argmax stands for the argument of the maximum. Here, this means that we want the
path, π, for which P(π|x) attains its maximum value.
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infeasible to enumerate all of these possible paths! Once again, we resort to a dynamic
programming technique to solve the problem.

At each step along the way, the Viterbi algorithm tries to find the most probable
path leading from one symbol of the sequence to the next. We define vl(i) to be the
probability of the most probable path accounting for the first i symbols of x and
ending in state l. To find π?, we need to compute maxkvk(L), the probability of the
most probable path accounting for all of the sequence and ending in the end state.
The probability, vl(i), is

vl(i) = el(xi) ·maxk(vl(k)akl), (8.15)

which states that the most probable path that generates x1 . . .xi and ends in state l has to
emit xi in state xl (hence, the emission probability, el(xi)) and has to contain the most
probable path that generates x1 . . .xi−1 and ends in state k, followed by a transition from
state k to state l (hence, the transition probability, akl). Thus, we can compute vk(L) for
any state, k, recursively to obtain the probability of the most probable path.

The Viterbi algorithm is shown in Figure 8.12. Step 1 performs initialization. Every
path starts at the begin state (0) with probability 1. Thus, for i = 0, we have v0(0) = 1, and
the probability of starting at any other state is 0. Step 2 applies the recurrence formula for
i = 1 to L. At each iteration, we assume that we know the most likely path for x1 . . . xi−1
that ends in state k, for all k ∈Q. To find the most likely path to the i-th state from there,
we maximize vk(i−1)akl over all predecessors k ∈Q of l. To obtain vl(i), we multiply by
el(xi) since we have to emit xi from l. This gives us the first formula in step 2. The values
vk(i) are stored in a Q×L dynamic programming matrix. We keep pointers (ptr) in this
matrix so that we can obtain the path itself. The algorithm terminates in step 3, where
finally, we have maxkvk(L). We enter the end state of 0 (hence, the transition probability,
ak0) but do not emit a symbol. The Viterbi algorithm runs in O(|Q|2|L|) time. It is more
efficient than the forward algorithm because it investigates only the most probable path
and avoids summing over all possible paths.

Algorithm: Viterbi algorithm. Find the most probable path that emits the sequence of symbols, x.

Input:

A hidden Markov model, defined by a set of states, Q, that emit symbols, and by transition and emission
probabilities;

x, a sequence of symbols.

Output: The most probable path, π∗.

Method:

(1) Initialization (i = 0): v0(0) = 1, vk(0) = 0 for k > 0
(2) Recursion (i = 1 . . .L): vl(i) = el(xi)maxk(vk(i−1)akl)

ptri(l) = argmaxk(vk(i−1)akl)
(3) Termination: P(x,π∗) = maxk(vk(L)ak0)

π∗L = argmaxk(vk(L)ak0)

Figure 8.12 Viterbi (decoding) algorithm.
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Baum-Welch Algorithm
Given a training set of sequences, how can we determine the parameters of a hidden
Markov model that will best explain the sequences? In other words, we want to learn or
adjust the transition and emission probabilities of the model so that it can predict the
path of future sequences of symbols. If we know the state path for each training sequence,
learning the model parameters is simple. We can compute the percentage of times each
particular transition or emission is used in the set of training sequences to determine akl ,
the transition probabilities, and ek(b), the emission probabilities.

When the paths for the training sequences are unknown, there is no longer a direct
closed-form equation for the estimated parameter values. An iterative procedure must be
used, like the Baum-Welch algorithm. The Baum-Welch algorithm is a special case of the
EM algorithm (Section 7.8.1), which is a family of algorithms for learning probabilistic
models in problems that involve hidden states.

The Baum-Welch algorithm is shown in Figure 8.13. The problem of finding the
optimal transition and emission probabilities is intractable. Instead, the Baum-Welch
algorithm finds a locally optimal solution. In step 1, it initializes the probabilities to
an arbitrary estimate. It then continuously re-estimates the probabilities (step 2) until
convergence (i.e., when there is very little change in the probability values between iter-
ations). The re-estimation first calculates the expected transmission and emission prob-
abilities. The transition and emission probabilities are then updated to maximize the
likelihood of the expected values.

In summary, Markov chains and hidden Markov models are probabilistic models in
which the probability of a state depends only on that of the previous state. They are par-
ticularly useful for the analysis of biological sequence data, whose tasks include evalua-
tion, decoding, and learning. We have studied the forward, Viterbi, and Baum-Welch
algorithms. The algorithms require multiplying many probabilities, resulting in very

Algorithm: Baum-Welch algorithm. Find the model parameters (transition and emission probabilities) that
best explain the training set of sequences.

