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Market Basket Analysis

   {Milk} --> {Coke} 
    {Diaper, Milk} --> {Beer}

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Baskets of items

Association Rules



• Items = products/goods; Itemset: any set of items. k-Itemset: a set of k 
items 

• Basket/Transaction = set of items purchased by a customer at a given 
point in time. 

•  Brick and Mortar: Track purchasing habits 
• Chain stores have TBs of transaction data 
• Tie-in “tricks”, e.g., sale on diapers + raise price of beer 
• Need the rule to occur frequently, or no $$’s 

• Online: Might be able to make profit from infrequent, but strong association rules.

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 

 

Input:

Rules Discovered: 
    {Milk} --> {Coke} 
    {Diaper, Milk} --> {Beer}

Output:

The Market-Basket Model

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Frequent Itemsets
• Simplest question: Find sets of items that appear 

together “frequently” in baskets 
• Support σ(Χ) for itemset Χ:  

Number of baskets containing all items in Χ 

• Fractional Support s(Χ) for itemset Χ:  
Fraction of baskets containing all items in Χ, σ(Χ)/N  

• Given a support threshold σmin, then  
sets of items X that appear in at least  
σ(Χ) ≥ σmin baskets are called  
frequent itemsets

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



 Example: Frequent Itemsets
• Items = {milk, coke, pepsi, beer, juice} 
• Baskets 

 B1 = {m, c, b}  B2 = {m, p, j} 
 B3 = {m, b}   B4 = {c, j} 

 B5 = {m, c, b}  B6 = {m, c, b, j} 
 B7 = {c, b, j}   B8 = {b, c} 

• Itemsets with frequency σ(Χ) ≥ 3 
   {m}:5, {c}:6, {b}:6, {j}:4,  
   {m,c}: 3, {m,b}:4, {c,b}:5, {c,j}:3,  
   {m,c,b}:3



Association Rules
• If-then rules about the contents of baskets 
• {a1, a2,…,ak} → {b}  means: “if a basket contains 

all of a1,…,ak then it is likely to contain b” 
• In practice there are many rules, want to find 

significant/interesting ones! 
• Two measures of significance for purchase 

B={b} given  A = {a1,…,ak}

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Support (fractional): s(Α ⋃ Β) = σ(Α ⋃ Β) / Ν

Confidence: s(Α ⋃ Β) / s(A) = σ(Α ⋃ Β) / σ(A)



Interest of Association Rules
• Not all high-confidence rules are interesting 

• The rule A → milk may have high confidence 
because milk is just purchased very often 
(independent of A) 

• Lift of a rule A → B:

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Confidence and Interest
B1 = {m, c, b}  B2 = {m, p, j} 
B3 = {m, b}  B4 = {c, j} 
B5 = {m, c, b}  B6 = {m, c, b, j} 
B7 = {c, b, j}  B8 = {b, c} 

• Association rule: {m} →{b} 
•Confidence = 4/5  
• Lift = 4/8 / (5/8 * 6/8) = 1.06 
• Item b appears in 6/8 of the baskets 
•Rule is not very interesting!

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Other Applications

Baskets Items
• General view: Association rules 

predict links between “basket” 
nodes and “item” nodes 

• What is a “basket” and what  
is an “item” can vary from 
application to application.



Other Applications

Sentences Documents
• Baskets = sentences;  

Items = documents containing 
those sentences 

• Frequents sets of documents 
could indicate plagiarism 

• Notice items do not have to  
be “inside” baskets

Plagiarism Detection



Other Applications

Patients Drugs/Effects

• Baskets = patients;  
Items = drugs & side-effects 

• Detect combinations of drugs that 
result in side-effects 

• Requires extension: Needs to store 
absence as well as presence

Drug Side Effects



Other Applications: Voting Records

• Baskets = politicians;  Items = party & votes 
• Can extract set of votes most associated  

with each party (or or faction within a party)

6.4 Compact Representation of Frequent Itemsets 353

Table 6.3. List of binary attributes from the 1984 United States Congressional Voting Records. Source:

The UCI machine learning repository.

1. Republican 18. aid to Nicaragua = no
2. Democrat 19. MX-missile = yes
3. handicapped-infants = yes 20. MX-missile = no
4. handicapped-infants = no 21. immigration = yes
5. water project cost sharing = yes 22. immigration = no
6. water project cost sharing = no 23. synfuel corporation cutback = yes
7. budget-resolution = yes 24. synfuel corporation cutback = no
8. budget-resolution = no 25. education spending = yes
9. physician fee freeze = yes 26. education spending = no
10. physician fee freeze = no 27. right-to-sue = yes
11. aid to El Salvador = yes 28. right-to-sue = no
12. aid to El Salvador = no 29. crime = yes
13. religious groups in schools = yes 30. crime = no
14. religious groups in schools = no 31. duty-free-exports = yes
15. anti-satellite test ban = yes 32. duty-free-exports = no
16. anti-satellite test ban = no 33. export administration act = yes
17. aid to Nicaragua = yes 34. export administration act = no

Table 6.4. Association rules extracted from the 1984 United States Congressional Voting Records.

