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Many networks display community structure—groups of vertices within which connections are dense but
between which they are sparser—and sensitive computer algorithms have in recent years been developed for
detecting this structure. These algorithms, however, are computationally demanding, which limits their appli-
cation to small networks. Here we describe an algorithm which gives excellent results when tested on both
computer-generated and real-world networks and is much faster, typically thousands of times faster, than
previous algorithms. We give several example applications, including one to a collaboration network of more
than 50 000 physicists.
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I. INTRODUCTION

There has in recent years been a surge of interest within
the physics community in the properties of networks of many
kinds, including the Internet, the world wide web, citation
networks, transportation networks, software call graphs,
email networks, food webs, and social and biochemical net-
works [1–4]. One property that has attracted particular atten-
tion is that of “community structure”: the vertices in net-
works are often found to cluster into tightly knit groups with
a high density of within-group edges and a lower density of
between-group edges. Girvan and Newman[5,6] proposed a
computer algorithm based on the iterative removal of edges
with high “betweenness” scores that appears to identify such
structure with some sensitivity, and this algorithm has been
employed by a number of authors in the study of such di-
verse systems as networks of email messages, social net-
works of animals, collaborations of jazz musicians, meta-
bolic networks, and gene networks[5–11]. As pointed out by
Newman and Girvan[6], the principal disadvantage of their
algorithm is the high computational demands it makes. In its
simplest and fastest form, it runs in worst-case timeOsm2nd
on a network withm edges andn vertices, orOsn3d on a
sparse network(one for whichm scales withn in the limit of
largen, which covers essentially all networks of current sci-
entific interest, with the possible exception of food webs).
With typical computer resources available at the time of writ-
ing, this limits the algorithm’s use to networks of a few thou-
sand vertices at most, and substantially less than this for
interactive applications. Increasingly, however, there is inter-
est in the study of much larger networks; citation and col-
laboration networks can contain millions of vertices[12,13],
for example, while the world wide web numbers in the bil-
lions [14].

In this paper, therefore, we propose another algorithm for
detecting community structure. The algorithm operates on
different principles from that of Girvan and Newman(GN),
but, as we will show, gives qualitatively similar results. The
worst-case running time of the algorithm isO(sm+ndn), or
Osn2d on a sparse graph. In practice, it runs to completion on
current computers in reasonable times for networks of up to
a million or so vertices, bringing within reach the study of

communities in many systems that would previously have
been considered intractable.

II. THE ALGORITHM

Our algorithm is based on the idea of modularity. Given
any network, the GN community structure algorithm always
producessomedivision of the vertices into communities, re-
gardless of whether the network has any natural such divi-
sion. To test whether a particular division is meaningful, we
define a quality function or “modularity”Q as follows[6].

Let eij be one-half of the fraction of edges in the network
that connect vertices in groupi to those in groupj , so that
the total fraction of such edges iseij +eji . The only exception
will be the diagonal elementseii , which are equal to the
fraction of edges that fall within groupi (with no factor of a
half). Thenoi eii is the total fraction of edges that fall within
groups. All other edges fall between groups. The maximum
value of this sum is 1, and a division of the network into
communities is good if this quantity is large, meaning it is of
order 1. On its own, however, the sum is not a good measure
of community structure, since it takes its maximal value of 1
if we put all vertices in a single group together, which is a
trivial and not particularly useful form of community struc-
ture.

A more useful measure of community structure is to cal-
culate the sumoi eii and then subtract from it the value that it
would take if edges were placed at random. Such a measure
gives a score of zero to the trivial grouping with only a
single community, but nonzero scores to nontrivial group-
ings.

Let ai be the fraction of allendsof edges that are attached
to vertices in groupi. We can calculateai straightforwardly
by noting thatai =o j eij . If the ends of edges are connected
together at random, the fraction of the resulting edges that
connect vertices within groupi is ai

2. We define the modu-
larity to be

Q = o
i

seii − ai
2d. s1d

If a particular division gives no more within-community
edges than would be expected by random chance, this modu-
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larity is Q=0. Values other than 0 indicate deviations from
randomness, and in practice values greater than about 0.3
appear to indicate significant community structure. A number
of examples are given in Ref.[6].