Input:

A training set of sequences.

Output:

Transition probabilities, akl ;

Emission probabilities, ek(b);

Method:

(1) initialize the transmission and emission probabilities;

(2) iterate until convergence

(2.1) calculate the expected number of times each transition or emission is used

(2.2) adjust the parameters to maximize the likelihood of these expected values

Figure 8.13 Baum-Welch (learning) algorithm.
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small numbers that can cause underflow arithmetic errors. A way around this is to use
the logarithms of the probabilities.

8.5 Summary

Stream data flow in and out of a computer system continuously and with varying
update rates. They are temporally ordered, fast changing, massive (e.g., gigabytes to ter-
abytes in volume), and potentially infinite. Applications involving stream data include
telecommunications, financial markets, and satellite data processing.

Synopses provide summaries of stream data, which typically can be used to return
approximate answers to queries. Random sampling, sliding windows, histograms, mul-
tiresolution methods (e.g., for data reduction), sketches (which operate in a single
pass), and randomized algorithms are all forms of synopses.

The tilted time frame model allows data to be stored at multiple granularities of time.
The most recent time is registered at the finest granularity. The most distant time is
at the coarsest granularity.

A stream data cube can store compressed data by (1) using the tilted time frame model
on the time dimension, (2) storing data at only some critical layers, which reflect
the levels of data that are of most interest to the analyst, and (3) performing partial
materialization based on “popular paths” through the critical layers.

Traditional methods of frequent itemset mining, classification, and clustering tend to
scan the data multiple times, making them infeasible for stream data. Stream-based
versions of such mining instead try to find approximate answers within a user-specified
error bound. Examples include the Lossy Counting algorithm for frequent itemset
stream mining; the Hoeffding tree, VFDT, and CVFDT algorithms for stream data
classification; and the STREAM and CluStream algorithms for stream data clustering.

A time-series database consists of sequences of values or events changing with time,
typically measured at equal time intervals. Applications include stock market analysis,
economic and sales forecasting, cardiogram analysis, and the observation of weather
phenomena.

Trend analysis decomposes time-series data into the following: trend (long-term)
movements, cyclic movements, seasonal movements (which are systematic or calendar
related), and irregular movements (due to random or chance events).

Subsequence matching is a form of similarity search that finds subsequences that
are similar to a given query sequence. Such methods match subsequences that have
the same shape, while accounting for gaps (missing values) and differences in base-
line/offset and scale.

A sequence database consists of sequences of ordered elements or events, recorded
with or without a concrete notion of time. Examples of sequence data include cus-
tomer shopping sequences, Web clickstreams, and biological sequences.
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Sequential pattern mining is the mining of frequently occurring ordered events or
subsequences as patterns. Given a sequence database, any sequence that satisfies min-
imum support is frequent and is called a sequential pattern. An example of a sequen-
tial pattern is “Customers who buy a Canon digital camera are likely to buy an HP
color printer within a month.” Algorithms for sequential pattern mining include GSP,
SPADE, and PrefixSpan, as well as CloSpan (which mines closed sequential patterns).

Constraint-based mining of sequential patterns incorporates user-specified
constraints to reduce the search space and derive only patterns that are of interest
to the user. Constraints may relate to the duration of a sequence, to an event fold-
ing window (where events occurring within such a window of time can be viewed as
occurring together), and to gaps between events. Pattern templates may also be spec-
ified as a form of constraint using regular expressions.

Periodicity analysis is the mining of periodic patterns, that is, the search for recurring
patterns in time-related sequence databases. Full periodic and partial periodic patterns
can be mined, as well as periodic association rules.

Biological sequence analysis compares, aligns, indexes, and analyzes biological
sequences, which can be either sequences of nucleotides or of amino acids. Biose-
quenceanalysisplaysacrucial role inbioinformaticsandmodernbiology.Suchanalysis
can be partitioned into two essential tasks: pairwise sequence alignment and multi-
ple sequence alignment. The dynamic programming approach is commonly used for
sequence alignments. Among many available analysis packages, BLAST (Basic Local
Alignment Search Tool) is one of the most popular tools in biosequence analysis.

Markov chains and hidden Markov models are probabilistic models in which the
probability of a state depends only on that of the previous state. They are particu-
larly useful for the analysis of biological sequence data. Given a sequence of symbols,
x, the forward algorithm finds the probability of obtaining x in the model, whereas
the Viterbi algorithm finds the most probable path (corresponding to x) through the
model. The Baum-Welch algorithm learns or adjusts the model parameters (transition
and emission probabilities) so as to best explain a set of training sequences.

