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ABSTRACT

DBSCAN is a popular method for clustering multi-dimensional
objects. Just as notable as the method’s vast success is the research
community’s quest for its efficient computation. The original
KDD’96 paper claimed an algorithm with O(n log n) running
time, where n is the number of objects. Unfortunately, this is a
mis-claim; and that algorithm actually requires O(n2) time. There
has been a fix in 2D space, where a genuine O(n log n)-time
algorithm has been found. Looking for a fix for dimensionality
d ≥ 3 is currently an important open problem.

In this paper, we prove that for d ≥ 3, the DBSCAN
problem requires Ω(n4/3) time to solve, unless very significant
breakthroughs—ones widely believed to be impossible—could be
made in theoretical computer science. This (i) explains why the
community’s search for fixing the aforementioned mis-claim has
been futile for d ≥ 3, and (ii) indicates (sadly) that all DBSCAN
algorithms must be intolerably slow even on moderately large n
in practice. Surprisingly, we show that the running time can
be dramatically brought down to O(n) in expectation regardless

of the dimensionality d, as soon as slight inaccuracy in the
clustering results is permitted. We formalize our findings into the
new notion of ρ-approximate DBSCAN, which we believe should
replace DBSCAN on big data due to the latter’s computational
intractability.

Categories and Subject Descriptors

H.3.3 [Information search and retrieval]: Clustering
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1. INTRODUCTION
Density-based clustering is one of the most fundamental topics

in data mining. Given a set P of n points in d-dimensional space
R

d, the objective is to group the points of P into subsets—called
clusters—such that any two clusters are separated by “sparse
regions”. Figure 1 shows two classic examples taken from [10]:
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Figure 1: Examples of density-based clustering from [10]

the left one contains 4 snake-shaped clusters, while the right one
contains 3 clusters together with some noise. The main advantage
of density-based clustering (over methods such as k-means) is
its capability of discovering clusters with arbitrary shapes (while
k-means typically returns ball-like clusters).

Density-based clustering can be achieved using a variety
of approaches, which differ mainly in their (i) definitions of
“dense/sparse regions”, and (ii) criteria of how dense regions
should be connected to form clusters. In this paper, we concentrate
on DBSCAN, which is an elegant approach invented by Ester,
Kriegel, Sander, and Xu [10], and received the test-of-time award in
KDD’14. DBSCAN characterizes “density/sparsity” by resorting
to two parameters:

• ǫ: a positive real value;

• MinPts: a small positive constant integer.

Let B(p, ǫ) be the d-dimensional ball centered at point p with
radius ǫ, where the distance metric is Euclidean distance. B(p, ǫ)
is “dense” if it covers at least MinPts points of P .

DBSCAN forms clusters based on the following rationale. If

B(p, ǫ) is dense, all the points in B(p, ǫ) should be added to the

same cluster as p. This creates a “chained effect”: whenever a new
point p′ with a dense B(p′, ǫ) is added to the cluster of p, all the
points in B(p′, ǫ) should also join the same cluster. The cluster of
p continues to grow in this manner to the effect’s fullest extent.

1.1 A Mis-Claim of 17 Years
In their seminal paper [10], Ester et al. claimed that their

DBSCAN algorithm terminates in O(n log n) time. This turns out
to be a mis-claim: as pointed out by Gunawan [11] recently, the
algorithm of [10] actually runs inO(n2)worst case time, regardless
of the parameters ǫ and MinPts .1

The above error, unfortunately, has permeated deeply into the
database and data mining fields. For example, the O(n log n)

1This is in fact quite obvious in retrospect. The algorithm of [10]
performs n range queries, each of which reports all the points
within distance ǫ from a data point. When the points of P are all
within distance ǫ from each other, the total time of all those queries

is already O(n2).



“performance bound” is explicitly stated in the Wikipedia page
of DBSCAN2, major textbooks [12, 20, 25], and a long string of
papers [2, 5, 7, 13, 16, 19, 24, 28, 29, 30] (mentioning just 10
of them). Very unfortunately, adverse consequence has ensued:
several papers [14, 21, 23] have utilized the O(n log n) “claim”
as a building brick to derive new “results”, which have thus all
been invalidated the moment the error was found (specifically, the
affected results lie in Sec D.1 of [14], Sec 3.2 of [21], and Sec 5.2
of [23]).

In [11], Gunawan also showed that all of the subsequently
improved versions of the original DBSCAN algorithm either do
not compute the precise DBSCAN result (e.g., see [6, 15, 26]), or
still suffer from O(n2) running time [17]. As a partial remedy,
Gunawan developed a new 2D algorithm which truly runs in
O(n log n) time, but left the d ≥ 3 case as an open problem.

The mis-claim in [10] and its 2D remedy [11] leave behind two
intriguing questions:

1. For d ≥ 3, is it possible to fix the error in [10] by
designing an algorithm that genuinely has O(n log n) time
complexity? To make things easier, is it possible to achieve
time complexity O(n logc n) even for some very large

constant c?

2. If the answer to the previous question is no, it means that
DBSCAN in d ≥ 3 is computationally intractable in practice
even on moderately large n. What should we do if we
still want to apply this method to cluster a large dataset?
This question becomes increasingly urgent nowadays with
the arrival of big data.

1.2 Our Contributions
This paper makes three contributions. First, we prove that the

DBSCAN problem requires Ω(n4/3) time to solve in d ≥ 3,
unless very significant breakthroughs (ones widely believed to be
impossible) can be made in theoretical computer science. Note that
n4/3 is arbitrarily larger than n logc n, regardless of constant c.

Second, we introduce a new concept called ρ-approximate
DBSCAN as an alternative to DBSCAN on large datasets of d ≥ 3.
ρ-approximate DBSCAN comes with very strong assurances in
both quality and efficiency. For quality, its clustering result is
guaranteed to be “sandwiched” between the results of DBSCAN
obtained with parameters (ǫ,MinPts) and (ǫ(1 + ρ),MinPts),
respectively. This is very desired in practice, because it is
well-known [2] that there is a comfortable range of ǫ that will
yield good DBSCAN clusters. For efficiency, we prove that
ρ-approximate DBSCAN can be solved in linear O(n) expected
time, for any ǫ, arbitrarily small constant ρ, and in any fixed

dimensionality d! It is rather surprising that such a small sacrifice
of accuracy can bring this tremendous gain in running time.

Third, we perform DBSCAN experiments on datasets
significantly larger than those used in all the previous experiments
to our awareness. The experiments reveal that, as predicted by
theory, none of the exact DBSCAN algorithms has acceptable
running time even in 3D (which perhaps explains why the previous
evaluation was done only on small datasets). In contrast, our new
ρ-approximate DBSCAN algorithm exhibits graceful scalability
with respect to all parameters, and outperforms even the fastest
exact algorithm by a factor up to three orders of magnitude.