But this now suggests an alternative approach to finding
community structure. If a high value ofQ represents a good
community division, why not simply optimizeQ over all
possible divisions to find the best one? By doing this, we can
avoid the iterative removal of edges and cut straight to the
chase. The problem is that true optimization ofQ is very
costly. The number of ways to dividen vertices intog non-
empty groups is given by the Stirling number of the second
kind Sn

sgd, and hence the number of distinct community divi-
sions isog=1

n Sn
sgd. This sum is not known in closed form, but

we observe thatSn
s1d+Sn

s2d=2n−1 for all n.1, so that the sum
must increase at least exponentially inn. To carry out an
exhaustive search of all possible divisions for the optimal
value of Q would therefore take at least an exponential
amount of time, and is in practice infeasible for systems
larger than 20 or 30 vertices. Various approximate optimiza-
tion methods are available: simulated annealing, genetic al-
gorithms, and so forth. Here we consider a scheme based on
a standard “greedy” optimization algorithm, which appears
to perform well.

Our algorithm falls in the general category of agglomera-
tive hierarchical clustering methods[15,16]. Starting with a
state in which each vertex is the sole member of one ofn
communities, we repeatedly join communities together in
pairs, choosing at each step the join that results in the great-
est increase(or smallest decrease) in Q. The progress of the
algorithm can be represented as a “dendrogram,” a tree that
shows the order of the joins(see Fig. 2 for an example). Cuts
through this dendrogram at different levels give divisions of
the network into larger or smaller numbers of communities
and we can select the best cut by looking for the maximal
value ofQ.

Since the joining of a pair of communities between which
there are no edges at all can never result in an increase inQ,
we need only consider those pairs between which there are
edges, of which there will at any time be at mostm, wherem
is again the number of edges in the graph. The change inQ
upon joining two communities is given by

DQ = eij + eji − 2aiaj = 2seij − aiajd, s2d

which can clearly be calculated in constant time. The quan-
tities eij are initially equal to one-half of the corresponding
elements of the adjacency matrix of the network, i.e., to1

2 for
vertex pairs that are joined by an edge and 0 for those that
are not. Following a join, some of the matrix elementseij
must be updated by adding together the rows and columns
corresponding to the joined communities, which takes worst-
case timeOsnd. Thus each step of the algorithm takes worst-
case timeOsm+nd. There are a maximum ofn−1 join op-
erations necessary to construct the complete dendrogram and
hence the entire algorithm runs in timeO(sm+ndn), or Osn2d
on a sparse graph. The algorithm has the added advantage of
calculating the value ofQ as it goes along, making it espe-
cially simple to find the optimal community structure.

It is worth noting that our algorithm can be generalized
trivially to weighted networks in which each edge has a nu-
meric strength associated with it, by making the initial values
of the matrix elementseij equal to(a half of) those strengths;
otherwise the algorithm is as above and has the same running
time. The networks studied in this paper, however, are all
unweighted.

III. APPLICATIONS

As a first example of the working of our algorithm, we
have generated using a computer a large number of random
graphs with known community structure, which we then run
through the algorithm to quantify its performance. Each
graph consists ofn=128 vertices divided into four groups of
32. Each vertex has on averagezin edges connecting it to
members of the same group andzout edges to members of
other groups, withzin and zout chosen such that the total
expected degreezin+zout=16, in this case. Aszout is increased
from small values, the resulting community structure be-
comes progressively weaker and the graphs pose greater and
greater challenges to the community-finding algorithm. In
Fig. 1 we show the fraction of vertices correctly assigned to
the four communities by the algorithm as a function ofzout
[19]. As the figure shows, the algorithm performs well, cor-
rectly identifying more than 90% of vertices for values of
zout&6. Only whenzout approaches the value 8 at which the
number of within- and between-community edges per vertex
is the same does the algorithm begin to fail. On the same plot
we also show the performance of the GN algorithm and, as
we can see, that algorithm performs slightly but measurably
better for smaller values ofzout. For example, forzout=5 our
algorithm correctly identifies an average of 97.4(2)% of ver-
tices, while the older algorithm correctly identifies 98.9(1)%.
Both, however, clearly perform well.

