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<{MATH - MULTIVARIABLE CALCULUS - APPLICATIONS OF
MULTIVARIABLE DERIVATIVES - CONSTRAINED OPTIMIZATION
(ARTICLES)

Lagrange
multipliers, examples

Examples of the Lagrangian and Lagrange multiplier
technique in action.

[:] Google Classroom Bl Facebook M
¥ Twitter Email

Background

¢ |ntroduction to Lagrange multipliers
e Gradient

Lagrange multiplier technique,
quick recap



f(X,y) % = 0 =Y WaA
Yy O enhaits

X

Image credit: By Nexcis (Own work) [Public domain], via Wikimedia
Commons

When you want to maximize (or minimize) a
multivariable function f(x, v, ...) subject to the
constraint that another multivariable function equals
a constant, g(x, v, . ..) = ¢, follow these steps:

e Step 1: Introduce a new variable )\, and define a
new function £ as follows:

L(z,y,...,\) = flz,y,...) — Ag(z,y,

This function L is called the "Lagrangian", and
the new variable )\ is referred to as a "Lagrange
multiplier"

e Step 2: Set the gradient of £ equal to the zero
vector.



VL(x,y,...,A\) =0 < Zero vector
In other words, find the critical points of L.

e Step 3: Consider each solution, which will look
something like (Zg, Yg, - - -, Ao). Plug each one
into f. Or rather, first remove the A\, component,
then plug it into f, since f does not have A as an
input. Whichever one gives the greatest (or
smallest) value is the maximum (or minimum)

point your are seeking.

Example 1: Budgetary constraints

Problem

Suppose you are running a factory, producing some
sort of widget that requires steel as a raw material.
Your costs are predominantly human labor, which is
$20 per hour for your workers, and the steel itself,
which runs for $170 per ton. Suppose your revenue
R is loosely modeled by the following equation:

R(h, s) = 200n?/3s1/?

e h represents hours of labor
e S represents tons of steel

If your budget is $20,000, what is the maximum



possible revenue?

Solution

The $20 per hour labor costs and $170 per ton steel
costs tell us that the total cost of production, in terms
of h and s, is

20h +170s

Therefore the budget of $20,000 can be translated to
the constraint

20h + 170s = 20,000

Before we dive into the computation, you can get a
feel for this problem using the following interactive
diagram. You can see which values of (h, s) yield a
given revenue (blue curve) and which values satisfy
the constraint (red line).

S

AN
R

¢ |

$20,000 $60,000

R = 200h%/3s1/3

/OQ\




20h + 170s = 20,000
> h
v \

Since we need to maximize a function R(h, s),
subject to a constraint, 20h + 170s = 20,000, we
begin by writing the Lagrangian function for this

IN

setup:
L(h,s,\) = 200n*/3s'/3 — X\(20h + 1

Next, set the gradient VL equal to the 0 vector. This
is the same as setting each partial derivative equal to
0. First, we handle the partial derivative with respect
to h.

o 0L
~ Oh

0 2/3.1/3
0= %(20% /3513 — X(20h + 170s — 20,0

2
0 = 200 - gh—1/331/3 — 20\

Next, we handle the partial derivative with respect to

S.



oL
0=—
0s

G,
0= %(200#/331/3 — A(20h + 1705 — 20,0

1
0 = 200 - §h2/33—2/3 — 170\

Finally we set the partial derivative with respectto A
equal to 0, which as always is just the same thing as
the constraint. In practice, you can of course just
write the constraint itself, but I'll write out the partial
derivative here just to make things clear.

.
D)
0= a(zooiﬁ/?’sl/?’ — A\(20h + 170s — 20,0

0 = —20h — 170s + 20,000
20h + 170s = 20,000

Putting it together, the system of equations we need

to solve is
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@ Lagrange multipliers,
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Interpretation of Lagrange
multipliers

2
0 = 200 - §h—1/331/3 — 20\

1
0 = 200 - §h2/3s—2/3 — 170\

20h + 170s = 20,000

In practice, you should almost always use a
computer once you get to a system of equations like
this. Especially because the equation will likely be
more complicated than these in real applications.
Once you do, you'll find that the answer is

2,000
h = ~ 666.667
3
2
s = ,000 ~ 39.2157
51
8,000
A= — = 2.
459 099

This means you should employ about 667 hours of
labor, and purchase 39 tons of steel, which will give a
maximum revenue of

R(667,39) = 200(667)%/%(39)"/% ~[$51,777




The interpretation of this constant A = 2.593 is left to
the next article

Example 2: Maximizing dot
product

Problem: Let the three-dimensional vector v'be
defined as follows.

