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Image credit: By Nexcis (Own work) [Public domain], via Wikimedia
Commons

When you want to maximize (or minimize) a

multivariable function  subject to the

constraint that another multivariable function equals

a constant, , follow these steps:

Step 1: Introduce a new variable λ, and define a

new function L as follows:

This function L is called the "Lagrangian", and

the new variable λ is referred to as a "Lagrange

multiplier"

Step 2: Set the gradient of L equal to the zero

vector.

f(x, y, …)

g(x, y, …) = c

L(x, y, … , λ) = f(x, y, …) − λ(g(x, y,

¥ = o ⇒wax

0 constraints

ii."
*A

in
a,i,
#11111

"



In other words, find the critical points of L.

Step 3: Consider each solution, which will look

something like . Plug each one

into f . Or rather, first remove the λ  component,

then plug it into f , since f  does not have λ as an

input. Whichever one gives the greatest (or

smallest) value is the maximum (or minimum)

point your are seeking.

Example 1: Budgetary constraints

Problem

Suppose you are running a factory, producing some

sort of widget that requires steel as a raw material.

Your costs are predominantly human labor, which is

$20 per hour for your workers, and the steel itself,

which runs for $170 per ton. Suppose your revenue

R is loosely modeled by the following equation:

h represents hours of labor

s represents tons of steel

If your budget is $20,000, what is the maximum

∇L(x, y, … , λ) = 0 ← Zero vector

( , , … , )x0 y0 λ0

0

R(h, s) = 200h s2/3 1/3



possible revenue?

Solution

The $20 per hour labor costs and $170 per ton steel

costs tell us that the total cost of production, in terms

of h and s, is

Therefore the budget of $20,000 can be translated to

the constraint

Before we dive into the computation, you can get a

feel for this problem using the following interactive

diagram. You can see which values of (h, s) yield a

given revenue (blue curve) and which values satisfy

the constraint (red line).

20h + 170s

20h + 170s = 20,000

s

R

$20,000 $60,000

R = 200h s2/3 1/3

→obj

→canst



Since we need to maximize a function R(h, s),

subject to a constraint, 20h + 170s = 20,000, we

begin by writing the Lagrangian function for this

setup:

Next, set the gradient ∇L equal to the 0 vector. This

is the same as setting each partial derivative equal to

0. First, we handle the partial derivative with respect

to h.

Next, we handle the partial derivative with respect to

s.

h

20h + 170s = 20,000

L(h, s, λ) = 200h s − λ(20h + 170s2/3 1/3

0

0

0

=
∂h

∂L

= (200h s − λ(20h + 170s − 20,0
∂h

∂ 2/3 1/3

= 200 ⋅ h s − 20λ
3
2 −1/3 1/3



Finally we set the partial derivative with respect to λ

equal to 0, which as always is just the same thing as

the constraint. In practice, you can of course just

write the constraint itself, but I'll write out the partial

derivative here just to make things clear.

Putting it together, the system of equations we need

to solve is

0

0

0

=
∂s

∂L

= (200h s − λ(20h + 170s − 20,00
∂s

∂ 2/3 1/3

= 200 ⋅ h s − 170λ
3
1 2/3 −2/3

0

0

0

20h

=
∂λ

∂L

= (200h s − λ(20h + 170s − 20,0
∂λ

∂ 2/3 1/3

= −20h − 170s + 20,000

+ 170s = 20,000



In practice, you should almost always use a

computer once you get to a system of equations like

this. Especially because the equation will likely be

more complicated than these in real applications.

Once you do, you'll find that the answer is

This means you should employ about 667 hours of

labor, and purchase 39 tons of steel, which will give a

maximum revenue of

Constrained optimization
(articles)

MULTIVARIABLE
CALCULUS APPLICATIONS OF
MULTIVARIABLE DERIVATIVES

Lagrange multipliers,
introduction

Lagrange multipliers,
examples

Interpretation of Lagrange
multipliers

0

0

20h

= 200 ⋅ h s − 20λ
3
2 −1/3 1/3

= 200 ⋅ h s − 170λ
3
1 2/3 −2/3

+ 170s = 20,000

h

s

λ

= ≈ 666.667
3

2,000

= ≈ 39.2157
51

2,000

= ≈ 2.5933√
459

8,000

R(667, 39) = 200(667 (39 ≈)2/3 )1/3 $51,777



The interpretation of this constant λ = 2.593 is left to

the next article

Example 2: Maximizing dot
product
Problem: Let the three-dimensional vector  be

defined as follows.