Interestingly, for higher values ofzout our algorithm per-
forms better than the older one, and we have come across a
few real-world networks in which this is the case also. Nor-

FIG. 1. The fraction of vertices correctly identified by our algo-
rithms in the computer-generated graphs described in the text. The
two curves show results for our algorithm(circles) and for the al-
gorithm of Girvan and Newman[5] (squares). Each point is an
average over 100 graphs.
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mally, however, the GN algorithm seems to have the edge,
and this should come as no great surprise. Our algorithm
bases its decisions on purely local information about indi-
vidual communities, while the GN algorithm uses nonlocal
information about the entire network—information derived
from betweenness scores. Since community structure is itself
fundamentally a nonlocal quantity, it seems reasonable that
one can do a better job of finding that structure if one has
nonlocal information at one’s disposal.

For systems small enough that the GN algorithm is com-
putationally tractable, therefore, we see no reason not to con-
tinue using it—it appears to give the best results. For systems
too large to make use of this approach, however, our algo-
rithm gives useful community structure information with
comparatively little effort.

We have applied our algorithm to a variety of real-world
networks also. We have looked, for example, at the “karate
club” network studied in[5], which represents friendships
between 34 members of a club at a U.S. university, as re-
corded over a two-year period by Zachary[17]. During the
course of the study, the club split into two groups as a result
of a dispute within the organization, and the members of one
group left to start their own club. In Fig. 2 we show the
dendrogram derived by feeding the friendship network into
our algorithm. The peak modularity isQ=0.381 and corre-
sponds to a split into two groups of 17, as shown in the
figure. The shapes of the vertices represent the alignments of
the club members following the dispute and, as we can see,
the division found by the algorithm corresponds almost per-
fectly to these alignments; only one vertex, number 10, is
classified wrongly. The GN algorithm performs similarly on
this task, but not better—it also finds the split but classifies
one vertex wrongly(although a different one, vertex 3). In
other tests, we find that our algorithm also successfully de-
tects the main two-way division of the dolphin social net-
work of Lusseau[6,18], and the division between black and
white musicians in the jazz network of Gleiser and Danon
[11].

As a demonstration of how our algorithm can sometimes
miss some of the structure in a network, we take another
example from Ref.[5], a network representing the schedule
of games between American college football teams in a
single season. Because the teams are divided into groups or

“conferences,” with intraconference games being more fre-
quent than interconference games, we have a reasonable idea
ahead of time about what communities our algorithm should
find. The dendrogram generated by the algorithm is shown in
Fig. 3, and has an optimal modularity ofQ=0.546, which is
a little shy of the value 0.601 for the best split reported in
[5]. As the dendrogram reveals, the algorithm finds six com-
munities. Some of them correspond to single conferences,
but most correspond to two or more. The GN algorithm, by
contrast, finds all 11 conferences, as well as accurately iden-
tifying independent teams that belong to no conference.
Nonetheless, it is clear that our algorithm is quite capable of
picking out useful community structure from the network,
and of course it is much the faster algorithm. On the author’s
desktop computer the algorithm ran to completion in an im-
measurably small time—less than a hundredth of a second.
The algorithm of Girvan and Newman took a little over a
second.

A time difference of this magnitude will not present a big
problem in most practical situations, but performance rapidly
becomes an issue when we look at larger networks; we ex-
pect the ratio of running times to increase with the number of
vertices. Thus, for example, in applying our algorithm to the
1275-node network of jazz musician collaborations men-
tioned above, we found that it runs to completion in about
one second of CPU time. The GN algorithm by contrast
takes more than three hours to reach very similar results.