Exercises

8.1 A stream data cube should be relatively stable in size with respect to infinite data streams.
Moreover, it should be incrementally updateable with respect to infinite data streams.
Show that the stream cube proposed in Section 8.1.2 satisfies these two requirements.

8.2 In stream data analysis, we are often interested in only the nontrivial or exceptionally
large cube cells. These can be formulated as iceberg conditions. Thus, it may seem that
the iceberg cube [BR99] is a likely model for stream cube architecture. Unfortunately,
this is not the case because iceberg cubes cannot accommodate the incremental updates
required due to the constant arrival of new data. Explain why.
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8.3 An important task in stream data analysis is to detect outliers in a multidimensional
environment. An example is the detection of unusual power surges, where the dimen-
sions include time (i.e., comparing with the normal duration), region (i.e., comparing
with surrounding regions), sector (i.e., university, residence, government), and so on.
Outline an efficient stream OLAP method that can detect outliers in data streams. Pro-
vide reasons as to why your design can ensure such quality.

8.4 Frequent itemset mining in data streams is a challenging task. It is too costly to keep the
frequency count for every itemset. However, because a currently infrequent itemset may
become frequent, and a currently frequent one may become infrequent in the future,
it is important to keep as much frequency count information as possible. Given a fixed
amount of memory, can you work out a good mechanism that may maintain high-quality
approximation of itemset counting?

8.5 For the above approximate frequent itemset counting problem, it is interesting to incor-
porate the notion of tilted time frame. That is, we can put less weight on more remote
itemsets when counting frequent itemsets. Design an efficient method that may obtain
high-quality approximation of itemset frequency in data streams in this case.

8.6 A classification model may change dynamically along with the changes of training data
streams. This is known as concept drift. Explain why decision tree induction may not
be a suitable method for such dynamically changing data sets. Is naïve Bayesian a better
method on such data sets? Comparing with the naïve Bayesian approach, is lazy evalua-
tion (such as the k-nearest-neighbor approach) even better? Explain your reasoning.

8.7 The concept of microclustering has been popular for on-line maintenance of cluster-
ing information for data streams. By exploring the power of microclustering, design an
effective density-based clustering method for clustering evolving data streams.

8.8 Suppose that a power station stores data regarding power consumption levels by time and
by region, in addition to power usage information per customer in each region. Discuss
how to solve the following problems in such a time-series database:

(a) Find similar power consumption curve fragments for a given region on Fridays.

(b) Every time a power consumption curve rises sharply, what may happen within the
next 20 minutes?

(c) How can we find the most influential features that distinguish a stable power con-
sumption region from an unstable one?

8.9 Regression is commonly used in trend analysis for time-series data sets. An item in a
time-series database is usually associated with properties in multidimensional space.
For example, an electric power consumer may be associated with consumer location,
category, and time of usage (weekdays vs. weekends). In such a multidimensional
space, it is often necessary to perform regression analysis in an OLAP manner (i.e.,
drilling and rolling along any dimension combinations that a user desires). Design
an efficient mechanism so that regression analysis can be performed efficiently in
multidimensional space.
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8.10 Suppose that a restaurant chain would like to mine customers’ consumption behavior
relating to major sport events, such as “Every time there is a major sport event on TV, the
sales of Kentucky Fried Chicken will go up 20% one hour before the match.”

(a) For this problem, there are multiple sequences (each corresponding to one restau-
rant in the chain). However, each sequence is long and contains multiple occurrences
of a (sequential) pattern. Thus this problem is different from the setting of sequential
pattern mining problem discussed in this chapter. Analyze what are the differences
in the two problem definitions and how such differences may influence the develop-
ment of mining algorithms.

(b) Develop a method for finding such patterns efficiently.

8.11 (Implementation project) The sequential pattern mining algorithm introduced by
Srikant and Agrawal [SA96] finds sequential patterns among a set of sequences. Although
there have been interesting follow-up studies, such as the development of the algorithms
SPADE (Zaki [Zak01]), PrefixSpan (Pei, Han, Mortazavi-Asl, et al. [PHMA+01]), and
CloSpan (Yan, Han, and Afshar [YHA03]), the basic definition of “sequential pattern”
has not changed. However, suppose we would like to find frequently occurring subse-
quences (i.e., sequential patterns) within one given sequence, where, say, gaps are not
allowed. (That is, we do not consider AG to be a subsequence of the sequence ATG.)
For example, the string ATGCTCGAGCT contains a substring GCT with a support of
2. Derive an efficient algorithm that finds the complete set of subsequences satisfying a
minimum support threshold. Explain how your algorithm works using a small example,
and show some performance results for your implementation.