Consider every possible unit vector  in three-

dimensional space. For which one is the dot product

⋅  the greatest?

The diagram below is two-dimensional, but not much

changes in the intuition as we move to three

dimensions.

v ⃗

=v ⃗ ⎣
⎡ 2

3
1 ⎦

⎤

û

û v ⃗



Two-dimensional analogy to the three-dimensional problem we have.
Which unit vector  maximizes the dot product ⋅ ?

If you are fluent with dot products, you may already

know the answer. It's one of those mathematical

facts worth remembering. If you don't know the

answer, all the better! Because we will now find and

prove the result using the Lagrange multiplier

method.

Solution:

First, we need to spell out how exactly this is a

constrained optimization problem. Write the

coordinates of our unit vectors as x, y and z:

1 2 31−2−3−

1

2

3

1−

2−

3−

y

x

v ⃗

û

û û v ⃗

⎡ ⎤



The fact that  is a unit vector means its magnitude

is 1:

This is our constraint.

Maximizing ⋅  means maximizing the following

quantity:

The Lagrangian, with respect to this function and the

constraint above, is

We now solve for ∇L = 0 by setting each partial

derivative of this expression equal to 0.

=û ⎣
⎡ x

y

z ⎦
⎤

û

∣∣ ∣∣ =û √x + y + z2 2 2

x + y + z2 2 2

= 1
⇓
= 1

û v ⃗

⋅ = 2x + 3y + z⎣
⎡ x

y

z ⎦
⎤

⎣
⎡ 2

3
1 ⎦

⎤

L(x, y, z, λ) = 2x + 3y + z − λ(x + y2 2



Remember, setting the partial derivative with respect

to λ equal to 0 just restates the constraint.

Solving for x, y and z in the first three equations

above, we get

Ah, what beautiful symmetry. Each of these

expressions has the same  factor, and the

coefficients 2, 3 and 1 match up with the coordinates

of . Being good math students as we are, we won't

let good symmetry go to waste. In this case,

combining the three equations above into a single

vector equation, we can relate  and  as follows:

(2x + 3y + z − λ(x + y + z − 1))
∂x

∂ 2 2 2

(2x + 3y + z − λ(x + y + z − 1))
∂y

∂ 2 2 2

(2x + 3y + z − λ(x + y + z − 1))
∂z

∂ 2 2 2

(2x + 3y + z − λ(x + y + z − 1))
∂λ

∂ 2 2 2 = −x

x

y

z

= 2 ⋅
2λ

1

= 3 ⋅
2λ

1

= 1 ⋅
2λ

1

2λ
1

v ⃗

û v ⃗



Two-dimensional analogy
showing the two unit vectors
which maximize and minimize
the quantity ⋅ .

Therefore  is

proportional to !

Geometrically, this means

 points in the same

direction as . There are

two unit vectors

proportional ,

One which points in

the same direction,

this is the vector that

maximizes ⋅ .

One which points in

the opposite direction. This one minimizes
⋅ .

We can write these two unit vectors by normalizing

, which just means dividing  by its magnitude:

The magnitude ∣∣ ∣∣ is = , so we

can write the maximizing unit vector  explicitly

= = =û ⎣
⎡ x

y

z ⎦
⎤

2λ

1

⎣
⎡ 2

3
1 ⎦

⎤
2λ

1
v ⃗

y

x

v ⃗

ûmax

ûmin

û v ⃗

û
v ⃗

û
v ⃗

v ⃗

û v ⃗

û v ⃗

v ⃗ v ⃗

ûmax

ûmin

=
∣∣ ∣∣v ⃗

v ⃗

= −
∣∣ ∣∣v ⃗

v ⃗

v ⃗ √2 + 3 + 12 2 2 √14

ûmax



as like this:

Just skip the Lagrangian
If you read the last article, you'll recall that the whole

point of the Lagrangian L is that setting ∇L = 0

encodes the two properties a constrained maximum

must satisfy:

Gradient alignment between the target function

and the constraint function,

The constraint itself,

When working through examples, you might wonder

why we bother writing out the Lagrangian at all.