1.3 Paper Organization
Section 2 reviews the previous work related to ours. Section 3

provides theoretical evidence on the computational intractability

2http://en.wikipedia.org/wiki/DBSCAN

of DBSCAN in practice, and discusses what practitioners can
do if they insist on solving the problem exactly. Section 4
proposes ρ-approximate DBSCAN, elaborates on our algorithm,
and establishes its quality and efficiency guarantees. Section 5
evaluates the exact and approximation algorithms with extensive
experimentation. Finally, Section 6 concludes the paper with a
summary of findings.

2. RELATED WORK
Section 2.1 reviews the DBSCAN definitions as set out by Ester

et al. in [10]. Section 2.2 describes the 2D algorithm in [11] that
solves the problem genuinely in O(n log n) time. Section 2.3
points out several results from computational geometry which will
be needed to prove the intractability of DBSCAN later.

2.1 Definitions
As before, let P be a set of n points in d-dimensional space Rd.

Given two points p, q ∈ R
d, we denote by dist(p, q) the Euclidean

distance between p and q. Denote by B(p, r) the ball centered at
a point p ∈ R

d with radius r. Remember that DBSCAN takes two
parameters: ǫ andMinPts .

DEFINITION 1. A point p ∈ P is a core point ifB(p, ǫ) covers
at least MinPts points of P (including p itself).

If p is not a core point, it is said to be a non-core point. To
illustrate, suppose that P is the set of points in Figure 2, where
MinPts = 4 and the two circles have radius ǫ. Core points are
shown in black, and non-core points in white.

DEFINITION 2. A point q ∈ P is density-reachable from p ∈
P if there is a sequence of points p1, p2, ..., pt ∈ P (for some

integer t ≥ 2) such that:

• p1 = p and pt = q

• p1, p2, ..., pt−1 are core points

• pi+1 ∈ B(pi, ǫ) for each i ∈ [1, t− 1].

Note that points p and q do not need to be different. In
Figure 2, for example, o1 is density-reachable from itself; o10
is density-reachable from o1 and from o3 (through the sequence
o3, o2, o1, o10). On the other hand, o11 is not density-reachable
from o10 (recall that o10 is not a core point).

DEFINITION 3. A cluster C is a non-empty subset of P such

that:

• (Maximality) If a core point p ∈ C, then all the points

density-reachable from p also belong to C.
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Figure 2: An example dataset (the two circles have radius ǫ;

MinPts = 4)
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Figure 3: DBSCAN with a grid (MinPts = 4)

• (Connectivity) For any points p1, p2 ∈ C, there is a point

p ∈ C such that both p1 and p2 are density-reachable from

p.

Definition 3 implies that each cluster contains at least a core
point (i.e., p). In Figure 2, {o1, o10} is not a cluster because
it does not involve all the points density-reachable from o1.
{o1, o2, o3, ..., o10}, on the other hand, is a cluster.

Ester et al. [10] gave a nice proof that P has a unique set of
clusters, which gives rise to:

PROBLEM 1. The DBSCAN problem is to find the unique set

C of clusters of P .

Given the input P in Figure 2, the problem should output two
clusters: C1 = {o1, o2, ..., o10} and C2 = {o10, o11, ..., o17}.
Remark. A cluster can contain both core and non-core points. Any
non-core point p in a cluster is called a border point. Some points
may not belong to any clusters at all; they are called noise points.
In Figure 2, o10 is a border point, while o18 is noise.

The clusters in C are not necessarily disjoint (e.g., o10 belongs
to both C1 and C2 in Figure 2). In general, if a point p appears
in more than one cluster in C , then p must be a border point (see
Lemma 2 of [10]). In other words, a core point always belongs to a
unique cluster.

2.2 The 2D Algorithm of [11]
Next, we explain in detail the algorithm of [11], which solves the

DBSCAN problem in 2D space in O(n log n) time. The algorithm
imposes an arbitrary grid T on the data space R2, where each cell
of T is a ǫ√

2
× ǫ√

2
square. Figure 3a shows a grid on the data

of Figure 2. Note that any two points in the same cell are at most
distance ǫ apart. A cell c of T is non-empty if it contains at least
one point of P ; otherwise, c is empty. Clearly, there can be at most
n non-empty cells.

The algorithm then launches a labeling process to decide for
each point p ∈ P whether p is core or non-core. Denote by P (c)
the set of points of P covered by c. A cell c is a core cell if P (c)
contains at least one core point. Denote by Score the set of core
cells in T . In Figure 3a where MinPts = 4, there are 6 core cells
as shown in gray (core points are in black, and non-core points in
white).

Let G = (V,E) be a graph defined as follows:

• Each vertex in V corresponds to a distinct core cell in Score .

• Given two different cells c1, c2 ∈ Score , E contains an edge
between c1 and c2 if and only if there exist core points p1 ∈
P (c1) and p2 ∈ P (c2) such that dist(p1, p2) ≤ ǫ.

Figure 3b shows the G for Figure 3a (note that there is no edge
between cells c4 and c6).

The algorithm then proceeds by finding all the connected
components of G. Let k be the number of connected components,
Vi (1 ≤ i ≤ k) be the set of vertices in the i-th connected
component, and P (Vi) be the set of core points covered by the
cells of Vi. Then:

LEMMA 1 ([11]). The number k is also the number of

clusters in P . Furthermore, P (Vi) (1 ≤ i ≤ k) is exactly the

set of core points in the i-th cluster.

Figure 3b, k = 2, and V1 = {c1, c2, c3}, V2 = {c4, c5, c6}. It is
easy to verify the correctness of Lemma 1 on this example.

Labeling Process. Let c1 and c2 be two different cells in T . They
are ǫ-neighbors of each other if the minimum distance between
them is at most ǫ. Figure 3c shows in gray all the ǫ-neighbor cells of
the cell covering o10. It is easy to see that each cell has at most 21
ǫ-neighbors. If a non-empty cell c contains at leastMinPts points,
then all those points must be core points.

Now consider a cell c with |P (c)| < MinPts . Each point p ∈
P (c) may or may not be a core point. To find out, the algorithm
simply calculates the distances between p and all the points covered
by each of the ǫ-neighbor cells of c. This allows us to know exactly
the size of |B(p, ǫ)|, and hence, whether p is core or non-core.
For example, in Figure 3c, for p = o10, we calculate the distance
between o10 and all the points in the gray cells to find out that o10
is a non-core point.

Computation of G. Fix a core cell c1. We will explain how to
obtain the edges incident on c1 inE. Let c2 be a core cell that is an
ǫ-neighbor of c1. For each core point p ∈ P (c1), we find the core
point p′ ∈ c2 that is the nearest to p. If dist(p, p′) ≤ ǫ, an edge
(c1, c2) is added to G. On the other hand, if all such p ∈ P (c1)
have been tried but still no edge has been created, we conclude that
E has no edge between c1, c2.

As a corollary of the above, each core cell c1 has O(1) incident
edges in E (because it has O(1) ǫ-neighbors). In other words, E
has only a linear number O(n) of edges.

