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Abstract
DBSCAN is a classical density-based clustering
procedure with tremendous practical relevance.
However, DBSCAN implicitly needs to compute
the empirical density for each sample point, lead-
ing to a quadratic worst-case time complexity,
which is too slow on large datasets. We propose
DBSCAN++, a simple modification of DBSCAN
which only requires computing the densities for a
chosen subset of points. We show empirically that,
compared to traditional DBSCAN, DBSCAN++
can provide not only competitive performance but
also added robustness in the bandwidth hyperpa-
rameter while taking a fraction of the runtime.
We also present statistical consistency guarantees
showing the trade-off between computational cost
and estimation rates. Surprisingly, up to a cer-
tain point, we can enjoy the same estimation rates
while lowering computational cost, showing that
DBSCAN++ is a sub-quadratic algorithm that at-
tains minimax optimal rates for level-set estima-
tion, a quality that may be of independent interest.

1. Introduction
Density-based clustering algorithms such as Mean Shift
(Cheng, 1995) and DBSCAN (Ester et al., 1996) have made
a large impact on a wide range of areas in data analysis,
including outlier detection, computer vision, and medical
imaging. As data volumes rise, non-parametric unsuper-
vised procedures are becoming ever more important in un-
derstanding large datasets. Thus, there is an increasing need
to establish more efficient versions of these algorithms. In
this paper, we focus on improving the classical DBSCAN
procedure.

It was long believed that DBSCAN had a runtime of
O(n log n) until it was proven to be O(n2) in the worst
case by Gan and Tao (2015). They showed that while DB-
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SCAN can run in O(n log n) when the dimension is at most
2, it quickly starts to exhibit quadratic behavior in high di-
mensions and/or when n becomes large. In fact, we show in
Figure 1 that even with a simple mixture of 3-dimensional
Gaussians, DBSCAN already starts to show quadratic be-
havior.

The quadratic runtime for these density-based procedures
can be seen from the fact that they implicitly must compute
density estimates for each data point, which is linear time
in the worst case for each query. In the case of DBSCAN,
such queries are proximity-based. There has been much
work done in using space-partitioning data structures such
as KD-Trees (Bentley, 1975) and Cover Trees (Beygelzimer
et al., 2006) to improve query times, but these structures are
all still linear in the worst-case. Another line of work that
has had practical success is in approximate nearest neigh-
bor methods (e.g. Indyk and Motwani (1998); Datar et al.
(2004)) which have sub-linear queries, but such methods
come with few approximation guarantees.

DBSCAN proceeds by computing the empirical densities
for each sample point and then designating points whose
densities are above a threshold as core-points. Then, a neigh-
borhood graph of the core-points is constructed, and the
clusters are assigned based on the connected components.

In this paper, we present DBSCAN++, a step towards a fast
and scalable DBSCAN. DBSCAN++ is based on the obser-
vation that we only need to compute the density estimates
for a subset m of the n data points, where m can be much
smaller than n, in order to cluster properly. To choose these
m points, we provide two simple strategies: uniform and
greedy K-center-based sampling. The resulting procedure
has O(mn) worst-case runtime.

We show that with this modification, we still maintain statis-
tical consistency guarantees. We show the trade-off between
computational cost and estimation rates. Interestingly, up
to a certain point, we can enjoy the same minimax-optimal
estimation rates attained by DBSCAN while making m (in-
stead of the larger n) empirical density queries, thus leading
to a sub-quadratic procedure. In some cases, we saw that
our method of limiting the number of core points can act
as a regularization, thus reducing the sensitivity of classical
DBSCAN to its parameters.



DBSCAN++: Towards fast and scalable density clustering

Figure 1. Runtime (seconds) vs dataset size to cluster a mixture
of four 3-dimensional Gaussians. Using Gaussian mixtures, we
see that DBSCAN starts to show quadratic behavior as the dataset
gets large. After 106 points, DBSCAN ran too slowly and was
terminated after 3 hours. This is with only 3 dimensions.

We show on both simulated datasets and real datasets that
DBSCAN++ runs in a fraction of the time compared to
DBSCAN, while giving competitive performance and con-
sistently producing more robust clustering scores across
hyperparameter settings.