-
1]

Consider every possible unit vector u in three-
dimensional space. For which one is the dot product
u - v the greatest?

The diagram below is two-dimensional, but not much
changes in the intuition as we move to three
dimensions.



AN

v

Two-dimensional analogy to the three-dimensional problem we have.
Which unit vector &1 maximizes the dot product i1 - v?

If you are fluent with dot products, you may already
know the answer. It's one of those mathematical
facts worth remembering. If you don't know the
answer, all the better! Because we will now find and
prove the result using the Lagrange multiplier
method.

Solution:

First, we need to spell out how exactly this is a
constrained optimization problem. Write the
coordinates of our unit vectors as z, y and z:



The fact that u is a unit vector means its magnitude
is 1:

il = /22 Ty 2 = 1
4

This is our constraint.

Maximizing u - v'-means maximizing the following
quantity:

AR
HEH

The Lagrangian, with respect to this function and the
constraint above, is

=2z +3y+ =

£($7y727)\):2$—|—3y—|—z_)\(m2_|_ 2

We now solve for VL = 0 by setting each partial
derivative of this expression equal to 0.



@(2w+3y+z—)\(w2+y2—l—z2—1)]
8—(2J3+3y+z—)\(:c2—|—y2+z2—1)]

$(2x+3y+z—)\(m2+y2+z2—1)]

Remember, setting the partial derivative with respect
to A equal to 0 just restates the constraint.

0
5(25B+3y—|—z—)\(w2+y2—|—z2—1)):—a

Solving for z, y and z in the first three equations
above, we get

1
:13:2-?
y=3 —

2
z=1 f\

2X

Ah, what beautiful symmetry. Each of these
expressions has the same % factor, and the
coefficients 2, 3 and 1 match up with the coordinates
of v. Being good math students as we are, we won't
let good symmetry go to waste. In this case,
combining the three equations above into a single
vector equation, we can relate t1 and v’as follows:



Therefore u is
proportional to v!
Geometrically, this means | v
u points in the same 1
. . = / Umax
direction as v. There are — L

two unit vectors L
Umin

proportional v,

e One which points in
. . Two-dimensional analogy
the same dlreCtIOI’], showing the two unit vectors

this is the vector that which maximize and minimize
L. R R the quantity @t - v
maximizes U - v.
e One which points in

the opposite direction. This one minimizes
a-v.

We can write these two unit vectors by normalizing

v, which just means dividing v by its magnitude:

.V

T
6V
o V]|

The magnitude ||v]| is v/22 + 32 + 12 = /14, so we
can write the maximizing unit vector (., explicitly



as like this:

Umax = { 3/v/14 }

Just skip the Lagrangian

If you read the last article, you'll recall that the whole
point of the Lagrangian L is that setting VL = 0
encodes the two properties a constrained maximum
must satisfy:

e Gradient alignment between the target function
and the constraint function,

Vf(z,y) =AVg(z,y)

e The constraint itself,

g(z,y) =c

When working through examples, you might wonder
why we bother writing out the Lagrangian at all.
Wouldn't it be easier to just start with these two
equations rather than re-establishing them from

VL = 0 every time? The short answer is yes, it would
be easier. If you find yourself solving a constrained



optimization problem by hand, and you remember
the idea of gradient alignment, feel free to go for it
without worrying about the Lagrangian.

In practice, it's often a computer solving these
problems, not a human. Given that there are many
highly optimized programs for finding when the
gradient of a given function is 0, it's both clean and
useful to encapsulate our problem into the equation
VL =0.

Furthermore, the Lagrangian itself, as well as several
functions deriving from it, arise frequently in the
theoretical study of optimization. In this light,
reasoning about the single object L rather than
multiple conditions makes it easier to see the
connection between high-level ideas. Not to
mention, it's quicker to write down on a blackboard.

In either case, whatever your future relationship with
constrained optimization might be, it is good to be
able to think about the Lagrangian itself and what it
does. The examples above illustrate how it works,
and hopefully help to drive home the point that

VL = 0 encapsulates both Vf = AVg and

9(z,y) = cin a single equation.



Ask a question...

Questions Tips & Thanks Top Recent

In example 2, why do we put a hat on u? Is it because it is
a unit vector, or because it is the vector that we are
looking for?

6 votes & W . Comment - Flag 2 years ago by #&. claravdw

It is because it is a unit vector. Unit vectors wiill
typically have a hat on them.