Assigning Border Points. Recall that each P (Vi) (1 ≤ i ≤ k)
includes only the core points in the i-th cluster of P . It is still
necessary to assign each non-core point q (i.e., border point) to the
appropriate clusters. The principle of doing so is simple: if p is

a core point and dist(p, q) ≤ ǫ, then q should be added to the

(unique) cluster of p. To find all such core points p, Gunawan [11]
adopted the following simple algorithm. Let c be the cell where q
lies. For each ǫ-neighbor cell c′ of c, simply calculate the distances
from q to all the core points in c′.

Running Time. Gunawan [11] showed that, other than the
computation of G, the rest of the algorithm runs in O(MinPts ·
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Figure 4: Three relevant geometric problems

n) = O(n) expected time or O(n log n) worst-case time. The
computation of G requires O(n) nearest neighbor queries, each of
which can be answered in O(log n) time after building a Voronoi
diagram for each core cell. Therefore, the overall execution time is
bounded by O(n log n).

2.3 Some Geometric Results

Bichromatic Closest Pair (BCP). Let P1, P2 be two sets of points
in R

d for some constant d. Set m1 = |P1| and m2 = |P2|. The
goal of the BCP problem is to find a pair of points (p1, p2) ∈ P1 ×
P2 with the smallest distance, namely, dist(p1, p2) ≤ dist(p′1, p

′
2)

for any (p′1, p
′
2) ∈ P1 × P2. Figure 4 shows the closest pair for a

set of black points and a set of white points.
In 2D space, it is well-known that BCP can be solved in

O(m1 logm1 + m2 logm2) time. The problem is much more
challenging for d ≥ 3, for which currently the best result is due
to Agarwal et al. [1]:

LEMMA 2 ([1]). For any fixed dimensionality d ≥ 4, there is
an algorithm solving the BCP problem in

O
(

(m1m2)
1− 1

⌈d/2⌉+1
+δ′

+m1 logm2 +m2 logm1

)

expected time, where δ′ > 0 can be an arbitrarily small constant.

For d = 3, the expected running time can be improved to

O((m1m2 · logm1 · logm2)
2/3 +m1 log

2 m2 +m2 log
2 m1)).

Spherical Emptiness and Hopcroft. Let us now introduce the
unit-spherical emptiness checking (USEC) problem:

Let Spt be a set of points, and Sball be a set of balls with the
same radius, all in data space Rd, where the dimensionality
d is a constant. The objective of USEC is to determine
whether there is a point of Spt that is covered by some ball
in Sball .

For example, in Figure 4b, the answer is yes.
Set n = |Spt |+ |Sball |. In 3D space, the USEC problem can be

solved inO(n4/3 ·log4/3 n) expected time [1]. Finding a 3D USEC

algorithm with running time o(n4/3) is a big open problem in
computational geometry, and is widely believed to be impossible;
see [8].

Strong hardness results are known about USEC when the
dimensionality d is higher, owing to an established connection
between the problem to the Hopcroft’s problem:

Let Spt be a set of points, and Sline be a set of lines, all in
data spaceR2 (note that the dimensionality is always 2). The
goal of the Hopcroft’s problem is to determine whether there
is a point in Spt that lies on some line of Sline .

For example, in Figure 4c, the answer is no.
The Hopcroft’s problem can be settled in time slightly higher

than O(n4/3) time (see [18] for the precise bound), where n =

|Spt | + |Sline |. It is widely believed [8] that Ω(n4/3) is a lower
bound on how fast the problem can be solved. In fact, this lower
bound has already been proved on a broad class of algorithms [9].

It turns out that the Hopcroft’s problem is a key reason of
difficulty for a large number of other problems. This phenomenon
gave rise to the notion of Hopcroft hard [8]. Specifically, a problem
X is Hopcroft hard if an algorithm solving X in o(n4/3) time

implies an algorithm solving the Hopcroft’s problem in o(n4/3)

time. In other words, a lower bound Ω(n4/3) on the time of solving
the Hopcroft’s problem implies the same lower bound on X .

Erickson [9] proved the following relationship between USEC
and the Hopcroft’s problem:

LEMMA 3 ([9]). The USEC problem in any dimensionality

d ≥ 5 is Hopcroft hard.

3. DBSCAN IN ≥ 3 DIMENSIONS
This section paves the way towards approximate DBSCAN,

which is the topic of the next section. In Section 3.1, we establish
the computational intractability of DBSCAN in practice via a
novel reduction from the USEC problem (see Section 2.3). For
practitioners that insist on applying this clustering method with
the utmost accuracy, in Section 3.2, we present a new exact
DBSCAN algorithm that outperforms all the previous solutions in
time complexity.

3.1 Hardness of DBSCAN
We will prove:

THEOREM 1. The following statements are true about the

DBSCAN problem:

• It is Hopcroft hard in any dimensionality d ≥ 5. Namely,
the problem requires Ω(n4/3) time to solve, unless the

Hopcroft problem can be settled in o(n4/3) time.

• When d = 3 (and hence, d = 4), the problem requires

Ω(n4/3) time to solve, unless the USEC problem can be

settled in o(n4/3) time.

Asmentioned in Section 2.3, it is widely believed that neither the
Hopcroft problem nor the USEC problem can be solved in o(n4/3)
time—any such algorithm would be a celebrated breakthrough in
theoretical computer science.

Proof of Theorem 1. We observe a subtle connection between
USEC and DBSCAN:

LEMMA 4. For any dimensionality d, if we can solve the

DBSCAN problem in T (n) time, then we can solve the USEC

problem in T (n) +O(n) time.

PROOF. Recall that the USEC problem is defined by a set Spt of
points and a set Sball of balls with equal radii, both in R

d. Denote



by A a DBSCAN algorithm in R
d that runs in T (m) time on m

points. Next, we describe an algorithm that deploys A as a black
box to solve the USEC problem in T (n) +O(n) time, where n =
|Spt |+ |Sball |.

Our algorithm is simple:

1. Obtain P , which is the union of Spt and the set of centers of
the balls in Sball .

2. Set ǫ to the identical radius of the balls in Sball .

3. Run A to solve the DBSCAN problem on P with this ǫ and
MinPts = 1.

4. If any point in Spt and any center of Sball belong to the same
cluster, then return yes for the USEC problem (namely, a
point in Spt is covered by some ball in Sball ). Otherwise,
return no.

It is fundamental to implement the above algorithm in T (n) +
O(n) time. Next, we prove its correctness.

Case 1: We return yes. We will show that in this case there is
indeed a point of Spt that is covered by some ball in Sball .

Recall that a yes return means a point p ∈ Spt and the center q of
some ball in Sball have been placed in the same cluster, which we
denote by C. By connectivity of Definition 3, there exists a point
z ∈ C such that both p and q are density-reachable from z.

By setting MinPts = 1, we ensure that all the points in P are
core points. In general, if a core point p1 is density-reachable
from p2 (which by definition must be a core point), then p2 is
also density-reachable from p1 (as can be verified by Definition 2).
This means that z is density-reachable from p, which—together
with the fact that q is density-reachable from z—shows that q is
density-reachable from p.

