Mining Frequent Itemsets with A-Priori

## Market Basket Analysis

## Baskets of items



| TID | Items |
| :--- | :--- |
| 1 | Bread, Coke, Milk |
| 2 | Beer, Bread |
| 3 | Beer, Coke, Diaper, Milk |
| 4 | Beer, Bread, Diaper, Milk |
| 5 | Coke, Diaper, Milk |

## Association Rules

\{Milk\} --> \{Coke\}
\{Diaper, Milk\} --> \{Beer\}

## Finding Frequent Item Sets

## e the set of all items

$\Lambda=|I|$, how any possible :emsets are there?


## Finding Frequent Item Sets

Answer: $2^{M}-1$; Cannot enumerate all possible sets

adapted from: Tan, Steinbach \& Kumar, "Introduction to Data Mining", http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

## Anti-monotone Property

A function $f$ (defined on sets) is said to follow the anti-monotone property if

$$
\forall A, B \in 2^{I}: \quad A \subseteq B \Rightarrow f(A) \geq f(B)
$$

$I$ is the set of all items
$2^{I}$ denotes the power set of $I$
Support follows the anti-monotone property

$$
\sigma(A)=|\{t \in T: A \subset t\}|
$$

$$
N=\{0,1, \ldots, \infty
$$

set of natural nur
$T$ : the set of all tri

## Intuition: A-priori Principle

Observation: Subsets of a frequent item set are also frequent

adapted from: Tan, Steinbach \& Kumar, "Introduction to Data Mining", http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

## Intuition: A-priori Principle

川lary: If a set is not frequent, then its supersets are also not freq

adapted from: Tan, Steinbach \& Kumar, "Introduction to Data Mining", http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

## A-priori Algorithm

1. Find all frequent itemsets of size 1
(only have to check $M=|I|$ possible sets)
2. For $k=1,2, \ldots M$

- Extend frequent itemsets of size $k-1$ to create candidate itemsets of size $k$
- Find candidate sets that are frequent


## A-priori Algorithm

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: $k=1$.
2: $F_{k}=\{i \mid i \in I \wedge \sigma(\{i\}) \geq N \times$ minsup $\}$. $\quad$ \{Find all frequent 1-itemsets\}
3: repeat
4: $\quad k=k+1$.
5: $\quad C_{k}=\operatorname{apriori-gen}\left(F_{k-1}\right) . \quad$ \{Generate candidate itemsets\}
6: for each transaction $t \in T$ do
7: $\quad C_{t}=\operatorname{subset}\left(C_{k}, t\right) . \quad\{$ Identify all candidates that belong to $t\}$
8: $\quad$ for each candidate itemset $c \in C_{t}$ do
9: $\quad \sigma(c)=\sigma(c)+1 . \quad$ \{Increment support count $\}$
10: end for
11: end for
12: $\quad F_{k}=\left\{c \mid c \in C_{k} \wedge \sigma(c) \geq N \times\right.$ minsup $\} . \quad$ \{Extract the frequent $k$-itemsets $\}$
13: until $F_{k}=\emptyset$
14: Result $=\bigcup F_{k}$.

## tching Transactions to Candidate S

gorithm 6.1 Frequent itemset generation of the Apriori algorithm.

$$
\overline{k=1} .
$$

$F_{k}=\{i \mid i \in I \wedge \sigma(\{i\}) \geq N \times$ minsup $\} . \quad$ \{Find all frequent 1-itemsets $\}$ repeat
$k=k+1$.
$C_{k}=$ apriori-gen $\left(F_{k-1}\right) . \quad$ \{Generate candidate itemsets\}
for each transaction $t \in T$ do
$C_{t}=\operatorname{subset}\left(C_{k}, t\right) . \quad\{$ Identify all candidates that belong to $t\}$
for each candidate itemset $c \in C_{t}$ do
$\sigma(c)=\sigma(c)+1 . \quad\{$ Increment support count $\}$
end for
end for
$F_{k}=\left\{c \mid c \in C_{k} \wedge \sigma(c) \geq N \times\right.$ minsup $\} . \quad$ \{Extract the frequent $k$-itemsets $\}$
until $F_{k}=\emptyset$
Result $=\bigcup F_{k}$.

## Generating Candidates $C_{k}$

## Objectives

1. No Duplicates: A candidate itemsets must be unique.
2. Completeness: At least, all frequent kitemsets should be included.
3. No infrequent subsets: A candidate should not have any infrequent subset.