As an example of an analysis made possible by the speed
of our algorithm, we have looked at a network of collabora-
tions between physicists as documented by papers posted on
the widely used Physics E-print Archive at arxiv.org. The
network is an updated version of the one described in Ref.
[13], in which scientists are considered connected if they
have coauthored one or more papers posted on the archive.
We analyze only the largest component of the network,
which containsn=56 276 scientists in all branches of phys-
ics covered by the archive. Since two vertices that are un-
connected by any path are never put in the same community
by our algorithm, the small fraction of vertices that are not
part of the largest component can safely be assumed to be in
separate communities in the sense of our algorithm. Our al-
gorithm takes 42 min to find the full community structure.
Our best estimates indicate that the GN algorithm would take

FIG. 2. Dendrogram of the
communities found by our algo-
rithm in the “karate club” network
of Zachary[5,17]. The shapes of
the vertices represent the two
groups into which the club split as
the result of an internal dispute.
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somewhere between three and five years to complete its ver-
sion of the same calculation.

The analysis reveals that the network in question consists
of about 600 communities, with a high peak modularity of
Q=0.713, indicating strong community structure in the phys-
ics world. Four of the communities found are large, contain-
ing between them 77% of all the vertices, while the others
are small—see Fig. 4, left panel. The four large communities
correspond closely to subject subareas: one to astrophysics,
one to high-energy physics, and two to condensed-matter
physics. Thus there appears to be a strong correlation be-
tween the structure found by our algorithm and the commu-
nity divisions perceived by human observers. It is precisely

correlation of this kind that makes community structure
analysis a useful tool in understanding the behavior of net-
worked systems.

We can repeat the analysis with any of the subcommuni-
ties to observe how they break up. For example, feeding the
smaller of the two condensed-matter groups through the al-
gorithm again, we find an even stronger peak modularity of
Q=0.807—the strongest we have yet observed in any
network—corresponding to a split into about a 100 commu-
nities (Fig. 4, center panel). These communities have a broad
distribution of sizes from 3 to nearly 2000. The distribution
is shown in cumulative form in Fig. 5, and we observe that it
is approximately power law in form with exponent about

FIG. 3. Dendrogram of the communities found in the college football network descibed in the text. The real-world communities—
conferences—are denoted by the different shapes as indicated in the legend.

FIG. 4. Left panel: Community structure in the collaboration network of physicists. The graph breaks down into four large groups, each
composed primarily of physicists of one specialty, as shown. Specialties are determined by the subsection(s) of the e-print archive in which
individuals post papers: “C.M.” indicates condensed matter; “H.E.P.” indicates high-energy physics including theory, phenomenology, and
nuclear physics; “astro” indicates astrophysics. Middle panel: one of the condensed matter communities is further broken down by the
algorithm, revealing an approximate power-law distribution of community sizes. Right panel: one of these smaller communities is further
analyzed to reveal individual research groups(different shades), one of which(in the dashed box) is the author’s own.
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−1.6, although this conclusion should be treated with caution
as there is significant deviation from a perfect power law
[20].

Narrowing our focus still further to the particular one of
these communities that contains the present author, we find
the structure shown in the right panel of Fig. 4. Feeding this
one last time through the algorithm, it breaks apart into com-
munities that correspond closely to individual institutional
research groups, the author’s group appearing in the corner
of the figure, highlighted by the dashed box. One could pur-

sue this line of analysis further, identifying individual
groups, iteratively breaking them down, and looking, for ex-
ample, at the patterns of collaboration between them, but we
leave this for later studies.

IV. CONCLUSIONS

In this paper we have described an algorithm for extract-
ing community structure from networks, which has a consid-
erable speed advantage over previous algorithms, running to
completion in a time that scales as the square of the network
size. This allows us to study much larger systems than has
previously been possible. Among other examples, we have
applied the algorithm to a network of collaborations between
more than 50 000 physicists, and found that the resulting
community structure corresponds closely to the traditional
divisions between specialties and research groups in the
field.

We believe that our method will not only allow for the
extension of community structure analysis to some of the
very large networks that are now being studied for the first
time, but will also provide a useful tool for visualizing and
understanding the structure of these networks, whose daunt-
ing size has hitherto made many of their structural properties
obscure.
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