It thus follows by Definition 2 that there is a sequence of points
p1, p2, ..., pt ∈ P such that (i) p1 = p, pt = q, and (ii)
dist(pi, pi+1) ≤ ǫ for each i ∈ [1, t − 1]. Let k be the smallest
i ∈ [2, t] such that pi is the center of a ball in Sball . Note that k
definitely exists because pt is such a center. It thus follows that
pk−1 is a point from Spt , and that pk−1 is covered by the ball in
Sball centered at pk.

Case 2: We return no. We will show that in this case no point of
Spt is covered by any ball in Sball .

This is in fact very easy. Suppose on the contrary that a point p ∈
Spt is covered by a ball of Sball centered at q. Thus, dist(p, q) ≤ ǫ,
namely, q is density-reachable from p. Then, by maximality of
Definition 3, q must be in the cluster of p (recall that all the points
of P are core points). This contradicts the fact that we returned
no.

Theorem 1 immediately follows from Lemmas 3 and 4.

3.2 A New Exact Algorithm for d ≥ 3

It is well-known that DBSCAN can be solved in O(n2) time
(e.g., see [25]) in any constant dimensionality d. Next, we show
that it is possible to always terminate in o(n2) time regardless of d.
Our algorithm extends that of [11] with two ideas:

• Use a d-dimensional grid T with an appropriate side length
for its cells.

• Compute the edges of the graph G with a BCP algorithm (as
opposed to nearest neighbor search).

Next, we explain the details. T is now a grid on R
d where each

cell of T is a d-dimensional hyper-square with side length ǫ/
√
d.

As before, this ensures that any two points in the same cell are
within distance ǫ from each other.

The algorithm description in Section 2.2 carries over to any d ≥
3 almost verbatim. The only difference is the way we compute the
edges of G. Given core cells c1 and c2 that are ǫ-neighbors of each
other, we solve the BCP problem on the sets of core points in c1
and c2, respectively. Let (p1, p2) be the pair returned. We add an
edge (c1, c2) to G if and only if dist(p1, p2) ≤ ǫ.

The adapted algorithm achieves the following efficiency
guarantee, whose proof is non-trivial, and can be found in the
appendix.

THEOREM 2. For any fixed dimensionality d ≥ 4,
there is an algorithm solving the DBSCAN problem in

O(n
2− 2

⌈d/2⌉+1
+δ

) expected time, where δ > 0 can be an

arbitrarily small constant. For d = 3, the running time can

be improved to O((n log n)4/3) expected.

It is worth pointing out that the running time of our 3D algorithm
nearly matches the lower bound in Theorem 1.

4. ρ-APPROXIMATE DBSCAN
The hardness result in Theorem 1 implies that DBSCAN is

feasible only in 2D space. Even for d = 3, the computation
time becomes strongly polynomial to n such that it will take an
intolerably long period of time to calculate the clusters precisely.
This opens the door to studying approximate DBSCAN.

In Section 4.1, we introduce the concept of ρ-approximate
DBSCAN designed to replace DBSCAN on large datasets. In
Section 4.2, we establish a strong quality guarantee of this new
form of clustering. In Sections 4.3 and 4.4, we propose an
algorithm for solving the ρ-approximate DBSCAN problem in time
linear to the dataset size.

4.1 Definitions
As before, let P be the input set of n points inRd to be clustered.

We still take parameters ǫ andMinPts , but in addition, also a third
parameter ρ, which can be any arbitrarily small positive constant,
and controls the degree of approximation.

Next, we re-visit the basic definitions of DBSCAN in Section 2,
and modify some of them to their “ρ-approximate versions”. First,
the notion of core/non-core point remains the same as Definition 1.
The concept of density-reachability in Definition 2 is also inherited
directly, but we will also need:

DEFINITION 4. A point q ∈ P is ρ-approximate

density-reachable from p ∈ P if there is a sequence of

points p1, p2, ..., pt ∈ P (for some integer t ≥ 2) such that:

• p1 = p and pt = q

• p1, p2, ..., pt−1 are core points

• pi+1 ∈ B(pi, ǫ(1 + ρ)) for each i ∈ [1, t− 1].

Note the difference between the above and Definition 2: in the
third bullet, the radius of the ball is increased to ǫ(1 + ρ). To
illustrate, consider a small input set P as shown in Figure 5. Set
MinPts = 4. The inner and outer circles have radii ǫ and ǫ(1+ρ),
respectively. Core and non-core points are in black and white,
respectively. Point o5 is ρ-approximate density-reachable from o3
(via sequence: o3, o2, o1, o5). However, o5 is not density-reachable
from o3.

DEFINITION 5. A ρ-approximate cluster C is a non-empty

subset of P such that:
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Figure 5: Density-reachability and ρ-approximate

density-reachability (MinPts = 4)

• (Maximality) If a core point p ∈ C, then all the points

density-reachable from p also belong to C.

• (ρ-Approximate Connectivity) For any points p1, p2 ∈ C,

there exists a point p ∈ C such that both p1 and p2 are

ρ-approximate density-reachable from p.

Note the difference between the above and the original cluster
formulation (Definition 1): the connectivity requirement has
been weakened into ρ-approximate connectivity. In Figure 5,
both {o1, o2, o3, o4} and {o1, o2, o3, o4, o5} are ρ-approximate
clusters.

PROBLEM 2. The ρ-approximate DBSCAN problem is to

find a set C of ρ-approximate clusters of P such that every core

point of P appears in exactly one ρ-approximate cluster.

Unlike the original DBSCAN problem, the ρ-approximate
version may not have a unique result. In Figure 5, for example,
it is legal to return either {o1, o2, o3, o4} or {o1, o2, o3, o4, o5}.
Nevertheless, any result of the ρ-approximate problem comes with
the quality guarantee to be proved next.

4.2 A Sandwich Theorem
Both DBSCAN and ρ-approximate DBSCAN are parameterized

by ǫ and MinPts . It would be perfect if they can always return
exactly the same clustering results. Of course, this is too good to
be true. Nevertheless, in this subsection, we will show that this is
almost true: the result of ρ-approximate DBSCAN is guaranteed to
be somewhere between the (exact) DBSCAN results obtained by
(ǫ,MinPts) and by (ǫ(1 + ρ),MinPts)! It is well-known that the
clusters of DBSCAN rarely differ considerably when ǫ changes by
just a small factor—in fact, if this really happens, it suggests that
the choice of ǫ is very bad, such that the exact clusters are not stable
anyway (we will come back to this issue later)!

Let us define:

• C1 as the set of clusters of DBSCAN with parameters
(ǫ,MinPts)

• C2 as the set of clusters of DBSCAN with parameters (ǫ(1+
ρ),MinPts).

• C as an arbitrary set of clusters that is a legal result of
(ǫ,MinPts , ρ)-approx-DBSCAN.

