
Web-Scale K-Means Clustering

D. Sculley
Google, Inc. Pittsburgh. PA USA

dsculley@google.com

ABSTRACT
We present two modifications to the popular k-means clus-
tering algorithm to address the extreme requirements for
latency, scalability, and sparsity encountered in user-facing
web applications. First, we propose the use of mini-batch
optimization for k-means clustering. This reduces compu-
tation cost by orders of magnitude compared to the classic
batch algorithm while yielding significantly better solutions
than online stochastic gradient descent. Second, we achieve
sparsity with projected gradient descent, and give a fast ǫ-
accurate projection onto the L1-ball. Source code is freely
available: http://code.google.com/p/sofia-ml

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recognition—
Clustering

General Terms
Algorithms, Performance, Experimentation

Keywords
unsupervised clustering, scalability, sparse solutions

1. CLUSTERING AND THE WEB
Unsupervised clustering is an important task in a range

of web-based applications, including grouping search results,
near-duplicate detection, and news aggregation to name but
a few. Lloyd’s classic k-means algorithm remains a popular
choice for real-world clustering tasks [6]. However, the stan-
dard batch algorithm is slow for large data sets. Even op-
timized batch k-means variants exploiting triangle inequal-
ity [3] cannot cheaply meet the latency needs of user-facing
applications when clustering results on large data sets are
required in a fraction of a second.

This paper proposes a mini-batch k-means variant that
yields excellent clustering results with low computation cost
on large data sets. We also give methods for learning sparse
cluster centers that reduce storage and network cost.

2. MINI-BATCH K-MEANS
The k-means optimization problem is to find the set C of

cluster centers c ∈ R
m, with |C| = k, to minimize over a set

Copyright is held by the author/owner(s).
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

X of examples x ∈ R
m the following objective function:

min
X

x∈X

||f(C, x)− x||2

Here, f(C, x) returns the nearest cluster center c ∈ C to x
using Euclidean distance. It is well known that although this
problem is NP-hard in general, gradient descent methods
converge to a local optimum when seeded with an initial set
of k examples drawn uniformly at random from X [1].

The classic batch k-means algorithm is expensive for large
data sets, requiring O(kns) computation time where n is the
number of examples and s is the maximum number of non-
zero elements in any example vector. Bottou and Bengio
proposed an online, stochastic gradient descent (SGD) vari-
ant that computed a gradient descent step on one example
at a time [1]. While SGD converges quickly on large data
sets, it finds lower quality solutions than the batch algorithm
due to stochastic noise [1].

Algorithm 1 Mini-batch k-Means.

1: Given: k, mini-batch size b, iterations t, data set X

2: Initialize each c ∈ C with an x picked randomly from X

3: v← 0
4: for i = 1 to t do
5: M ← b examples picked randomly from X

6: for x ∈M do
7: d[x]← f(C,x) // Cache the center nearest to x
8: end for
9: for x ∈M do

10: c← d[x] // Get cached center for this x
11: v[c]← v[c] + 1 // Update per-center counts
12: η ← 1

v[c]
// Get per-center learning rate

13: c← (1− η)c + ηx // Take gradient step
14: end for
15: end for

We propose the use of mini-batch optimization for k-means
clustering, given in Algorithm 1. The motivation behind this
method is that mini-batches tend to have lower stochastic
noise than individual examples in SGD (allowing conver-
gence to better solutions) but do not suffer increased com-
putational cost when data sets grow large with redundant
examples. We use per-center learning rates for fast conver-
gence, in the manner of [1]; convergence properties follow
closely from this prior result [1].

Experiments. We tested the mini-batch k-means against
both Lloyd’s batch k-means [6] and the SGD variant of [1].
We used the standard RCV1 collection of documents [4] for

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1177

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.0001 0.001 0.01 0.1 1 10 100 1000

E
rr

or
 fr

om
 B

es
t K

-M
ea

ns
 O

bj
ec

tiv
e

Fu
nc

tio
n

V
al

ue

Training CPU secs

K=3

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.0001 0.001 0.01 0.1 1 10 100 1000

E
rr

or
 fr

om
 B

es
t K

-M
ea

ns
 O

bj
ec

tiv
e

Fu
nc

tio
n

V
al

ue

Training CPU secs

K=10

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.0001 0.001 0.01 0.1 1 10 100 1000

E
rr

or
 fr

om
 B

es
t K

-M
ea

ns
 O

bj
ec

tiv
e

Fu
nc

tio
n

V
al

ue

Training CPU secs

K=50

SGD K-Means
Batch K-Means

Mini-Batch K-Means (b=1000)

Figure 1: Convergence Speed. The mini-batch method (blue) is orders of magnitude faster than the full
batch method (green), while converging to significantly better solutions than the online SGD method (red).

our experiments. To assess performance at scale, the set of
781,265 examples were used for training and the remaining
23,149 examples for testing. On each trial, the same ran-
dom initial cluster centers were used for each method. We
evaluated the learned cluster centers using the k-means ob-
jective function on the held-out test set; we report fractional
error from the best value found by the batch algorithm run
to convergence. We set the mini-batch b to 1000 based on
separate initial tests; results were robust for a range of b.