2. Related Works
There has been much work done on finding faster variants
of DBSCAN. We can only highlight some of these works
here. One approach is to speed up the nearest neighbor
queries that DBSCAN uses (Huang and Bian, 2009; Vijay-
alaksmi and Punithavalli, 2012; Kumar and Reddy, 2016),
including with approximate nearest neighbors methods (Wu
et al., 2007). Another approach is to find a set of "leader"
points that still preserve the structure of the original data set
and then identify clusters based on the clustering of these
"leader" points (Geng et al., 2000; Viswanath and Pinkesh,
2006; Viswanath and Babu, 2009). Our approach of find-
ing core points is similar but is simpler and comes with
theoretical guarantees. Liu (2006) modified DBSCAN by
selecting clustering seeds among the unlabeled core points
in an orderly manner in order to reduce computation time in
regions that have already been clustered. Other heuristics
include (Borah and Bhattacharyya, 2004; Zhou et al., 2000b;
Patwary et al., 2012; Kryszkiewicz and Lasek, 2010).

There are also numerous approaches based on parallel com-
puting such as (Xu et al., 1999; Zhou et al., 2000a; Arlia
and Coppola, 2001; Brecheisen et al., 2006; Chen et al.,
2010; Patwary et al., 2012; Götz et al., 2015) including map-
reduce based approaches (Fu et al., 2011; He et al., 2011;
Dai and Lin, 2012; Noticewala and Vaghela, 2014). Then
there are distributed approaches to DBSCAN where data
is partitioned across different locations and there may be
communication cost constraints (Januzaj et al., 2004b;a; Liu

et al., 2012; Neto et al., 2015; Lulli et al., 2016). It is also
worth mentioning Andrade et al. (2013), who presented a
GPU implementation of DBSCAN that can be over 100x
faster than sequential DBSCAN. In this paper, we assume
a single processor although extending our approach to the
parallel or distributed settings could be a future research
direction.

We now discuss the theoretical work done for DBSCAN.
Despite the practical significance of DBSCAN, its statistical
properties has only been explored recently (Sriperumbudur
and Steinwart, 2012; Jiang, 2017a; Wang et al., 2017; Stein-
wart et al., 2017). Such analyses make use of recent devel-
opments in topological data analysis to show that DBSCAN
estimates the connected components of a level-set of the
underlying density.

It turns out there has been a long history in estimating
the level-sets of the density function (Hartigan, 1975; Tsy-
bakov et al., 1997; Singh et al., 2009; Rigollet et al., 2009;
Rinaldo and Wasserman, 2010; Chaudhuri and Dasgupta,
2010; Steinwart, 2011; Balakrishnan et al., 2013; Chaudhuri
et al., 2014; Jiang, 2017b; Chen et al., 2017). However,
most of these methods have little practical value (some
are unimplementable), and DBSCAN is one of the only
practical methods that is able to attain the strongest guar-
antees, including finite-sample Hausdorff minimax optimal
rates. In fact the only previous method that was shown to
attain such guarantees was the impractical histogram-based
method of Singh et al. (2009), until Jiang (2017a) showed
that DBSCAN attained almost identical guarantees. This
paper shows that DBSCAN++ can attain similar guarantees
while being sub-quadratic in computational complexity as
well as the precise trade-off in estimation rates for further
computational speedup.

3. Algorithm
We have n i.i.d. samples X = {x1, ..., xn} drawn from
a distribution F over RD. We now define core-points,
which are essentially points with high empirical density de-
fined with respect to the two hyperparameters of DBSCAN,
minPts and ε. The latter is also known as the bandwidth.
Definition 1. Let ε > 0 and minPts be a positive integer.
Then x ∈ X is a core-point if |B(x, ε) ∩ X| ≥ minPts,
where B(x, ε) := {x′ : |x− x′| ≤ ε}.

In other words, a core-point is a sample point that has at
least minPts sample points within its ε-radius neighborhood.

DBSCAN (Ester et al., 1996) is shown as Algorithm 1,
which is in a more concise but equivalent form to the origi-
nal version (see Jiang (2017a)). It creates a graph G with
core-points as vertices and edges connecting core points,
which are distance at most ε apart. The final clusters are rep-
resented by the connected components in this graph along
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with non-core-points that are close to such a connected com-
ponent. The remaining points are designated as noise points
and are left unclustered. Noise points can be seen as outliers.