8.12 Suppose frequent subsequences have been mined from a sequence database, with a given
(relative) minimum support, min sup. The database can be updated in two cases:
(i) adding new sequences (e.g., new customers buying items), and (ii) appending new
subsequences to some existing sequences (e.g., existing customers buying new items). For
each case, work out an efficient incremental mining method that derives the complete sub-
sequences satisfying min sup, without mining the whole sequence database from scratch.

8.13 Closed sequential patterns can be viewed as a lossless compression of a large set of sequen-
tial patterns. However, the set of closed sequential patterns may still be too large for effec-
tive analysis. There should be some mechanism for lossy compression that may further
reduce the set of sequential patterns derived from a sequence database.

(a) Provide a good definition of lossy compression of sequential patterns, and reason
why such a definition may lead to effective compression with minimal information
loss (i.e., high compression quality).

(b) Develop an efficient method for such pattern compression.

(c) Develop an efficient method that mines such compressed patterns directly from a
sequence database.

8.14 As discussed in Section 8.3.4, mining partial periodic patterns will require a user to spec-
ify the length of the period. This may burden the user and reduces the effectiveness of
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mining. Propose a method that will automatically mine the minimal period of a pattern
without requiring a predefined period. Moreover, extend the method to find approximate
periodicity where the period will not need to be precise (i.e., it can fluctuate within a
specified small range).

8.15 There are several major differences between biological sequential patterns and transac-
tional sequential patterns. First, in transactional sequential patterns, the gaps between
two events are usually nonessential. For example, the pattern “purchasing a digital camera
two months after purchasing a PC” does not imply that the two purchases are consecutive.
However, for biological sequences, gaps play an important role in patterns. Second, pat-
terns in a transactional sequence are usually precise. However, a biological pattern can be
quite imprecise, allowing insertions, deletions, and mutations. Discuss how the mining
methodologies in these two domains are influenced by such differences.

8.16 BLAST is a typical heuristic alignment method for pairwise sequence alignment. It first
locates high-scoring short stretches and then extends them to achieve suboptimal align-
ments. When the sequences to be aligned are really long, BLAST may run quite slowly.
Propose and discuss some enhancements to improve the scalability of such a method.

8.17 The Viterbi algorithm uses the equality, argmaxπP(π|x) = argmaxπP(x, π), in its search
for the most probable path, π∗, through a hidden Markov model for a given sequence of
symbols, x. Prove the equality.

8.18 (Implementation project) A dishonest casino uses a fair die most of the time. However, it
switches to a loaded die with a probability of 0.05, and switches back to the fair die with
a probability 0.10. The fair die has a probability of 1

6 of rolling any number. The loaded
die has P(1) = P(2) = P(3) = P(4) = P(5) = 0.10 and P(6) = 0.50.

(a) Draw a hidden Markov model for the dishonest casino problem using two states,
Fair (F) and Loaded (L). Show all transition and emission probabilities.

(b) Suppose you pick up a die at random and roll a 6. What is the probability that the
die is loaded, that is, find P(6|DL)? What is the probability that it is fair, that is, find
P(6|DF)? What is the probability of rolling a 6 from the die you picked up? If you
roll a sequence of 666, what is the probability that the die is loaded?

(c) Write a program that, given a sequence of rolls (e.g., x = 5114362366 . . .), predicts
when the fair die was used and when the loaded die was used. (Hint: This is similar
to detecting CpG islands and non-CPG islands in a given long sequence.) Use the
Viterbi algorithm to get the most probable path through the model. Describe your
implementation in report form, showing your code and some examples.
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Wang, and Yu proposed CluStream, a framework for clustering evolving data streams
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ARIMA forecasting method is described in Box, Jenkins, and Reinsel [BJR94]. Efficient
similarity search in sequence databases was studied by Agrawal, Faloutsos, and Swami
[AFS93]. A fast subsequence matching method in time-series databases was presented by
Faloutsos, Ranganathan, and Manolopoulos [FRM94]. Agrawal, Lin, Sawhney, and Shim
[ALSS95] developed a method for fast similarity search in the presence of noise, scaling,
and translation in time-series databases. Language primitives for querying shapes of his-
tories were proposed by Agrawal, Psaila, Wimmers, and Zait [APWZ95]. Other work on
similarity-based search of time-series data includes Rafiei and Mendelzon [RM97], and
Yi, Jagadish, and Faloutsos [YJF98]. Yi, Sidiropoulos, Johnson, Jagadish, et al. [YSJ+00]
introduced a method for on-line mining for co-evolving time sequences. Chen, Dong,
Han, et al. [CDH+02] proposed a multidimensional regression method for analysis of
multidimensional time-series data. Shasha and Zhu present a state-of-the-art overview of
the methods for high-performance discovery in time series [SZ04].