The next theorem formalizes the quality assurance mentioned
earlier:

ǫ1

ǫ3

ǫ2

(bad)

o

Figure 6: Good and bad choices of ǫ

THEOREM 3 (SANDWICH QUALITY GUARANTEE). The

following statements are true:

1. For any cluster C1 ∈ C1, there is a cluster C ∈ C such

that C1 ⊆ C.

2. For any cluster C ∈ C , there is a cluster C2 ∈ C2 such

that C ⊆ C2.

PROOF. To prove Statement 1, let p be an arbitrary core point in
C1. Then, C1 is precisely the set of points in P density-reachable
from p.3 In general, if a point q is density-reachable from p in
(ǫ,MinPts)-exact-DBSCAN, q is also density-reachable from p in
(ǫ,MinPts , ρ)-approx-DBSCAN. By maximality of Definition 5,
if C is the cluster in C containing p, then all the points of C1 must
be in C.

To prove Statement 2, consider an arbitrary core point
p ∈ C (there must be one by Definition 5). In (ǫ(1 +
ρ),MinPts)-exact-DBSCAN, p must also be a core point. We
choose C2 to be the cluster of C2 where p belongs. Now, fix
an arbitrary point q ∈ C. In (ǫ,MinPts, ρ)-approx-DBSCAN,
by ρ-approximate connectivity of Definition 5, we know that p
and q are both ρ-approximate reachable from a point z. This
implies that z is also ρ-approximate reachable from p. Hence,
q is ρ-approximate reachable from p. This means that q is
density-reachable from p in (ǫ(1 + ρ),MinPts)-exact-DBSCAN,
indicating that q ∈ C2.

Here is an alternative, more intuitive, interpretation of
Theorem 3:

• Statement 1 says that if two points belong to the same
cluster of DBSCAN with parameters (ǫ,MinPts), they are
definitely in the same cluster of ρ-approximate DBSCAN
with the same parameters.

• On the other hand, a cluster of ρ-approximate DBSCAN
parameterized by (ǫ,MinPts) may also contain two points
p1, p2 that are in different clusters of DBSCAN with the
same parameters. However, this is not bad because Statement
2 says that as soon as the parameter ǫ increases to ǫ(1 + ρ),
p1 and p2 will fall into the same cluster of DBSCAN!

Figure 6 nicely illustrates the effects of approximation. How
many clusters are there? Interestingly, the answer is it depends.
As pointed out in the classic OPTICS paper [2], different ǫ values
allow us to view the dataset from various granularities, leading
to different clustering results. In Figure 6, given ǫ1 (and some

3This should be folklore but here is a proof. By maximality of
Definition 3, all the points density-reachable from p are in C1.
On the other hand, let q be any point in C1. By connectivity, p
and q are both density-reachable from a point z. As p is a core
point, we know that z is also density-reachable from p. Hence, q is
density-reachable from p.



MinPts say 2), DBSCAN outputs 3 clusters. Given ǫ2, on the other
hand, DBSCAN outputs 2 clusters, which makes sense because at
this distance, the two clusters on the right merge into one.

Now let us consider approximation. The dashed circles illustrate
the radii obtained with ρ-approximation. For both ǫ1 and ǫ2,
ρ-approximate DBSCAN will return exactly the same clusters,
because these distances are robustly chosen by being insensitive to
small perturbation. For ǫ3, however, ρ-approximate DBSCANmay
return only one cluster (i.e., all points in the same cluster), whereas
exact DBSCAN will return only two (i.e., the same two clusters
as ǫ2). By looking at the figure closely, one can realize that this
happens because the dashed circle of radius ρ(1+ǫ3) “happens” to
pass a point—namely point o—which falls outside the solid circle
of radius ǫ3. Intuitively, ǫ3 is a poor parameter choice because it
is too close to the distance between two clusters such that a small
change to it will cause the clustering results to be altered.

4.3 Approximate Range Counting
Let us now take a break from DBSCAN, and turn our attention

to a different problem, whose solution is vital to our ρ-approximate
DBSCAN algorithm.

Let P still be a set of n points in R
d where d is a constant.

Given any point q ∈ R
d, a distance threshold ǫ > 0 and an

arbitrarily small constant ρ > 0, an approximate range count query
returns an integer that is guaranteed to be between |B(q, ǫ)∩P |
and |B(q, ǫ(1 + ρ))∩P |. For example, in Figure 5, given q = o1,
a query may return either 4 or 5.

Arya and Mount [3] developed a structure of O(n) space that
can be built in O(n log n) time, and answers any such query in
O(log n) time. Next, we design an alternative structure with better
performance in our context:

LEMMA 5. For any fixed ǫ and ρ, there is a structure of O(n)
space that can be built in O(n) expected time, and answers any

approximate range count query in O(1) expected time.

Structure. Our structure is a simple quadtree-like hierarchical grid
partitioning of Rd. First, impose a regular grid on R

d where each
cell is a d-dimensional hyper-square with side length ǫ/

√
d. For

each non-empty cell c of the grid (i.e., c covers at least 1 point
of P ), divide it into 2d cells of the same size. For each resulting
non-empty cell c′, divide it recursively in the same manner, until
the side length of c′ is at most ǫρ/

√
d.

We use H to refer to the hierarchy thus obtained. We keep only

the non-empty cells of H , and for each such cell c, record cnt(c)
which is the number of points in P covered by c. We will refer
to a cell of H with side length ǫ/(2i

√
d) as a level-i cell. Clearly,

H has only h = max{1, 1 + ⌈log2(1/ρ)⌉} = O(1) levels. If a
level-(i+1) cell c′ is inside a level-i cell c, we say that c′ is a child
of c, and c a parent of c′. A cell with no children is called a leaf

cell.
Figure 7 illustrates the part of the first three levels of H for the

dataset on the left. Note that empty cells are not stored.

Query. Given an approximate range count query with parameters
q, ǫ, ρ, we compute its answer ans as follows. Initially, ans = 0.
In general, given a non-empty level-i cell c, we distinguish three
cases:

• If c is disjoint with B(q, ǫ), ignore it.

• If c is fully covered by B(q, ǫ(1 + ρ)), add cnt(c) to ans .

• When neither of the above holds, check if c is a leaf cell in
H . If not, process the child cells of c in the same manner.
Otherwise (i.e., c is a leaf), add cnt(c) to ans only if c
intersects B(q, ǫ).

root(18)

NW(2) NE(8) SW(8)

SE(2) NE(3) SW(5) NE(4) SW(4)

... ... ... ... ...

level 0

level 1

B(q, ǫ)

B(q, ǫ(1 + ρ))

number of points in this level-0 cella level-0 cell

Figure 7: Approximate range counting

The algorithm starts from the level-0 non-empty cells that intersect
with B(q, ǫ).

To illustrate, consider the query shown in Figure 7. The two
gray cells correspond to nodes SW(5) and NE(4) at level 2. The
subtree of neither of them is visited, but the reasons are different.
For SW(5), its cell is disjoint with B(q, ǫ), so we ignore it (even
though it intersects B(q, ǫ(1 + ρ))). For NE(4), its cell completely
falls in B(q, ǫ(1 + ρ)), so we add its count 4 to the result (even
though it is not covered by B(q, ǫ)).