Algorithm 1 DBSCAN
Inputs: X , ε, minPts
C ← core-points in X given ε and minPts
G← initialize empty graph
for c ∈ C do

Add an edge (and possibly a vertex or vertices) in G
from c to all points in X ∩B(c, ε)

end for
return connected components of G.

Figure 2. Core-points from a mixture of three 2D Gaussians. Each
point marked with a triangle represents a core-point and the shaded
area its ε-neighborhood. The total ε-radii area of DBSCAN++
core-points provides adequate coverage of the dataset. The K-
center initialization produces an even more efficient covering. The
points that are not covered will be designated as outliers. This
illustrates that a strategically selected subset of core points can
produce a reasonable ε-neighborhood cover for clustering.

3.1. Uniform Initialization

DBSCAN++, shown in Algorithm 2, proceeds as follows:
First, it chooses a subset S of m uniformly sampled points
from the dataset X . Then, it computes the empirical density
of points in S w.r.t. the entire dataset. That is, a point
x ∈ S is a core point if |B(x, ε) ∩ X| ≥ minPts. From
here, DBSCAN++ builds a similar neighborhood graph G
of core-points in S and finds the connected components in
G. Finally, it clusters the rest of the unlabeled points to their
closest core-points. Thus, since it only recovers a fraction
of the core-points, it requires expensive density estimation
queries on only m of the n samples. However, the intuition,
as shown in Figure 2, is that a smaller sample of core-points
can still provide adequate coverage of the dataset and lead
to a reasonable clustering.

3.2. K-Center Initialization

Instead of uniformly choosing the subset of m points at
random, we can use K-center (Gonzalez, 1985; Har-Peled,
2011), which aims at finding the subset of size m that mini-
mizes the maximum distance of any point in X to its closest

Algorithm 2 DBSCAN++
Inputs: X , m, ε, minPts
S← sample m points from X .
C← all core-points in S w.r.t X , ε, and minPts
G← empty graph.
for c ∈ C do

Add an edge (and possibly a vertex or vertices) in G
from c to all points in X ∩B(c, ε)

end for
return connected components of G.

point in that subset. In other words, it tries to find the
most efficient covering of the sample points. We use the
greedy initialization method for approximating K-center
(Algorithm 3), which repeatedly picks the farthest point
from any point currently in the set. This process contin-
ues until we have a total of m points. This method gives a
2-approximation to the K-center problem.

Algorithm 3 Greedy K-center Initialization
Input: X , m.
S ← {x1}.
for i from 1 to m− 1 do

Add argmaxx∈X mins∈S |x− s| to S.
end for
return S.

3.3. Time Complexity

DBSCAN++ has a time complexity of O(nm). Choos-
ing the set S takes linear time for the uniform initialization
method andO(mn) for the greedyK-center approach (Gon-
zalez, 1985). The next step is to find the core-points. We
use a KDTree to query for the points within the ε-radii ball
for each point in S. Each such query takes O(n) in the
worst case, and doing so for m sampled points leads to a
cost of O(nm). Constructing the graph takes O(mn) time
and running a depth-first search on the graph recovers the
connected components in O(nm) since the graph will have
at most O(nm) edges.

The last step is to cluster the remaining points to the nearest
core point. We once again use a KDTree, which takes O(m)
for each of O(n) points, leading to a time complexity of
O(nm) as well. Thus, the time complexity of DBSCAN++
is O(nm).

4. Theoretical Analysis
In this section, we show that DBSCAN++ is a consistent
estimator of the density level-sets. It was recently shown by
Jiang (2017a) that DBSCAN does this with finite-sample
guarantees. We extend this analysis to show that our modi-
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fied DBSCAN++ also has statistical consistency guarantees,
and we show the trade-off between speed and convergence
rate.
Definition 2. (Level-set) The λ-level-set of f is defined as
Lf (λ) := {x ∈ X : f(x) ≥ λ}.

Our results are under the setting that the density level λ is
known and gives insight into how to tune the parameters
based on the desired density level.

4.1. Regularity Assumptions

We have n i.i.d. samples X = {x1, ..., xn} drawn from a
distribution F over RD. We take f to be the density of F
over the uniform measure on RD.
Assumption 1. f is continuous and has compact support
X ⊆ RD.