The results (Fig. 1) show a clear win for mini-batch k-
means. The mini-batch method converged to a near optimal
value several orders of magnitude faster than the full batch
method, and also achieved significantly better solutions than
SGD. Additional experiments (omitted for space) showed
that mini-batch k-means is several times faster on large data
sets than batch k-means exploiting triangle inequality [3].

For small values of k, the mini-batch methods were able
to produce near-best cluster centers for nearly a million doc-
uments in a fraction of a CPU second on a single ordinary
2.4 GHz machine. This makes real-time clustering practical
for user-facing applications.

3. SPARSE CLUSTER CENTERS
We modify mini-batch k-means to find sparse cluster cen-

ters, allowing for compact storage and low network cost.
The intuition for seeking sparse cluster centers for document
clusters is that term frequencies follow a power-law distribu-
tion. Many terms in a given cluster will only occur in one or
two documents, giving them very low weight in the cluster
center. It is likely that for a locally optimal center c, there
is a nerby point c′ with many fewer non-zero values.

Sparsity may be induced in gradient descent using the
projected-gradient method, projecting a given v to the near-
est point in an L1-ball of radius λ after each update [2].
Thus, for mini-batch k-means we achieve sparsity by per-
forming an L1-ball projection on each cluster center c after
each mini-batch iteration.

Algorithm 2 ǫ-L1: an ǫ-Accurate Projection to L1 Ball.

1: Given: ǫ tolerance, L1-ball radius λ, vector c ∈ R
m

2: if ||c||i ≤ λ + ǫ then exit
3: upper← ||c||∞ ; lower ← 0 ; current← ||c||1
4: while current > λ(1 + ǫ) or current < λ do
5: θ ← upper+lower

2.0
// Get L1 value for this θ

6: current←
P

ci 6=0 max(0, |ci| − θ)
7: if current ≤ λ then upper← θ else lower ← θ

8: end while
9: for i = 1 to m do

10: ci ← sign(ci) ∗max(0, |ci| − θ) // Do the projection
11: end for

Fast L1 Projections. Applying L1 constraints to k-
means clustering has been studied in forthcoming work by
Witten and Tibshirani [5]. There, a hard L1 constraint was
applied in the full batch setting of maximizing between-
cluster distance for k-means (rather than minimizing the
k-means objective function directly); the work did not dis-
cuss how to perform this projection efficiently.

The projection to the L1 ball can be performed effectively
using, for example, the linear time L1-ball projection algo-
rithm of Duchi et al. [2], referred to here as LTL1P. We
give an alternate method in Algorithm 2, observing that the
exact L1 radius is not critical for sparsity. This simple ap-
proximation algorithm uses bisection to find a value θ that
projects c to an L1 ball with radius between λ and (1+ ǫ)λ.
Our method is easy to implement and is also significantly
faster in practice than LTL1P due to memory concurrency.

method λ #non-zero’s test objective CPUs

full batch - 200,319 0 (baseline) 133.96
LTL1P 5.0 46,446 .004 (.002-.006) 0.51
ǫ-L1 5.0 44,060 .007 (.005-.008) 0.27
LTL1P 1.0 3,181 .018 (.016-.019) 0.48
ǫ-L1 1.0 2,547 .028 (.027-.029) 0.19

Results. Using the same set-up as above, we tested Duchi
et al.’s linear time algorithm and our ǫ-accurate projection
for mini-batch k-means, with a range of λ values. The value
of ǫ was arbitrarily set to 0.01. We report values for k = 10,
b = 1000, and t = 16 (results for other values qualita-
tively similar). Compared with the full batch method, we
achieve much sparser solutions. The approximate projection
is roughly twice as fast as LTL1P and finds sparser solutions,
but gives slightly worse performance on the test set. These
results show that sparse clustering may cheaply be achieved
with low latency for user-facing applications.

4. REFERENCES
[1] L. Bottou and Y. Bengio. Convergence properties of the

kmeans algorithm. In Advances in Neural Information
Processing Systems. 1995.

[2] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra.
Efficient projections onto the l1-ball for learning in high
dimensions. In ICML ’08: Proceedings of the 25th
international conference on Machine learning, 2008.

[3] C. Elkan. Using the triangle inequality to accelerate
k-means. In ICML ’03: Proceedings of the 20th international
conference on Machine learning, 2003.

[4] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new
benchmark collection for text categorization research. J.
Mach. Learn. Res., 5, 2004.

[5] D. Witten and R. Tibshirani. A framework for feature
selection in clustering. To Appear: Journal of the American
Statistical Association, 2010.

[6] X. Wu and V. Kumar. The Top Ten Algorithms in Data
Mining. Chapman & Hall/CRC, 2009.

WWW 2010 • Poster April 26-30 • Raleigh • NC • USA

1178