Correctness. The above algorithm has two guarantees. First, if
a point p ∈ P is inside B(q, ǫ), it is definitely counted in ans .
Second, if p is outside B(q, ǫ(1 + ρ)), then it is definitely not

counted in ans . These guarantees are easy to verify, utilizing
the fact that if a leaf cell c intersects B(p, ǫ), then c must fall
completely in B(p, ǫ(1 + ρ)) because any two points in a leaf cell
are within distance ǫρ. It thus follows that the ans returned is a
legal answer.

Time Analysis. Remember that the hierarchy H has O(1) levels.
Since there are O(n) non-empty cells at each level, the total space
isO(n). With hashing, it is easy to build the structure level by level
in O(n) expected time.

To analyze the running time of our query algorithm, observe
that each cell c visited by our algorithm must satisfy one of the
following conditions: (i) c is a level-0 cell, or (ii) the parent of c
intersects the boundary of B(q, ǫ). For type-(i), the O(1) level-0
cells intersectingB(q, ǫ) can be found inO(1) expected time using
the coordinates of q. For type-(ii), it suffices to bound the number
of cells intersecting the boundary ofB(q, ǫ) because each such cell
has 2d = O(1) child nodes.

In general, a d-dimensional grid of cells with side length l has
O(1 + ( θ

l
)d−1) cells intersecting the boundary of a sphere with

radius θ [3]. Combining this and the fact that a level-i cell has side
length ǫ/(2i

√
d), we know that the total number of cells (of all

levels) intersecting the boundary of B(q, ǫ) is bounded by:

h−1
∑

i=0

O



1 +

(

ǫ

ǫ/(2i
√
d)

)d−1


 = O
(

(2h)d−1
)

= O
(

1 + (1/ρ)d−1
)

which is a constant for any fixed ρ. This concludes the proof of
Lemma 5.

4.4 Solving ρ-Approximate DBSCAN
We are now ready to solve the ρ-approximate DBSCAN problem

by proving our last main result:



THEOREM 4. There is a ρ-approximate DBSCAN algorithm

that terminates in O(n) expected time, regardless of the

value of ǫ, the constant approximation ratio ρ, and the fixed

dimensionality d.

Algorithm. Our ρ-approximate algorithm differs from the exact
algorithm we proposed in Section 3.2 only in the definition and
computation of the graph G. We re-define G = (V, E) as follows:

• As before, each vertex in V is a core cell of the grid T
(remember that the algorithm of Section 3.2 imposes a grid
T on R

d, where a cell is a core cell if it covers at least one
core point).

• Given two different core cells c1, c2, whether E has an edge
between c1 and c2 obeys the rules below:

– yes, if there exist core points p1, p2 in c1, c2,
respectively, such that dist(p1, p2) ≤ ǫ.

– no, if no core point in c1 is within distance ǫ(1 + ρ)
from any core point in c2.

– don’t care, in all the other cases.

To compute G, our algorithm starts by building, for each core
cell c in T , a structure of Lemma 5 on the set of core points in c. To
generate the edges of a core cell c1, we examine each ǫ-neighbor
cell c2 of c1 in turn. For every core point p in c1, do an approximate
range count query on the set of core points in c2. If the query
returns a non-zero answer, add an edge (c1, c2) to G. If all such
p have been tried but still no edge has been added, we decide that
there should be no edge between c1 and c2.

Correctness. Let C be an arbitrary cluster returned by our
algorithm. We will show that C satisfies Definition 5.

Maximality. Let p be an arbitrary core point in C, and q be any
point of P density-reachable from p. We will show that q ∈ C.
Let us start by considering that q is a core point. By Definition 2,
there is a sequence of core points p1, p2, ..., pt (for some integer
t ≥ 2) such that p1 = p, pt = q, and dist(pi+1, pi) ≤ ǫ for
each i ∈ [1, t − 1]. Denote by ci the cell of T covering pi. By
the way G is defined, there must be an edge between ci and ci+1,
for each i ∈ [1, t − 1]. It thus follows that c1 and ct must be in
the same connected component of G; therefore, p and q must be
in the same cluster. The correctness of the other scenario where q
is a non-core point is trivially guaranteed by the way that non-core
points are assigned to clusters.

ρ-Approximate Connectivity. Let p be an arbitrary core point in
C. For any point q ∈ C, we will show that q is ρ-approximate
density-reachable from p. Again, we consider first that q is a core
point. Let cp and cq be the cells of T covering p and q, respectively.
Since cp and cq are in the same connected component of G, there
is a path c1, c2, ..., ct in G (for some integer t ≥ 2) such that
c1 = cp and ct = cq . Recall that any two points in the same
cell are within distance ǫ. Combining this fact with how the edges
of G are defined, we know that there is a sequence of core points
p1, p2, ..., pt′ (for some integer t′ ≥ 2) such that p1 = p, pt′ = q,
and dist(pi+1, pi) ≤ ǫ(1+ρ) for each i ∈ [1, t′−1]. Therefore, q
is ρ-approximate density-reachable from p. The correctness of the
other scenario where q is a non-core point is again trivial.

Time Analysis. It takes O(n) expected time to construct the
structure of Lemma 5 for all cells. The expected time of computing
G is proportional to the number of approximate range count queries
issued. For each core point of a cell c1, we issue O(1) queries in
total (one for each ǫ-neighbor cell of c2). Hence, the total number

Figure 8: A 2D seed spreader dataset

of queries is O(n). The rest of the ρ-approximate algorithm
runs in O(n) expected time, following the same analysis in [11].
This completes the proof of Theorem 4. It is worth mentioning
that, intuitively, the efficiency improvement of our approximate
algorithm (over the exact algorithm in Section 3.2) owes to the
fact that we settle for an imprecise solution to the BCP problem
by using Lemma 5.

5. EXPERIMENTS
We now present an empirical evaluation of the proposed

techniques. All the experiments were run on a machine equipped
with 3.2GHz CPU and 8 GB memory. The operating system was
Linux (Ubuntu 13.04). All the programs were coded in C++, and
compiled using g++ with -o3 turned on.

Section 5.1 describes the datasets in our experimentation, after
which we present our findings in two parts. First, Section 5.2
assesses the clustering precision of ρ-approximate DBSCAN.
Then, Section 5.3 demonstrates the vast efficiency gain achieved
by our approximation algorithm compared to exact DBSCAN.

5.1 Datasets
Except in a single experiment (for visualization), we focused

on dimensionality d ≥ 3 because the 2D case has been well
solved in [11]. In all cases, the underlying data space had a
normalized domain of [0, 105] for every dimension. We deployed
both synthetic and real datasets whose details are explained next.