Much of the results will depend on the behavior of level-
set boundaries. Thus, we require sufficient drop-off at the
boundaries as well as separation between the CCs at a par-
ticular level-set.

Define the following shorthands for distance from a point to
a set and the neighborhood around a set.
Definition 3. d(x,A) := infx′∈A |x − x′|, B(C, r) :=
{x ∈ X : d(x,C) ≤ r},
Assumption 2 (β-regularity of level-sets). Let 0 < β <∞.
There exist Č, Ĉ, rc > 0 such that the following holds for
all x ∈ B(Lf (λ), rc)\Lf (λ).

Č · d(x, Lf (λ))β ≤ λ− f(x) ≤ Ĉ · d(x, Lf (λ))β .

Remark 1. We can choose any 0 < β < ∞. The β-
regularity condition is a standard assumption in level-set
analyses. See (Singh et al., 2009). The higher the β, the
more smooth the density is around the boundary of the level-
set and thus the less salient it is. This makes it more difficult
to recover the level-set.

4.2. Hyperparameter Settings

In this section, we state the hyperparameter settings in terms
of n, the sample size, and the desired density level λ in order
for statistical consistency guarantees to hold. Define Cδ,n =
16 log(2/δ)

√
log n, where δ, 0 < δ < 1, is a confidence

parameter which will be used later (i.e. guarantees will hold
with probability at least 1− δ).

ε =

(
minPts

n · vD · (λ− λ · C2
δ,n/
√

minPts)

)1/D

,

where vD is the volume of the unit ball in RD and minPts
satisfies

Cl · (log n)2 ≤ minPts ≤ Cu · (log n)
2D

2+D · n2β/(2β+D),

and Cl and Cu are positive constants depending on δ, f .

4.3. Level-set estimation result

We give the estimation rate under the Hausdorff metric.

Definition 4 (Hausdorff Distance).

dHaus(A,A
′) = max{sup

x∈A
d(x,A′), sup

x′∈A′
d(x′, A)}.

Theorem 1. Suppose Assumption 1 and 2 hold, and assume
the parameter settings in the previous section. There exists
Cl, C sufficiently large and Cu sufficiently small such that
the following holds with probability at least 1−δ. Let L̂f (λ)
be the core-points returned by Algorithm 2 under uniform
initialization or greedy K-center initialization. Then,

dHaus(L̂f (λ), Lf (λ))

≤ C ·

(
C

2/β
δ,n · minPts−1/2β + C

1/D
δ,n ·

(√
logm

m

)1/D
)
.

Proof. There are two quantities to bound: (i)
max

x∈L̂f (λ)
d(x, Lf (λ)), which ensures that the esti-

mated core-points are not far from the true core-points (i.e.
Lf (λ)), and (ii) supx∈Lf (λ) d(x, L̂f (λ)), which ensures
that the estimates core-points provides a good covering of
the level-set.

The bound for (i) follows by the main result of Jiang
(2017a). This is because DBSCAN++’s estimated
core-points are a subset of that of the original DB-
SCAN procedure. Thus, max

x∈L̂f (λ)
d(x, Lf (λ)) ≤

max
x∈L̃f (λ)

d(x, Lf (λ)), where L̃f (λ) are the core-points
returned by original DBSCAN; this quantity is bounded by
O(C

2/β
δ,n ·minPts−1/2β) by Jiang (2017a).

We now turn to the other direction and bound
supx∈Lf (λ) d(x, L̂f (λ)). Let x ∈ Lf (λ).

Suppose we use the uniform initialization. Define r0 :=(
2Cδ,n

√
D logm

mvD·λ

)1/D
. Then, we have∫

X
f(z) · 1[z ∈ B(x, r0)]dz ≥ vDr0D(λ− Ĉrβ0 )

≥ vDr0Dλ/2 =
Cδ,n
√
D logm

m
,

where the first inequality holds from Assumption 2, the
second inequality holds for n sufficiently large, and the last
holds from the conditions on minPts.