## Generating Candidates $C_{k}$

## stions

w many k-itemsets are there?
ow to reduce number of candidates using the computations 'eady performed?
$F_{k-1} \times F_{1}$ : combine frequent (k-1)-itemsets with frequent 1itemsets to get candidates of size $k$.

$$
\{a, b, c\} \cup\{d\}=\{a, b, c, d\}
$$

$F_{k-1} \times F_{k-1}$ : combine frequent (k-1)-itemsets with other freque ( $k$-1)-itemsets that differs in only 1 item to get candidates of sizı k.

$$
\{a, b, c\} \cup\{a, b, d\}=\{a, b, c, d\}
$$

## Generating Candidates $C_{k}$

## ıplicates

Combining sets arbitrary pairs of sets from $F_{k-1}$ and $F_{1}$ will lead to duplicate candidates

$$
\begin{aligned}
& \{a, b, c\} \cup\{d\}=\{a, b, c, d\} \\
& \{a, b, d\} \cup\{c\}=\{a, b, c, d\}
\end{aligned}
$$

# Each candidate of size 

 could be generated $k$ timesCombining sets arbitrary pairs of sets from $F_{k-1}$ will lead to duplicate candidates

$$
\begin{aligned}
& \{a, b, c\} \cup\{a, b, d\}=\{a, b, c, d\} \\
& \{a, b, c\} \cup\{a, c, d\}=\{a, b, c, d\}
\end{aligned}
$$

Each candidate of siz̄ could be generate


## Generating Candidates $C_{k}$

tion to duplicates
Sort the items

- Item ordering: Define an ordering on all items
- Either by assigning a unique id to each item. The items are ordered based on their ID.
- Or by a lexicographic ordering on the item string; e.g. 'coke' < 'cookie’
- Assume that the items in the itemsets in $F_{k-1}$ are sorted. $a_{1}<a_{2}<\ldots<a_{k}$ in $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$


## Generating Candidates $C_{k}$

'ion to duplicates
$\times F_{1}$ : Combine $A \in F_{k-1}$ and $B=\{b\} \in F_{1}$ only if $\forall a \in A \quad a<b$. ombine $\{a, c, e\}$ with $\{f\}$ to give candidate $\{a, c, e, f\}$.
o not combine $\{a, c, e\}$ with $\{d\}$.
o duplicates: Each candidate has only one way of being enerated. $\{a, c, e, f\}$ can only be generated by combining $\{a, c, e$ nd $\{f\}$.
ompleteness: If $\{a, c, e, f\}$ is indeed frequent, $\{a, c, e\}$ and $\{f\}$ hav ) be present in $F_{3}$ and $F_{1}$. And they would get combined to enerate $\{a, c, e, f\}$.
ubsets of generated candidates might still be infrequent

## Generating Candidates $C_{k}$

'ion to duplicates
$\times F_{k-1}$ : Combine $A \in F_{k-1}$ and $B \in F_{k-1}$ only if ${ }_{i}$ for $i=1,2 \ldots k-2$ and $a_{k-1}<b_{k-1}$.
ombine $\{a, c, e\}$ with $\{a, c, f\}$ to give candidate $\{a, c, e, f\}$.
o not combine $\{a, c, e\}$ with $\{a, b, e\}$.
o duplicates: Each candidate has only one way of being enerated. $\{a, c, e, f\}$ can only be generated by combining $\{a, c, e$ nd $\{a, c, f\}$.
ompleteness: If $\{a, c, e, f\}$ is indeed frequent, $\{a, c, e\}$ and $\{a, c, f\}$ ave to be present in $F_{3}$. And they would get combined to enerate $\{a, c, e, f\}$.
ubsets of generated candidates might still be infrequent

## Generating Candidates $C_{k}$

to efficiently find itemsets that could be combinec set Ordering: Use the ordering on items to define an ordering । sets
sume that the items in each itemset are presorted.
$<a_{2}<\ldots<a_{k}$ in $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$
$: B$ if $a_{i}<b_{i}$, where $i$ is the index of the first item differing in $A$ an ple, bread, coke, sauce $\}<\{$ apple, bread, cookie, milk $\}$ or $\{4,7,21,50\}<\{4,7$
ements of $F_{k-1}$ sorted with the itemset ordering

$$
\{a, b, c\},\{a, b, e\},\{a, b, g\},\{a, c, d\},\{a, c, g\} \ldots
$$

$b, c\}$ can't be combined with any iset beyond $\{a, b, g\}$. So no need

Without exploiting the itemset to compare beyond $\{a, c, d\}$

## Generating Candidates $C_{k}$

7g candidates with infrequent subsets כr a candidate of size $k$, one only needs to check lbsets of size $k-1$.
numerate subsets of size $k-1$ by removing one ement at a time from the candidate.
earch for the subsets one after the other in $F_{k-1}$ until subset is not found or the list of subsets is exhausted Binary search could be performed if $F_{k-1}$ is sorted

Each candida will give $k$ sul size $k-1$ under the itemset ordering for an efficient search. Alternatively a hash tree could be build to store the itemsets of $F_{k-1}$ for an efficient search. a subset wasn't found the candidate should be iscarded.