Wouldn't it be easier to just start with these two

equations rather than re-establishing them from

∇L = 0 every time? The short answer is yes, it would

be easier. If you find yourself solving a constrained

=ûmax ⎣
⎡ 2/√14

3/√14
1/√14 ⎦

⎤

∇f(x, y) = λ∇g(x, y)

g(x, y) = c



optimization problem by hand, and you remember

the idea of gradient alignment, feel free to go for it

without worrying about the Lagrangian.

In practice, it's often a computer solving these

problems, not a human. Given that there are many

highly optimized programs for finding when the

gradient of a given function is 0, it's both clean and

useful to encapsulate our problem into the equation

∇L = 0.

Furthermore, the Lagrangian itself, as well as several

functions deriving from it, arise frequently in the

theoretical study of optimization. In this light,

reasoning about the single object L rather than

multiple conditions makes it easier to see the

connection between high-level​ ideas. Not to

mention, it's quicker to write down on a blackboard.

In either case, whatever your future relationship with

constrained optimization might be, it is good to be

able to think about the Lagrangian itself and what it

does. The examples above illustrate how it works,

and hopefully help to drive home the point that

∇L = 0 encapsulates both ∇f = λ∇g and

g(x, y) = c in a single equation.



Questions  Tips & Thanks

Ask a question...

                        

                        

Top Recent

6 votes   •  •   by 

In example 2, why do we put a hat on u? Is it because it is
a unit vector, or because it is the vector that we are
looking for?

7 votes   •  •  
 by 

It is because it is a unit vector. Unit vectors will
typically have a hat on them.

2 votes   •  •  
 by 

Use the method of Lagrange multipliers to compute the
Optimal investments x and y in mutual Funds 1 and 2
respectively.An expressions for x and y should not contain
the lagrange multiplier

Instead of constraining optimization to a curve on x-y
plane, is there which a method to constrain the
optimization to a region/area on the x-y plane. Like the
region 
x^2+y^2<=2 which r all the points in the unit circle

Comment Flag 2 years ago  clara.vdw

Comment Flag
2 years ago  u.yu16

Comment Flag
about a year ago  Learner



                        

                        

                        

1 vote   •  •  
 by 

including the boundary.

1 vote   •  •  
 by 

For problems where the number of constraints is one less
than the number of variables (ie every example we've
gone over except the unit vector one), is there a reason
why we can't just solve the system of equations of the
function and constraint? ie the result is a single-variable
function; take its derivative and set to 0.

1 vote   •  •   by 

how do you maximize this function subject to the
constraint 
f(x,y)=x^2-y^2+3, 2x+y=3

1 vote   •  •  
 by 

Hello and really thank you for your amazing site. Can you
please explain me why we dont use the whole Lagrange
but only the first part? Why we dont use the 2nd
derivatives

Comment Flag
9 months ago  hamadmo77

Comment Flag
about a year ago  David O'Connor

Comment Flag 10 months ago  jam008

Comment Flag
3 months ago  nikostogas



                        

                        

                        

                        

1 vote   •  •  
 by 

what shuld we do if we have constraints as well as
boundaries and we need a local extrima?

0 votes   •  •  
 by 

At the start of example 1, it would be good if you
mentioned that the problem is very hard to solve
completely by hand, so that people don't waste their time.

1 vote   •  •  
 by 

Its indeed tricky, but I found it usefull and good
practice.

0 votes   •  •  
 by 

find the temperature f(x,y,z) at any point in space is
f=400xyz^2.find the highest temperature on the surface of
the sphere x^2+y^2+z^2=1

Comment Flag
2 years ago  Garbage can jr.

Comment Flag
about a year ago  Zaz Brown

Comment Flag
10 months ago  aflenoir

1 comment Flag
2 years ago  gakhil1018
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LECTURE :KERNEL PCALECTURE :KERNEL PCALECTURE :KERNEL PCALECTURE :KERNEL PCALECTURE :KERNEL PCALECTURE :KERNEL PCALECTURE :KERNEL PCALECTURE :KERNEL PCA
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Some slides are due to Scholkopf, Smola, Muller, and Precup



Dimensionality Reduction 

 Data representation
Inputs are real-valued vectors in a 
high dimensional space.

 Linear structure Linear structure
Does the data live in a low 
dimensional subspace?

 Nonlinear structure
Does the data live on a low 
dimensional submanifold?



Dimensionality Reduction so far

PCA Manifold learning methods

Kernel PCA
for non linear 
structure but does not 

unfold the data



Notations
 Inputs (high dimensional)

x1,x2,…,xn points in RD

 Outputs (low dimensional)
y ,y ,…,y points  in Rd (d<<D) y1,y2,…,yn points  in Rd (d<<D) 



The “magic” of high dimensions

 Given some problem, how do we know 
what classes of functions are capable of 
solving that problem?