By the uniform ball convergence rates of Lemma 7 of Chaud-
huri and Dasgupta (2010), we have that with high probabil-
ity, there exists sample point x′ ∈ S such that |x−x′| ≤ r0.
This is because the ball B(x, r0) contains sufficiently high
true mass to be guaranteed a sample point in S. Moreover,
this guarantee holds with high probability uniformly over



DBSCAN++: Towards fast and scalable density clustering

x ∈ X . Next, we show that x′ is a core-point. This follows
by Lemma 8 of Jiang (2017a), which shows that any sam-
ple point in x ∈ Lf (λ) satisfies |B(x, ε) ∩ X| ≥ minPts.
Thus, x′ ∈ L̂f (λ). Hence, supx∈Lf (λ) d(x, L̂f (λ)) ≤ r0,
as desired.

Now suppose we use the greedy K-center initialization.
Define the following attained K-center objective:

τ := max
x∈X

min
s∈S

d(s, x),

and the optimal K-center objective:

τopt := min
S′⊆X ,|S′|=m

max
x∈X

min
s∈S′

d(s, x).

It is known that the greedy K-center initialization is a 2-
approximation (see Gonzalez (1985); Har-Peled (2011)),
thus

τ ≤ 2τopt ≤ 2r0,

where the last inequality follows with high probability since
the K-center objective will be sub-optimal if we sampled
the m centers uniformly. Then, we have

sup
x∈Lf (λ)

min
s∈S

d(s, x)

≤ max
x∈X

min
s∈S

d(s, x) + dHaus(Lf (λ), X ∩ Lf (λ))

≤ τ + r0 ≤ 3r0.

The argument then proceeds in the same way as with uni-
form initialization but with an extra constant factor, as de-
sired.

Remark 2. When taking minPts to the maximum allowed
rate

minPts ≈ n2β/(2β+D),

we obtain the error rate (ignoring log factors) of

dHaus(L̂f (λ), Lf (λ)) . n−1/(2β+D) +m−1/D.

The first term matches the known lower bound for level-
set estimation established in Theorem 4 of Tsybakov et al.
(1997). The second term is the trade-off for computing the
empirical densities for only m of the points. In particular, if
we take

m & nD/(2β+D),

then the first term dominates, and we thus have
dHaus(L̂f (λ), Lf (λ)) . n−1/(2β+D), the minimax optimal
rate for level-set estimation. This leads to the following
result.
Corollary 1. Suppose the conditions of Theorem 1 and set
m ≈ nD/(2β+D). Then, Algorithm 2 is a minimax optimal
estimator (up to logarithmic factors) of the density level-set
with sub-quadratic runtime of O(n2−2β/(2β+D)).

n D c m

(A) iris 150 4 3 3
(B) wine 178 13 3 5
(C) spam 1401 57 2 793
(D) images 210 19 7 24
(E) MNIST 60000 20 10 958
(F) Libras 360 90 15 84
(G) mobile 2000 20 4 112
(H) zoo 101 16 7 8
(I) seeds 210 19 7 6
(J) letters 20000 16 26 551
(K) phonemes 4509 256 5 396
(L) fashion MNIST 60000 784 10 5674
(M) celeb-a 10000 40 3 3511

Figure 3. Summary of datasets used. Includes dataset size (n),
number of features (D), number of clusters (c), and the (m) used
by both DBSCAN++ uniform and K-center.

4.4. Estimating the connected components

The previous section shows that the core-points returned
by DBSCAN++ recovers the density level-set. The more
interesting question is about the actual clustering: that is,
whether DBSCAN++ can recover the connected compo-
nents of the density level-set individually and whether there
is a 1:1 correspondence between the clusters returned by
DBSCAN++ and the connected components.

It turns out that to obtain such a result, we need a minor
modification of the procedure. That is, after determining the
core points, instead of using the ε cutoff to connect points
into the same cluster, we must use a higher cutoff. In fact,
any constant value would do as long as it is sufficiently
smaller than the pairwise distances between the connected
components. For example, for the original DBSCAN al-
gorithm, many analyses must make this same modification.
This is known as pruning false clusters in the literature (see
Kpotufe and von Luxburg (2011); Jiang (2017a)). The same
analysis carries over to our modification, and we omit it here.
We note that pruning does not change the final estimation
rates but may change the initial sample size required.

