

## Frequent Itemset and Association Rule Mining

Shantanu Jain

## Market Basket Analysis

#### Baskets of items

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Coke, Milk         |
| 2   | Beer, Bread               |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Coke, Diaper, Milk        |

Association Rules

{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

## The Market-Basket Model

| input. |                           |
|--------|---------------------------|
| TID    | Items                     |
| 1      | Bread, Coke, Milk         |
| 2      | Beer, Bread               |
| 3      | Beer, Coke, Diaper, Milk  |
| 4      | Beer, Bread, Diaper, Milk |
| 5      | Coke, Diaper, Milk        |

Immunt

Output:

Rules Discovered: {Milk} --> {Coke} {Diaper, Milk} --> {Beer}

- Items = products/goods; Itemset: any set of items. k-Itemset: a set of k items
- Basket/Transaction = set of items purchased by a customer at a given point in time.
- Brick and Mortar: Track purchasing habits
  - Chain stores have TBs of transaction data
  - Tie-in "tricks", e.g., sale on diapers + raise price of beer
  - Need the rule to occur frequently, or no \$\$'s
- Online: Might be able to make profit from infrequent, but strong association rules.

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

## Frequent Itemsets

- Simplest question: Find sets of items that appear together "frequently" in baskets
- Support *o(X)* for itemset *X*:
   Number of baskets containing all items in *X*
  - Fractional Support s(X) for itemset X:
     Fraction of baskets containing all items in X, σ(X)/N
- Given a support threshold σ<sub>min</sub>, then sets of items X that appear in at least σ(X) ≥ σ<sub>min</sub> baskets are called frequent itemsets

## Example: Frequent Itemsets

- Items = {milk, coke, pepsi, beer, juice}
- Baskets
  - $B_1 = \{m, c, b\}$  $B_2 = \{m, p, j\}$  $B_3 = \{m, b\}$  $B_4 = \{c, j\}$  $B_5 = \{m, c, b\}$  $B_6 = \{m, c, b, j\}$  $B_7 = \{c, b, j\}$  $B_8 = \{b, c\}$
- Itemsets with frequency  $\sigma(X) \ge 3$

{m}:5, {c}:6, {b}:6, {j}:4, {m,c}: 3, {m,b}:4, {c,b}:5, {c,j}:3, {m,c,b}:3

## Association Rules

- If-then rules about the contents of baskets
- $\{a_1, a_2, \dots, a_k\} \rightarrow \{b\}$  means: "if a basket contains all of  $a_1, \dots, a_k$  then it is *likely* to contain b"
- In practice there are many rules, want to find significant/interesting ones!
- Two measures of significance for purchase  $B=\{b\}$  given  $A=\{a_1,\ldots,a_k\}$

Support (fractional):  $s(A \cup B) = \sigma(A \cup B) / N$ 

**Confidence:**  $s(A \cup B) / s(A) = \sigma(A \cup B) / \sigma(A)$ 

## Interest of Association Rules

- Not all high-confidence rules are interesting
  - The rule A → milk may have high confidence because milk is just purchased very often (independent of A)
- Lift of a rule  $A \rightarrow B$ :

### Confidence and Interest

- $B_1 = \{m, c, b\}$  $B_2 = \{m, p, j\}$  $B_3 = \{m, b\}$  $B_4 = \{c, j\}$  $B_5 = \{m, c, b\}$  $B_6 = \{m, c, b, j\}$  $B_7 = \{c, b, j\}$  $B_8 = \{b, c\}$
- Association rule:  $\{m\} \rightarrow \{b\}$ 
  - Confidence = 4/5
  - Lift = 4/8 / (5/8 \* 6/8) = 1.06
    - Item *b* appears in 6/8 of the baskets
    - Rule is not very interesting!

## Other Applications

#### Baskets Items



- General view: Association rules predict links between "basket" nodes and "item" nodes
- What is a "basket" and what is an "item" can vary from application to application.

## Other Applications

#### Sentences Documents



#### **Plagiarism Detection**

- Baskets = sentences;
   Items = documents containing those sentences
  - Frequents sets of documents could indicate plagiarism
  - Notice items do not have to be "inside" baskets

## Other Applications

#### Patients Drugs/Effects Drug Side Effects



- Baskets = patients;
   Items = drugs & side-effects
  - Detect combinations of drugs that result in side-effects
  - *Requires extension:* Needs to store absence as well as presence

## Other Applications: Voting Records

| Association Rule                                                                                            | Confidence |
|-------------------------------------------------------------------------------------------------------------|------------|
| {budget resolution = no, MX-missile=no, aid to El Salvador = yes }                                          | 91.0%      |
| $\longrightarrow \{\text{Republican}\}$                                                                     |            |
| {budget resolution = yes, MX-missile=yes, aid to El Salvador = no }                                         | 97.5%      |
| $\longrightarrow \{\text{Democrat}\}$                                                                       |            |
| $\{\text{crime} = \text{yes}, \text{right-to-sue} = \text{yes}, \text{physician fee freeze} = \text{yes}\}$ | 93.5%      |
| $\longrightarrow \{\text{Republican}\}$                                                                     |            |
| $\{\text{crime} = \text{no}, \text{right-to-sue} = \text{no}, \text{physician fee freeze} = \text{no}\}$    | 100%       |
| $\longrightarrow \{Democrat\}$                                                                              |            |

- Baskets = politicians; Items = party & votes
  - Can extract set of votes most associated with each party (or or faction within a party)

## Up Next: Mining Association Rules

 $\{i_1,\ i_2,\ldots,i_k\} \to j$ 

- Problem: Find all association rules with support ≥s and confidence ≥c
  - Note: Support of an association  $A \to B$  rule is the support of  $A \cup B$
  - Hard part: Finding all frequent itemsets!
  - If  $\{i_1, i_2, ..., i_k\} \rightarrow j$  has high support and confidence, then  $\{i_1, i_2, ..., i_k\}$  and  $\{i_1, i_2, ..., i_k, j\}$  will be frequent

# Mining Frequent Itemsets with A-Priori

## Finding Frequent Item Sets

Given *I* products, how many possible item sets are there?



## Finding Frequent Item Sets

Answer: 2<sup>1</sup> - 1; Cannot enumerate all possible sets



## Intuition: A-priori Principle

Observation: Subsets of a frequent item set are also frequent



## Intuition: A-priori Principle

Corollary: If a set is not frequent, then its supersets are also not frequent



## A-priori Algorithm

Find all frequent sets of size k = 1
 (only have to check I possible sets)

2. For *k* = 2 ... *I* 

- Extend frequent sets of size k 1 to create candidate sets of size k
- Find candidate sets that are frequent