Frequent Itemset and Association Rule Mining

Shantanu Jain

Market Basket Analysis

Baskets of items

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Association Rules

```
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```


The Market-Basket Model

Input:

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Output:

Rules Discovered:

\{Milk\} --> \{Coke\}
\{Diaper, Milk\} --> \{Beer\}

- Items = products/goods; Itemset: any set of items. k-Itemset: a set of k items
- Basket/Transaction = set of items purchased by a customer at a given point in time.
- Brick and Mortar: Track purchasing habits
- Chain stores have TBs of transaction data
- Tie-in "tricks", e.g., sale on diapers + raise price of beer
- Need the rule to occur frequently, or no \$\$'s
- Online: Might be able to make profit from infrequent, but strong association rules.

Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support $\sigma(X)$ for itemset X : Number of baskets containing all items in X
- Fractional Support s(X) for itemset X: Fraction of baskets containing all items in $\mathrm{X}, \sigma(\mathrm{X}) / \mathrm{N}$
- Given a support threshold $\sigma_{\text {min }}$, then sets of items \boldsymbol{X} that appear in at least $\sigma(X) \geq \sigma_{\min }$ baskets are called frequent itemsets

Example: Frequent Itemsets

- Items $=$ \{milk, coke, pepsi, beer, juice $\}$
- Baskets

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, c, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Itemsets with frequency $\sigma(X) \geq 3$

$$
\begin{aligned}
& \{m\}: 5,\{c\}: 6,\{b\}: 6,\{j\}: 4, \\
& \{m, c\}: 3,\{m, b\}: 4,\{c, b\}: 5,\{c, j\}: 3, \\
& \{m, c, b\}: 3
\end{aligned}
$$

Association Rules

- If-then rules about the contents of baskets
- $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \rightarrow\{b\}$ means: "if a basket contains all of a_{1}, \ldots, a_{k} then it is likely to contain $b "$
- In practice there are many rules, want to find significant/interesting ones!
- Two measures of significance for purchase $B=\{b\}$ given $A=\left\{a_{1}, \ldots, a_{k}\right\}$

Support (fractional): $s(A \cup B)=\sigma(A \cup B) / N$
Confidence: $s(A \cup B) / s(A)=\sigma(A \cup B) / \sigma(A)$

Interest of Association Rules

- Not all high-confidence rules are interesting
- The rule $\boldsymbol{A} \rightarrow$ milk may have high confidence because milk is just purchased very often (independent of \boldsymbol{A})
- Lift of a rule $\boldsymbol{A} \rightarrow \boldsymbol{B}$:

Confidence and Interest

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, c, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

- Association rule: $\{m\} \rightarrow\{b\}$
- Confidence $=4 / 5$
- Lift $=4 / 8 /(5 / 8 * 6 / 8)=1.06$
- Item b appears in $6 / 8$ of the baskets
- Rule is not very interesting!

Other Applications

Baskets Items

- General view: Association rules predict links between "basket" nodes and "item" nodes
- What is a "basket" and what is an "item" can vary from application to application.

Other Applications

Sentences Documents

Plagiarism Detection

- Baskets = sentences; Items = documents containing those sentences
- Frequents sets of documents could indicate plagiarism
- Notice items do not have to be "inside" baskets

Other Applications

Patients Drugs/Effects Drug Side Effects

- Baskets = patients; Items = drugs \& side-effects
- Detect combinations of drugs that result in side-effects
- Requires extension: Needs to store absence as well as presence

Other Applications: Voting Records

Association Rule	Confidence
\{budget resolution $=$ no, MX-missile=no, aid to El Salvador $=$ yes \} \longrightarrow \{Republican $\}$	91.0\%
\{budget resolution $=$ yes, MX-missile=yes, aid to El Salvador $=$ no \} $\longrightarrow\{$ Democrat $\}$	97.5\%
$\begin{aligned} \{\text { crime } & =\text { yes, right-to-sue }=\text { yes, physician fee freeze }=\text { yes }\} \\ & \longrightarrow\{\text { Republican }\} \end{aligned}$	93.5\%
$\begin{aligned} \{\text { crime } & =\text { no, right-to-sue }=\text { no, physician fee freeze }=\text { no }\} \\ & \longrightarrow\{\text { Democrat }\} \end{aligned}$	100\%

- Baskets = politicians; Items = party \& votes
- Can extract set of votes most associated with each party (or or faction within a party)

Up Next: Mining Association Rules

$$
\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \rightarrow j
$$

- Problem: Find all association rules with support $\geq s$ and confidence $\geq c$
- Note: Support of an association $A \rightarrow B$ rule is the support of $A \cup B$
- Hard part: Finding all frequent itemsets!
- If $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \rightarrow j$ has high support and confidence, then $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ and $\left\{i_{1}, i_{2}, \ldots, i_{k}, j\right\}$ will be frequent

Mining Frequent Itemsets with A-Priori

Finding Frequent Item Sets

Given I products, how many possible item sets are there?

Finding Frequent Item Sets

Answer: 2'-1; Cannot enumerate all possible sets

Intuition: A-priori Principle

Observation: Subsets of a frequent item set are also frequent

Intuition: A-priori Principle

Corollary: If a set is not frequent, then its supersets are also not frequent

A-priori Algorithm

1. Find all frequent sets of size $k=1$
(only have to check I possible sets)
2. For $k=2 \ldots$ I

- Extend frequent sets of size $k-1$ to create candidate sets of size k
- Find candidate sets that are frequent