4.5. Outlier detection

One important application of DBSCAN is outlier detection
(Breunig et al., 2000; Çelik et al., 2011; Thang and Kim,
2011). Datapoints not assigned to clusters are noise points
and can be considered outliers. This is because the noise
points are the low density points away from the clusters and
thus tend to be points with few similar representatives in the
dataset. We show that the noise points DBSCAN++ finds
are similar to the noise points discovered by DBSCAN++.
We give a simple result that shows that every DBSCAN
noise point is also one DBSCAN++ finds (Lemma 1). Then,
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Figure 4 (Left) shows that the number of noise points of
DBSCAN++ quickly converges to those of DBSCAN as the
ratiom/n increases, which combined with Lemma 1, shows
that the noise points DBSCAN++ returns closely approx-
imates those returned by DBSCAN for m/n sufficiently
high.

Lemma 1 (Noise points). For any dataset, if N0 and N1

are the noise points found by DBSCAN and DBSCAN++
respectively, then as long as they have the same setting of ε
and k, we have that N0 ⊆ N1.

Proof. Noise points are those that are further than ε dis-
tance away from a core point. The result follows since DB-
SCAN++ core points are a subset of that of DBSCAN.

5. Experiments
5.1. Dataset and setup

We ran DBSCAN++ with uniform and K-center initializa-
tions and compared both to DBSCAN on 11 real datasets as
described in Figure 3. We used Phonemes (Friedman et al.,
2001), a dataset of log periodograms of spoken phonemes,
and MNIST, a sub-sample of the MNIST handwriting recog-
nition dataset after running a PCA down to 20 dimensions.
The rest of the datasets we used are standard UCI or Kaggle
datasets used for clustering. We evaluate the performance
via two widely-used clustering scores: the adjusted RAND
index (Hubert and Arabie, 1985) and adjusted mutual in-
formation score (Vinh et al., 2010), which are computed
against the ground truth. We fixed minPts = 10 for all
procedures throughout experiments.

5.2. Trade-off between accuracy and speed

The theoretical results suggest that up to a certain point, only
computing empirical densities for a subset of the sample
points should not noticeably impact the clustering perfor-
mance. Past that point, we begin to see a trade-off. We
confirm this empirically in Figure 4 (Right), which shows
that indeed past a certain threshold of m/n, the cluster-
ing scores remain high. Only when the sub-sample is too
small do we begin seeing a significant trade-off in clustering
scores. This shows that DBSCAN++ can save considerable
computational cost while maintaining similar clustering per-
formance as DBSCAN.

We further demonstrate this point by applying these proce-
dures to image segmentation, where segmentation is done
by clustering the image’s pixels (with each pixel represented
as a 5-dimensional vector consisting of (x, y) position and
RGB color). Figure 5 shows that DBSCAN++ provides
a very similar segmentation as DBSCAN in a fraction of
the time. While this is just a simple qualitative example, it
serves to show the applicability of DBSCAN++ to a poten-
tially wide range of problems.

Figure 4. Each row corresponds to a dataset. See Figure 3 for
dataset descriptions. Left (Outlier Detection): The number of
outliers (i.e. noise points) returned by DBSCAN against m/n
and compared it to that of DBSCAN++. We see that the set of
DBSCAN++ outliers quickly approaches those of DBSCAN’s thus
showing that DBSCAN++ remains effective at outlier detection
compared to DBSCAN, especially when m/n is sufficiently high.
Right (Clustering Performance): we plot the clustering accuracy
and runtimes for eight real datasets as a function of the ratio m/n.
As expected, the runtime increases approximately linearly in this
ratio, but the clustering scores consistently attain high values when
m/n is sufficiently large. Interestingly, sometimes we attain higher
scores with lower values of m/n thus giving both better runtime
and accuracy.
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Figure 5. Figure skater Yuzuru Hanyu at the 2018 Olympics. DB-
SCAN was initiated with hyperparameters ε = 8 and minPts = 10,
and DBSCAN++ with ε = 60, m/n = 0.3, and minPts = 10.
DBSCAN++ withK-centers initialization recovers similar clusters
(designated by the purple boundaries) in the 988× 750 image as
DBSCAN in far less time: 7.38 seconds versus 44.18 seconds. The
speedup becomes more significant on higher resolution images.

5.3. Robustness to Hyperparameters

In Figure 6, we plot each algorithm’s performance across
a wide range of its hyperparameters. The table in Figure 7
shows the best scores and runtimes for each dataset and algo-
rithm. For these experiments, we chose m = p · nD/(D+4),
where 0 < p < 1 was chosen based on validation over just 3
values, as explained in Figure 7. We found that theK-center
initialization required smaller p due to its ability to find a
good covering of the space and more efficiently choose the
sample points to query for the empirical density.