The problem of mining sequential patterns was first proposed by Agrawal and Srikant
[AS95]. In the Apriori-based GSP algorithm, Srikant and Agrawal [SA96] generalized
their earlier notion to include time constraints, a sliding time window, and user-defined
taxonomies. Zaki [Zak01] developed a vertical-format-based sequential pattern mining
method called SPADE, which is an extension of vertical-format-based frequent itemset
mining methods, like Eclat and Charm [Zak98, ZH02]. PrefixSpan, a pattern growth
approach to sequential pattern mining, and its predecessor, FreeSpan, were developed
by Pei, Han, Mortazavi-Asl, et al. [HPMA+00, PHMA+01, PHMA+04]. The CloSpan
algorithm for mining closed sequential patterns was proposed by Yan, Han, and Afshar
[YHA03]. BIDE, a bidirectional search for mining frequent closed sequences, was devel-
oped by Wang and Han [WH04].

The studies of sequential pattern mining have been extended in several different
ways. Mannila, Toivonen, and Verkamo [MTV97] consider frequent episodes in se-
quences, where episodes are essentially acyclic graphs of events whose edges specify
the temporal before-and-after relationship but without timing-interval restrictions.
Sequence pattern mining for plan failures was proposed in Zaki, Lesh, and Ogihara
[ZLO98]. Garofalakis, Rastogi, and Shim [GRS99a] proposed the use of regular expres-
sions as a flexible constraint specification tool that enables user-controlled focus to be
incorporated into the sequential pattern mining process. The embedding of multidi-
mensional, multilevel information into a transformed sequence database for sequen-
tial pattern mining was proposed by Pinto, Han, Pei, et al. [PHP+01]. Pei, Han, and
Wang studied issues regarding constraint-based sequential pattern mining [PHW02].
CLUSEQ is a sequence clustering algorithm, developed by Yang and Wang [YW03].
An incremental sequential pattern mining algorithm, IncSpan, was proposed by
Cheng, Yan, and Han [CYH04]. SeqIndex, efficient sequence indexing by frequent and
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discriminative analysis of sequential patterns, was studied by Cheng, Yan, and Han
[CYH05]. A method for parallel mining of closed sequential patterns was proposed
by Cong, Han, and Padua [CHP05].

Data mining for periodicity analysis has been an interesting theme in data mining.
Özden, Ramaswamy, and Silberschatz [ORS98] studied methods for mining periodic

or cyclic association rules. Lu, Han, and Feng [LHF98] proposed intertransaction asso-
ciation rules, which are implication rules whose two sides are totally ordered episodes
with timing-interval restrictions (on the events in the episodes and on the two sides).
Bettini, Wang, and Jajodia [BWJ98] consider a generalization of intertransaction associ-
ation rules. The notion of mining partial periodicity was first proposed by Han, Dong,
and Yin, together with a max-subpattern hit set method [HDY99]. Ma and Hellerstein
[MH01a] proposed a method for mining partially periodic event patterns with unknown
periods. Yang, Wang, and Yu studied mining asynchronous periodic patterns in time-
series data [YWY03].

Methods for the analysis of biological sequences have been introduced in many text-
books, such as Waterman [Wat95], Setubal and Meidanis [SM97], Durbin, Eddy, Krogh,
and Mitchison [DEKM98], Baldi and Brunak [BB01], Krane and Raymer [KR03], Jones
and Pevzner [JP04], and Baxevanis and Ouellette [BO04]. BLAST was developed by
Altschul, Gish, Miller, et al. [AGM+90]. Information about BLAST can be found
at the NCBI Web site www.ncbi.nlm.nih.gov/BLAST/. For a systematic introduction of
the BLAST algorithms and usages, see the book “BLAST” by Korf, Yandell, and
Bedell [KYB03].

For an introduction to Markov chains and hidden Markov models from a biological
sequence perspective, see Durbin, Eddy, Krogh, and Mitchison [DEKM98] and Jones and
Pevzner [JP04]. A general introduction can be found in Rabiner [Rab89]. Eddy and Krogh
have each respectively headed the development of software packages for hidden Markov
models forproteinsequenceanalysis,namelyHMMER(pronounced“hammer,”available
at http://hmmer.wustl.edu/) and SAM (www.cse.ucsc.edu/research/ compbio/sam.html).