Synthetic: Seed Spreader (SS).A synthetic dataset was generated
in a “random walk with restart” fashion. First, fix the
dimensionality d, take the target cardinality n, a restart probability
ρrestart , and a noise percentage ρnoise . Then, we simulate a seed

spreader that moves about in the space, and spits out data points
around its current location. The spreader carries a local counter

such that whenever the counter reaches 0, the spreader moves
a distance of rshift towards a random direction, after which the
counter is reset to creset . The spreader works in steps. In each
step, (i) with probability ρrestart , the spreader restarts, by jumping
to a random location in the data space, and resetting its counter to
creset ; (ii) no matter if a restart has happened, the spreader produces
a point uniformly at random in the ball centered at its current
location with radius 100, after which the local counter decreases
by 1. Intuitively, every time a restart happens, the spreader begins
to generate a new cluster. In the first step, a restart is forced so
as to put the spreader at a random location. We repeat in total
n(1 − ρnoise) steps, which generate the same number of points.

parameter values

n (synthetic) 100k, 0.5m, 1m, 2m, 5m, 10m

d (synthetic) 3, 5, 7

ǫ from 5000 to the collapsing radius

ρ from 0.001, 0.01, 0.02, ..., 0.1

Table 1: Parameter values (defaults in bolds)



(a) Exact (ǫ = 5000) (b) ρ = 0.001, ǫ = 5000 (c) ρ = 0.01, ǫ = 5000 (d) ρ = 0.1, ǫ = 5000

(e) Exact (ǫ = 11300) (f) ρ = 0.001, ǫ = 11300 (g) ρ = 0.01, ǫ = 11300 (h) ρ = 0.1, ǫ = 11300

(i) Exact (ǫ = 12200) (j) ρ = 0.001, ǫ = 12200 (k) ρ = 0.01, ǫ = 12200 (l) ρ = 0.1, ǫ = 12200

Figure 9: Comparison of the clusters found by exact DBSCAN and ρ-approximate DBSCAN

Finally, we add n · ρnoise noise points, each of which is uniformly
distributed in the whole space.

Figure 8 shows a small 2D dataset which was generated withn =
1000 and had 4 restarts; the dataset will be used for visualization.
In all the other experiments, creset = 100, rshift = 50d, ρrestart
was fixed to 10/(n(1 − ρnoise)) with ρnoise = 1/104 . In
expectation, around 10 restarts would occur in the generation. The
value of n ranged from 100k all the way to 10 million, while d from
3 to 7. See Table 1.

Real. Three real datasets were employed in our experimentation.
The first one, PAMAP2, is a 4-dimensional dataset with cardinality
3,850,505, obtained by taking the first 4 principle components of a
PCA on the PAMAP2 database [22] from the UCI machine learning
archive [4]. The second one, Farm, is a 5-dimensional dataset
with cardinality 3,627,086, which contains the VZ-features [27] of
a satellite image of a farm in Saudi Arabia4. It is worth noting
that VZ-feature clustering is a common approach to perform color
segmentation of an image [27]. The third one, Household, is a
7-dimensional dataset with cardinality 2,049,280, which includes
all the attributes of the Household database again from the UCI
archive [4] except the temporal columns date and time. Points in
the original database with missing coordinates were removed.

Collapsing Radius. The parameterMinPts was fixed to 100 in all
cases (except only the visualization experiment). Every dataset has
a unique collapsing radius, which is the smallest ǫ such that exact

4
http://www.satimagingcorp.com/gallery/ikonos/ikonos-tadco-farms-saudi-

arabia

DBSCAN returns a single cluster. For each dataset, we inspected a
wide range of ǫ from 5000 all the way to its collapsing radius.

5.2 Approximation Quality
2D Visualization. Let us start by showing to the reader directly
the effects of approximation. For this purpose, we take the 2D
dataset in Figure 8 as the input (note that the cardinality was
deliberately chosen to be small to facilitate visualization), and fixed
MinPts = 20. Figure 9a demonstrates the 4 clusters found by
exact DBSCAN with ǫ = 5000 (which is the radius of the circle
shown). The points of each cluster are depicted with the same
color and marker. Figures 9b, 9c, and 9d present the clusters found
by our ρ-approximate DBSCAN when ρ equals 0.001, 0.01, and
0.1, respectively. In all cases, ρ-approximate DBSCAN returned
exactly the same clusters as DBSCAN.

Making things more interesting, in Figure 9e, we increased ǫ
to 11300 (again, ǫ is the radius of the circle shown). This time,
DBSCAN found 3 clusters (note that 2 clusters in Figure 9a have
merged). Figures 9f, 9g, and 9h give the clusters of ρ-approximate
DBSCAN for ρ = 0.001, 0.01, and 0.1, respectively. Once
again, the clusters of ρ = 0.001 and 0.01 are exactly the same
as DBSCAN. However, 0.1-approximate DBSCAN returned only
2 clusters. This can be understood by observing that the circle in
Figure 9e almost touched a point from a different cluster. In fact, it
will, once ǫ increases by 10%, which explains why 0.1-approximate
DBSCAN produced different results.

Then we pushed ǫ even further to 12200 so that DBSCAN
yielded 2 clusters as shown in Figure 9i. Figures 9j, 9k, and 9l
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Figure 10: Maximum legal ρ vs. radius ǫ together with the line ρ = 0.001

illustrate the clusters of ρ-approximate DBSCAN for ρ = 0.001,
0.01, and 0.1, respectively. Here, both ρ = 0.01 and 0.1 had
given up, but ρ = 0.001 still robustly churned out exactly the same
clusters as DBSCAN.

Surprised by ρ = 0.01 not working, we examined carefully the
reason behind its failure, and then, realized something interesting.
It turned out that 12200 was extremely close to the “boundary ǫ” for
DBSCAN to output 2 clusters. Specifically, as soon as ǫ grew up
to 12203, the exact DBSCAN would return only a single cluster!
Actually, this could be seen from Figure 9i—note how close the
circle is to the point from the right cluster! In other words, 12200
is in fact an “unstable” value for ǫ.

All Dimensionalities—A Sawtooth View. How to evaluate the
approximation quality as we depart from 2D? What is described
next essentially puts ρ-approximate DBSCAN under strict scrutiny.
Fix a dataset. For each ǫ, we define the maximum legal ρ at
ǫ as the largest ρ under which ρ-approximate DBSCAN returns
exactly the same clusters as DBSCAN. Figures 10a, 10b, and 10c
plot the maximum legal ρ as a function of ǫ, for the synthetic
SS (seed spreader) datasets of d = 3, 5, 7 under the default n
= 2m, respectively. In each diagram, the range of ǫ covers the
entire spectrum as indicated in Table 1. Figures 10d, 10e, and 10f
present the results of the same experiment on the three real datasets,
respectively.