Association Rule Confidence
{budget resolution = no, MX-missile=no, aid to El Salvador = yes } 91.0%

−→ {Republican}
{budget resolution = yes, MX-missile=yes, aid to El Salvador = no } 97.5%

−→ {Democrat}
{crime = yes, right-to-sue = yes, physician fee freeze = yes} 93.5%

−→ {Republican}
{crime = no, right-to-sue = no, physician fee freeze = no} 100%

−→ {Democrat}

6.4 Compact Representation of Frequent Itemsets

In practice, the number of frequent itemsets produced from a transaction data
set can be very large. It is useful to identify a small representative set of
itemsets from which all other frequent itemsets can be derived. Two such
representations are presented in this section in the form of maximal and closed
frequent itemsets.



• Problem: Find all association rules with  
support ≥s and confidence ≥c 
•Note: Support of an association   rule is  

the support of   

•Hard part: Finding all frequent itemsets! 

• If {i1, i2,…, ik} → j has high support and confidence,  
then {i1, i2,…, ik} and {i1, i2,…, ik, j} will be frequent

A → B
A ∪ B

Up Next: Mining Association Rules

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

{i1, i2,…,ik} → j 



Mining Frequent Itemsets 
with A-Priori



Finding Frequent Item Sets
332 Chapter 6 Association Analysis
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Figure 6.1. An itemset lattice.

6.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 6.1 shows an itemset lattice for I = {a, b, c, d, e}. In general, a data set
that contains k items can potentially generate up to 2k − 1 frequent itemsets,
excluding the null set. Because k can be very large in many practical appli-
cations, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
support count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 6.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive because it requires
O(NMw) comparisons, where N is the number of transactions, M = 2k − 1 is
the number of candidate itemsets, and w is the maximum transaction width.

Given I products, how many possible item sets are there?

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf
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6.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 6.1 shows an itemset lattice for I = {a, b, c, d, e}. In general, a data set
that contains k items can potentially generate up to 2k − 1 frequent itemsets,
excluding the null set. Because k can be very large in many practical appli-
cations, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
support count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 6.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive because it requires
O(NMw) comparisons, where N is the number of transactions, M = 2k − 1 is
the number of candidate itemsets, and w is the maximum transaction width.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Answer: 2I - 1; Cannot enumerate all possible sets 



Intuition: A-priori Principle
Observation: Subsets of a frequent item set are also frequent334 Chapter 6 Association Analysis
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Figure 6.3. An illustration of the Apriori principle. If {c, d, e} is frequent, then all subsets of this

itemset are frequent.

Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets
must be infrequent too. As illustrated in Figure 6.4, the entire subgraph
containing the supersets of {a, b} can be pruned immediately once {a, b} is
found to be infrequent. This strategy of trimming the exponential search
space based on the support measure is known as support-based pruning.
Such a pruning strategy is made possible by a key property of the support
measure, namely, that the support for an itemset never exceeds the support
for its subsets. This property is also known as the anti-monotone property
of the support measure.

Definition 6.2 (Monotonicity Property). Let I be a set of items, and
J = 2I be the power set of I. A measure f is monotone (or upward closed) if

∀X, Y ∈ J : (X ⊆ Y ) −→ f(X) ≤ f(Y ),

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf
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Figure 6.4. An illustration of support-based pruning. If {a, b} is infrequent, then all supersets of {a, b}
are infrequent.

which means that if X is a subset of Y , then f(X) must not exceed f(Y ). On
the other hand, f is anti-monotone (or downward closed) if

∀X, Y ∈ J : (X ⊆ Y ) −→ f(Y ) ≤ f(X),

which means that if X is a subset of Y , then f(Y ) must not exceed f(X).

Any measure that possesses an anti-monotone property can be incorpo-
rated directly into the mining algorithm to effectively prune the exponential
search space of candidate itemsets, as will be shown in the next section.

6.2.2 Frequent Itemset Generation in the Apriori Algorithm

Apriori is the first association rule mining algorithm that pioneered the use
of support-based pruning to systematically control the exponential growth of
candidate itemsets. Figure 6.5 provides a high-level illustration of the frequent
itemset generation part of the Apriori algorithm for the transactions shown in

Corollary: If a set is not frequent, then its supersets are also not frequent

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf



A-priori Algorithm

1. Find all frequent sets of size k = 1  
(only have to check I possible sets) 

2. For k = 2 … I
• Extend frequent sets of size k - 1  

to create candidate sets of size k
• Find candidate sets that are frequent