The results in Figure 6 show that DBSCAN++ with uniform
initialization gives competitive performance compared to
DBSCAN but with robustness across a much wider range of
ε. In fact, in a number of cases, DBSCAN++ was even better
than DBSCAN under optimal tuning. DBSCAN++ with
K-center initialization further improves on the clustering
results of DBSCAN++ for most of the datasets. Pruning the
core-points as DBSCAN++ may act as a regularizing factor
to prevent the algorithm’s dependency on the preciseness of
its parameters.

An explanation of why DBSCAN++ added robustness
across ε follows. When tuning DBSCAN with respect to ε,
we found that DBSCAN often performed optimally on only
a narrow range of ε. Because ε controls both the designa-
tion of points as core-points as well as the connectivity of
the core-points, small changes could produce significantly
different clusterings.

Figure 6. Clustering performance over range of hyperparame-
ter settings. Experimental results on datasets described in Figure 3.
Each row corresponds to a single dataset and each column cor-
responds to a clustering score. For each dataset and clustering
score, we plot the scores for DBSCAN++ with uniform and K-
center sampling vs DBSCAN across a wide range of settings for ε
(x-axis).
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DBSCAN Uniform K-Center
(A) 0.5681 0.6163 (±0.01) 0.6634

0.5768 0.6449 (±0.01) 0.7301
(B) 0.2851 0.3254 (±0.01) 0.3694

0.3587 0.3605 (±0.00) 0.4148
(C) 0.2851 0.3254 (±0.01) 0.3694

0.3587 0.3605 (±0.00) 0.4148
(D) 0.2922 0.2701 (±0.01) 0.3853

0.4938 0.4289 (±0.01) 0.5600
(E) 0.0844 0.1097 (±0.00) 0.1416

0.1743 0.3774 (±0.00) 0.3152
(F) 0.0939 0.1380 (±0.00) 0.2095

0.2170 0.3033 (±0.00) 0.4461
(G) 0.0551 0.1741 (±0.00) 0.1091

0.2123 0.2585 (±0.00) 0.2418
(H) 0.6846 0.6729 (±0.01) 0.7340

0.6347 0.6356 (±0.00) 0.7456
(I) 0.4041 0.4991 (±0.02) 0.4402

0.4403 0.4843 (±0.02) 0.5057
(J) 0.0623 0.0488 (±0.00) 0.0901

0.3823 0.3956 (±0.00) 0.3841
(K) 0.5101 0.5541 (±0.01) 0.5364

0.6475 0.6259 (±0.01) 0.6452

Figure 7. Highest scores for each dataset and algorithm. The
first row is the adjusted RAND index and the second row the
adjusted mutual information. The highest score of the row is
in green while the second highest is in orange. The standard
error over 10 runs is given in parentheses for DBSCAN++ with
uniform initialization. Both other algorithms are deterministic.
Each algorithm was tuned across a range of ε with minPts = 10.
For both DBSCAN++ algorithms, we used p values of 0.1, 0.2,
or 0.3. We see that DBSCAN++ uniform performs better than
DBSCAN on 17 out of 22 metrics, while DBSCAN++ K-center
performs better than DBSCAN on 21 out of 22 metrics.

In contrast, DBSCAN++ suffers less from the hyper-
connectivity of the core-points until ε is very large. It turns
out that only processing a subset of the core-points not
only reduces the runtime of the algorithm, but it provides
the practical benefit of reducing the tenuous connections
between connected components that are actually far away.
This way, DBSCAN++ is much less sensitive to changes in
ε and reaches its saturation point (where there is only one
cluster) only at very large ε.