 VC (Vapnik-Chervonenkis) theory tells us 
that often mappings which take us into a 
higher dimensional space than the 
dimension of the input space provide us 
with greater classification power.



Example in R2

These classes are 
linearly inseparable in 
the input space.the input space.



Example: High-Dimensional Mapping 

We can make the 
problem linearly 
separable by a simple 
mapping

),,(),(
 :

2
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2
12121
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xxxxxx +

→Φ
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Kernel Trick
 High-dimensional mapping can seriously 

increase computation time. 
 Can we get around this problem and still 

get the benefit of high-D?get the benefit of high-D?
 Yes! Kernel Trick

 Given any algorithm that can be expressed 
solely in terms of dot products, this trick 
allows us to construct different nonlinear 
versions of it.

( ) )()(, j
T

iji xxxxK φφ=
dotproduct iny¥

④= hidden

→ s.EE



Popular Kernels



Kernel Principal Component 
Analysis (KPCA)
 Extends conventional principal 

component analysis (PCA) to a high 
dimensional feature space using the 
“kernel trick”.“kernel trick”.

 Can extract up to n (number of samples) 
nonlinear principal components without 
expensive computations.



Making PCA Non-Linear
 Suppose that instead of using the points     we 

would first map them to some nonlinear feature 
space

E.g. using polar coordinates instead of cartesian
coordinates would help us deal with the circle.

ix

)( ixφ

coordinates would help us deal with the circle.
 Extract principal component in that space (PCA)
 The result will be non-linear in the original data 

space!



Derivation
 Suppose that the mean of the data in the feature 

space is

 Covariance:
0)(1

1
== ∑

=

n

i
ix

n
φµ

∑=
n

Txx )()(1C φφ

 Eigenvectors

∑
=

=
n

i

T
ii xx

n 1

)()(1C φφ

vv λ=C



Derivation Cont.
 Eigenvectors can be expressed as linear 

combination of features:

 Proof:
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Showing that Showing that Showing that Showing that TT xvxvxx )( ⋅=
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Derivation Cont.
 So, from before we had, 

this means that all solutions    with
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just a scalar

0=λ this means that all solutions    with
lie in the span of                         , i.e.,

 Finding the eigenvectors is equivalent to finding 
the coefficients 
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Derivation Cont.
 By substituting this back into the equation we get:

 We can rewrite it as 

∑∑ ∑
== =

=






 n

l
ljlj

n

i

n

l
ljl

T
ii xλxxx

n 11 1
)()()()(1 φαφαφφ

 We can rewrite it as 

 Multiply this by          from the left:
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Derivation Cont.
 By plugging in the kernel and rearranging we get: 

We can remove a factor of K from both sides of the matrix 
(this will only affects the eigenvectors with zero eigenvalue, 

j
2 KK αλα jj n=

(this will only affects the eigenvectors with zero eigenvalue, 
which will not be a principle component anyway):

 We have a normalization condition for the vectors:
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Derivation Cont.
 By multiplying                      by      and using the 

normalization condition we get:  

 For a new point x, its projection onto the principal 
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 For a new point x, its projection onto the principal 
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Normalizing the feature space

 In general,           may not be zero mean.
 Centered features:

The corresponding kernel is:
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Normalizing the feature space 
(cont)

 In a matrix form
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 where       is a matrix with all elements 1/n.
1/n1/n1/n KK2-KK~ 111 +=

1/n1



Summary of kernel PCA
 Pick a kernel
 Construct the normalized kernel matrix   of the 

data (dimension m x m): 

1/n1/n1/n KK2-KK~ 111 +=
 Solve an eigenvalue problem: 

 For any data point (new or old), we can 
represent it as

1/n1/n1/n KK2-KK 111 +=

iii αλα =K~

∑
=

==
n

i
ijij dxxKy

1
,..,1j  ),,(αFiggis
dual seat= sin¢,ay



Example: Input Points



Example: KPCA



Example: De-noising images



Properties of KPCA

 Kernel PCA can give a good re-
encoding of the data when it lies along a 
non-linear manifold.

 The kernel matrix is n x n, so kernel PCA  The kernel matrix is n x n, so kernel PCA 
will have difficulties if we have lots of 
data points.