7 votes & W . Comment - Flag
2 years ago by & uyul6

Use the method of Lagrange multipliers to compute the
Optimal investments x and y in mutual Funds 1and 2
respectively.An expressions for x and y should not contain
the lagrange multiplier

2 votes &4 W . Comment - Flag
about a year ago by # Learner

Instead of constraining optimization to a curve on x-y
plane, is there which a method to constrain the
optimization to a region/area on the x-y plane. Like the
region

x"2+y"2<=2 which r all the points in the unit circle



including the boundary.

1vote A W . Comment - Flag
9 months ago by # hamadmo77

For problems where the number of constraints is one less
than the number of variables (ie every example we've
gone over except the unit vector one), is there a reason
why we can't just solve the system of equations of the
function and constraint? ie the result is a single-variable
function; take its derivative and set to O.

1vote A W . Comment - Flag
about a year ago by # David O'Connor

how do you maximize this function subject to the
constraint
f(x,y)=x"2-y"2+3, 2x+y=3

1vote A W . Comment - Flag 10 months ago by # jamOO8

Hello and really thank you for your amazing site. Can you
please explain me why we dont use the whole Lagrange
but only the first part? Why we dont use the 2nd
derivatives

1vote A ¥ . Comment - Flag
3 months ago by # nikostogas



what shuld we do if we have constraints as well as
boundaries and we need a local extrima?

1vote A ¥ . Comment - Flag
2 years ago by 8 Garbage canjr.

At the start of example 1, it would be good if you
mentioned that the problem is very hard to solve
completely by hand, so that people don't waste their time.

O votes & W . Comment - Flag
about a year ago by # Zaz Brown

Its indeed tricky, but | found it usefull and good
practice.

1vote A W . Comment - Flag
10 months ago by & aflenoir

find the temperature f(x,y,z) at any point in space is
f=400xyz"2.find the highest temperature on the surface of
the sphere x"2+y"2+z"2=1

O votes & W . 1comment - Flag
2 years ago by # gakhil1018
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UNSUPERVISED LEARNING 2011

LECTURE :KERNEL PCA

Rita Osadchy

Some slides are due to Scholkopf, Smola, Muller, and Precup



Dimensionality Reduction

Data representation

Inputs are real-valued vectors in a
high dimensional space.

Linear structure

Does the data live in a low
dimensional subspace?

Nonlinear structure

Does the data live on a low
dimensional submanifold?




Dimensionality Reduction so far

Manifold learning methods

for non linear

Kernel PCA but does not
structure unfold the data



Notations

Inputs (high dimensional)
X, Xs,...,X, points in RP
Outputs (low dimensional)
Y Va-., Y, points in RY (d<<D)



The “magic” of high dimensions

Given some problem, how do we know
what classes of functions are capable of
solving that problem?

VC (Vapnik-Chervonenkis) theory tells us
that often mappings which take us into a
higher dimensional space than the
dimension of the input space provide us
with greater classification power.



Example in R2

S

. . These classes are
_, | linearly inseparable in

w o | the input space.
o
;i-1 0 x 2 3 2 5




Example: High-Dimensional Mapping

L - We can make the

~. problem linearly
- separable by a simple
| - mapping

Y ORI HR

(X,%,) > (xl,xz,xf +x\22)

/ ~_2~

KM\\L\ NI c&@xjv 9\8@0‘(4}

o5t KC;( v,
M(zafnm@@ e )k\ vlb{‘»ﬂl




Kernel Trick

High-dimensional mapping can seriously
Increase computation time.

Can we get around this problem and still
get the benefit of high-D? O

Yes! Kernel Trick \wns  Jobpids® ™ ;‘1 »

Kl Jmo) oG
N

Given any algorithm that can be expré”ssed

solely in terms of dot products, this trick

allows us to construct different nonlinear

versions of it.



Popular Kernels

Gaussian |K(x,¥) = exp(-B[3 - ¥|")

Polynomial ‘K(?c,)_é’) =(1+%-% )”‘

Hyperbolic tangent |K(¥,X") = tanh(%- ¥ + 6|




Kernel Principal Component
Analysis (KPCA)

Extends conventional principal
component analysis (PCA) to a high
dimensional feature space using the
“kernel trick”.

Can extract up to n (number of samples)
nonlinear principal components without
expensive computations.



Making PCA Non-Linear

Suppose that instead of using the points x, we
would first map them to some nonlinear feature
space @(x,)
E.g. using polar coordinates instead of cartesian
coordinates would help us deal with the circle.

Extract principal component in that space (PCA)

The result will be non-linear in the original data
space!