Performance under optimal tuning is often not available in
practice, and this is especially the case in unsupervised prob-
lems like clustering where the ground truth is not assumed
to be known. Thus, not only should procedures produce
accurate clusterings in the best setting, but it may be even
more important for procedures to be precise, easy to tune,
reasonable across a wide range of its hyperparameter set-
tings. This added robustness (not to mention speedup) may
make DBSCAN++ a more practical method. This is espe-

DBSCAN Uniform K-Center
(A) 3.07 (±0.08) 1.52 (±0.09) 2.55 (±0.34)
(B) 2.04 (±0.07) 1.31 (±0.07) 0.79 (±0.02)
(C) 3308 (±26.4) 225.86 (±6.8) 442.69 (±2.0)
(D) 4.88 (±0.09) 1.51 (±0.05) 1.32 (±0.04)
(E) 1.5e5 (±0.17) 3.5e3 (±39.23) 7.0e3 (±41.1)
(F) 37.63 (±0.38) 8.20 (±0.22) 9.84 (±0.06)
(G) 67.05 (±0.63 11.41 (±0.21) 15.23 (±0.32)
(H) 1.07 (±0.03) 0.78 (±0.03) 0.81 (±0.03)
(I) 1.75 (±0.04) 0.91 (±0.03) 0.97 (±0.09)
(J) 1.0e5 (±76.43) 5.2e3 (±17.48) 1.5e3 (±36.4)
(K) 1.2e4 (±160) 1.9e3 (±32.45) 1.9e3 (±30.4)
(L) 3.9e9 (±4.3e4) 7.4e8 (±4.1e3) 3.6e8(±307)
(M) 4.1e9 (±6.2e4) 3.1e8 (±411) 2.3e8(±1.1e3)

Figure 8. Runtimes (milliseconds) and standard errors for each
dataset and algorithm. DBSCAN++ using both uniform and K-
center initializations performs reasonably well within a fraction
of the runtime of DBSCAN. The larger the dataset, the less time
DBSCAN++ requires compared to DBSCAN, showing that DB-
SCAN++ scales much better in practice.

cially true on large datasets where it may be costly to iterate
over many hyperparameter settings.

5.4. Performance under optimal tuning

We see that under optimal tuning of each algorithm, DB-
SCAN++ consistently outperforms DBSCAN in both clus-
tering scores and runtime. We see in Figure 7 that DB-
SCAN++ with the uniform initialization consistently out-
performs DBSCAN and DBSCAN++ with K-center ini-
tialization consistently outperforms both of the algorithms.
Figure 8 shows that indeed DBSCAN++ gives a speed ad-
vantage over DBSCAN for the runs that attained the optimal
performance. These results thus suggest that not only is
DBSCAN++ faster, it can achieve better clusterings.

6. Conclusion
In this paper, we presented DBSCAN++, a modified version
of DBSCAN that only computes the density estimates for
a subset m of the n points in the original dataset. We es-
tablished statistical consistency guarantees which show the
trade-off between computational cost and estimation rates,
and we prove that interestingly, up to a certain point, we
can enjoy the same estimation rates while reducing compu-
tation cost. We also demonstrate this finding empirically.
We then showed empirically that not only can DBSCAN++
scale considerably better than DBSCAN, its performance is
competitive in accuracy and consistently more robust across
their mutual bandwidth hyperparameters. Such robustness
can be highly desirable in practice where optimal tuning is
costly or unavailable.



DBSCAN++: Towards fast and scalable density clustering

References
Guilherme Andrade, Gabriel Ramos, Daniel Madeira,

Rafael Sachetto, Renato Ferreira, and Leonardo Rocha.
G-dbscan: A gpu accelerated algorithm for density-based
clustering. Procedia Computer Science, 18:369–378,
2013.

Domenica Arlia and Massimo Coppola. Experiments in
parallel clustering with dbscan. In European Conference
on Parallel Processing, pages 326–331. Springer, 2001.

Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro
Rinaldo, Aarti Singh, and Larry Wasserman. Cluster
trees on manifolds. In Advances in Neural Information
Processing Systems, pages 2679–2687, 2013.

Jon Louis Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

Alina Beygelzimer, Sham Kakade, and John Langford.
Cover trees for nearest neighbor. In Proceedings of
the 23rd international conference on Machine learning,
pages 97–104. ACM, 2006.

B Borah and DK Bhattacharyya. An improved sampling-
based dbscan for large spatial databases. In Intelligent
Sensing and Information Processing, 2004. Proceedings
of International Conference on, pages 92–96. IEEE, 2004.

Stefan Brecheisen, Hans-Peter Kriegel, and Martin Pfeifle.
Parallel density-based clustering of complex objects. In
Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 179–188. Springer, 2006.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng,
and Jörg Sander. Lof: identifying density-based local
outliers. In ACM sigmod record, volume 29, pages 93–
104. ACM, 2000.
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