In general, the maximum legal ρ exhibits a sawtooth shape as ǫ
increases. For most ǫ values, the maximum legal ρ is much higher
than 0.1 (this is so whenever the curve disappears from the top of
a diagram). We recommend setting ρ = 0.001, which is also the
default in all our experiments. As is evident in Figure 10 (where
the horizontal line near the bottom of each diagram represents
ρ = 0.001), 0.001 is below the maximum legal ρ almost for all
values of ǫ. In other words, ρ = 0.001 guarantees the same
results as exact DBSCAN almost everywhere. In fact, whenever
0.001 is higher than the maximum legal ρ, the value of ǫ falls in
a tiny range in which exact DBSCAN produces different clusters.

In other words, those values of ǫ are unstable anyway. This
can also be seen from sandwich theorem (Theorem 3), namely,
the results of 0.001-approximate DBSCAN must fall between the
results of DBSCAN with ǫ and 1.001ǫ, respectively. Hence, if
0.001-approximate DBSCAN differs from DBSCAN, it means that
the results of DBSCAN have changed within [ǫ, 1.001ǫ]!

5.3 Computational Efficiency
We now proceed to inspect the running time of DBSCAN

clustering using four algorithms:

• KDD96 [10]: the original DBSCAN algorithm in [10];

• CIT08 [17]: the state of the art of exact DBSCAN, namely,
the fastest existing algorithm able to produce the same
DBSCAN result as KDD96;

• OurExact: the exact DBSCAN algorithm we developed in
Theorem 2;

• OurApprox: the ρ-approximate DBSCAN algorithm we
proposed in Theorem 4.

Scalability with Cardinality n. The first experiment examines
how each method scales with the number n objects. For this
purpose, we used synthetic SS datasets of 3D, 5D, and 7D by
varying n from 100k to 10m. The results are presented in
Figure 11—note that the y-axis is in log scale. If KDD96 and
CIT08 do not have results at a value of n, it means that they did
not terminate within 12 hours in the corresponding experiments!
OurExact managed to finish within 104 seconds (less than 3 hours)
even on the largest dataset. However, this is dwarfed by the superb
efficiency of OurApprox which took less than 490 seconds in all
cases, and were often faster thanOurExact by a factor of two orders
of magnitude.

As an interesting note, all methods were fast when the dataset
was small, e.g., when n = 100k. This is perhaps the reason why
most (if not all) of the previous evaluation of DBSCAN algorithms,
as far as we are aware, was on datasets of this scale.
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Figure 11: Running time vs. cardinality n (ǫ = 5000, ρ = 0.001)
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Figure 12: Running time vs. radius ǫ (ρ = 0.001)
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Figure 13: Running time vs. approximation ratio ρ (ǫ = 5000)

Influence of Radius ǫ. The next experiment aimed to understand
the behavior of each method under the influence of ǫ. Figure 12
plots the running time as a function of ǫ, when this parameter
varied in the corresponding spectrum of various datasets. If
KDD96 and CIT08 did not terminate within 12 hours, they have
no results. In general, the cost of both KDD96 and CIT08

increases with ǫ because both methods rely on range queries,
each retrieving all the points in a circle, and thus, becoming more
expensive as the circle grows. However, OurExact and OurApprox

do not have such monotonic behavior. The effects of ǫ on the

two methods are heavily dependent on the data distribution. In
any case, OurApprox consistently outperformed all other methods
significantly in Figure 12.

Influence of Approximation Ratio ρ. Finally, Figure 13 shows
the running time of OurApprox as a function of ρ, on the 3D,
5D, 7D SS datasets of size 2m and the real datasets. Very much
as expected, when ρ increased (i.e., less precision is demanded),
OurApprox became more efficient.

6. CONCLUSIONS
DBSCAN is a creative, elegant, and effective technique for

density-based clustering, which is very extensively applied in data
mining, machine learning, and databases. However, all the existing
DBSCAN algorithms have poor scalability with the dataset size in
dimensionality d ≥ 3. This is unfortunate because clustering in
d ≥ 3 is important, due to the frequent need of using multiple
features to accurately model an object.

In this paper, we explain rigorously why the community’s
search for a fast DBSCAN algorithm for d ≥ 3 has been
unsuccessful. We show that, unless very significant breakthroughs
(ones widely believed to be impossible) can be made in theoretical
computer science, the DBSCAN algorithm requires Ω(n4/3) time



to solve, where n is the size of the underlying dataset. This
strongly polynomial complexity essentially states that DBSCAN is
computationally intractable in practice, even for moderately large
n! This is very disappointing especially given the arrival of the
big data era. Motivated by this, we propose the novel concept of
ρ-approximate DBSCAN, which is designed to replace DBSCAN
on large-scale data. We prove both theoretical and experimentally
that ρ-approximate DBSCAN has excellent guarantees both in the
quality of cluster approximation and computational efficiency. In
fact, almost in all scenarios, it returns exactly the same clusters as
DBSCAN but requires computation time only linear to n.
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Proof of Theorem 2

It suffices to analyze the time used by our algorithm to generate the
edges of G. The other parts of the algorithm use O(n) expected
time, following the analysis of [11].

Let us consider first d ≥ 4. First, fix the value of δ in Theorem 2.
Define: λ = 1

⌈d/2⌉+1
− δ/2. Given a core cell c, we denote bymc

the number of core points in c. Then, by Lemma 2, the time we
spend generating the edges of G is

∑

ǫ-neighbor
core cells c, c′

O
(

(mcmc′)
1−λ +mc logmc′ +mc′ logmc

)

. (1)

To bound the first term, we derive
∑

ǫ-neighbor core cells c, c′

O
(

(mcmc′)
1−λ
)

=
∑

ǫ-neighbor
core cells c, c′

s.t. mc ≤ mc′

O
(

(mcmc′)
1−λ
)

+
∑

ǫ-neighbor
core cells c, c′

s.t. mc > mc′

O
(

(mcmc′)
1−λ
)

=
∑

ǫ-neighbor
core cells c, c′

s.t. mc ≤ mc′

O
(

mc′ ·m1−2λ
c

)

+
∑

ǫ-neighbor
core cells c, c′

s.t. mc > mc′

O
(

mc ·m1−2λ
c′

)

=
∑

ǫ-neighbor
core cells c, c′

s.t. mc ≤ mc′

O
(

mc′ · n1−2λ
)

+
∑

ǫ-neighbor
core cells c, c′

s.t. mc > mc′

O
(

mc · n1−2λ
)

= O
(

n1−2λ
∑

ǫ-neighbor core cells c, c′

mc

)

= O(n2−2λ)

where the last equality used the fact that c has onlyO(1) ǫ-neighbor
cells as long as d is a constant (and hence, mc can be added only
O(1) times). The other terms in (1) are easy to bound:

∑

ǫ-neighbor core cells c, c′

O (mc logmc′ +mc′ logmc)

=
∑

ǫ-neighbor core cells c, c′

O (mc log n+mc′ log n) = O(n log n).

In summary, we spend O(n2−2λ + n log n) =

O(n
2− 2

⌈d/2⌉+1
+δ

) time generating the edges of E. This
proves the part of Theorem 2 for d ≥ 4. An analogous analysis
based on the d = 3 branch of Lemma 2 establishes the other part
of Theorem 2.