Derivation

Suppose that the mean of the data in the feature

space is 1 &
H = ;Z¢('x1) =0
Covariance: =

1 n
C= ;Z #(x)(x,)"
i=l1
Eigenvectors

Cv=Av



Derivation Cont.

Eigenvectors can be expressed as linear
combination of features:

V=Y adx)
Proof: _
Cv =3 g () v = A
noio
thus

1 & T _L Y , r
= D) v = ()



Showing that x'v=(x-v)x’

(zxx

(3

/ L1

Lodq

L1092

LodLo

\ LM L1 N IL2

L1 LM \

L2L M

LN LM )

( 111 + 129 + ...+ L1TMUM \

ToT1V1 + T2 + ...+ T2TMUM

\ TMIT1V1 +TMT2V2 + ... + TMEIMUM )

R

U9

oy




Showing that xx"v=(x-v)x’

/ (z1v1 + 2v2 + ... + MM ) 21 \

(r1v1 + @wavs + ...+ LprOA) X2

\ (r1v1 + xov2 + ... + M UM ) TM )

[ )
L2

— ( iU, + T2 + ... + TN UM )

\ '-L':-w /

=(x-v)x



Derivation Cont.

So, from before we had,
v ﬁ;m)ﬂxw . ﬁ;w(xi)-v)qﬁ(xlf

just a scalar

this means that all solutions v with 4 =0
lie in the span of ¢(x,),..,9(x, ), i.e.,

SRS\ TR (AN

Finding the eigenvectors is equivalent to finding
the coefficients ¢,



Derivation Cont.

By substituting this back into the equation we get:
1 n n n
;Z_l‘, ¢(xi)¢(xi)T(; ajl¢(xl)] = ;tjlz—l: ajl¢(xl)

We can rewrite it as

%Zn:ﬂxl,)[i aﬂK(xl.,xl)j = ijiaﬂﬂxz)

Multiply this by ¢(x, ) from the left:

%i¢(xk)T¢(xi)(i a ;K (xiﬁxl)j =4 Z o p(x,) $(x)



Derivation Cont.

By plugging in the kernel and rearranging we get:

2
K a; = n/IjKaj

We can remove a factor of K from both sides of the matrix
(this will only affects the eigenvectors with zero eigenvalue,

which will not be a principle component anyway):
Ko, = nxljaj
We have a normalization condition for the Otj vectors:

viv,=1 = 3 > a,0,4x) ¢lx)=1 = a/Ka; =1

k=1 [=1



Derivation Cont.

By multiplying Ka, =n4,a; by a; and using the
normalization condition we get:

T . .
Ana;a; =1, Vj

For a new point X, its projection onto the principal
components is:

¢(X)TV]' = iaji¢(x)T¢(xi) = iajiK(xﬁ X;)



Normalizing the feature space

In general, ¢(x;) may not be zero mean.
Centered features:

F0c) = 9x)— - px,)

g
The corresponding kernel is:

K(x,,x)=¢(x) $(x,)
. (¢<x,->—ii¢<xk>] (qﬁ(x,-)—iiqﬁ(xk)j

M= N =

:K(xiaxj)__ZK(xiaxk)__ZK(xj’xk)+_2
N n k=l n

iK(xlﬂxk)

[,k=l1



Normalizing the feature space
(cont)

~ ] & ] & ] &
K(xiaxj):K(xiaxj)_;ZK(xiaxk)_;ZK(xjaxk)—i_? ZK(xlaxk)
k=1 k=1

[,k=1

In a matrix form

~~/

K=K-21, K+1, K1

1/n I/n 1/n

where 1, iSs a matrix with all elements 1/n.



Summary of kernel PCA

Pick a kernel

Construct the normalized kernel matrix of the
data (dimension m X m):

~~/

K=K-21, K+1, KI,_
Solve an eigenvalue problem:
IZal. = Aa,
For any data point (new or old), we can

represent it as L (oot — o (\é L
d= o8 W\W‘/ g ) B

e e k]is.a

—_— |




Example: Input Points
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Example: KPCA
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Example: De-noising images
Original data
{1 21Y100A 71817910
Data corrupted with Gaussian noise
B8 B0 R e R

Result after linear PCA

k¥ Kl G el [ il E] 6

Result after kernel PCA, Gaussian kernel

1 SIYION6] 7181710



Properties of KPCA

Kernel PCA can give a good re-
encoding of the data when it lies along a
non-linear manifold.

The kernel matrix is n X n, so kernel PCA
will have difficulties if we have lots of
data points.