## Generating Candidates $C_{k}$

Self-joining: Find pairs of sets in $\mathrm{F}_{\mathrm{k}-1}$ that have first $k-2$ items in common and differ by one element.
Pruning: Remove all candidates with infrequent subsets

## Example: Generating Candidates $C_{k}$

əquent itemsets of size 2 :
,c\}:5, \{b,m\}:4,\{c,j\}:3 \{c,m\}:3
эlf-joining:
,c,m\}, \{c,j,m\}
uning:
j,m) since fj,m) not frequent эquent items of size 3:
, c, m\}

$$
\begin{array}{ll}
B_{1}=\{b, c, m\} & B_{2}=\{j, \\
B_{3}=\{b, m\} & B_{4}=\{c, \\
B_{5}=\{b, c, m\} & B_{6}=\{c \\
B_{7}=\{b, c, j\} & B_{8}=\{c
\end{array}
$$

## tching Transactions to Candidate S

gorithm 6.1 Frequent itemset generation of the Apriori algorithm.

$$
k=1 .
$$

$F_{k}=\{i \mid i \in I \wedge \sigma(\{i\}) \geq N \times$ minsup $\} . \quad$ \{Find all frequent 1-itemsets $\}$ repeat
$k=k+1$.
$C_{k}=\operatorname{apriori}-\operatorname{gen}\left(F_{k-1}\right) . \quad$ \{Generate candidate itemsets\}
for each transaction $t \in T$ do
$C_{t}=\operatorname{subset}\left(C_{k}, t\right) . \quad\{$ Identify all candidates that belong to $t\}$
for each candidate itemset $c \in C_{t}$ do

$$
\sigma(c)=\sigma(c)+1 . \quad\{\text { Increment support count }\}
$$

end for
end for
$F_{k}=\left\{c \mid c \in C_{k} \wedge \sigma(c) \geq N \times\right.$ minsup $\} . \quad$ \{Extract the frequent $k$-itemsets $\}$
until $F_{k}=\emptyset$
Result $=\bigcup F_{k}$.

## A-priori Algorithm

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: $k=1$.
2: $F_{k}=\{i \mid i \in I \wedge \sigma(\{i\}) \geq N \times$ minsup $\}$. $\quad$ \{Find all frequent 1-itemsets\}
3: repeat
4: $\quad k=k+1$.
5: $\quad C_{k}=\operatorname{apriori-gen}\left(F_{k-1}\right) . \quad$ \{Generate candidate itemsets\}
6: for each transaction $t \in T$ do
7: $\quad C_{t}=\operatorname{subset}\left(C_{k}, t\right) . \quad\{$ Identify all candidates that belong to $t\}$
8: $\quad$ for each candidate itemset $c \in C_{t}$ do
9: $\quad \sigma(c)=\sigma(c)+1 . \quad$ \{Increment support count $\}$
10: end for
11: end for
12: $\quad F_{k}=\left\{c \mid c \in C_{k} \wedge \sigma(c) \geq N \times\right.$ minsup $\} . \quad$ \{Extract the frequent $k$-itemsets $\}$
13: until $F_{k}=\emptyset$
14: Result $=\bigcup F_{k}$.

## oblem: Naive Matching is Expensii

$)(\mathrm{N} M)$, where N is number of baskets and M is number of canc


## :egy 1: Enumerating Transaction Sul

Given a transaction t, what are the possible subsets of size 3 ?

Transaction, t
(items are sorted)


## Hash Tree for Itemsets



15 candidate 3-itemsets, distributed across 9 leaf nodes

## Hash Tree for Itemsets



15 candidate 3 -itemsets, distributed across 9 leaf nodes

## Strategy 2: Hashing Itemsets



15 candidate 3-itemsets, distributed across 9 leaf nodes

## Strategy 2: Hash Tree for Candidates



## Strategy 2: Hash Tree for Candidates



## Strategy 2: Hash Tree for Candidates



## A-priori Algorithm

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: $k=1$.
2: $F_{k}=\{i \mid i \in I \wedge \sigma(\{i\}) \geq N \times$ minsup $\}$. $\quad$ \{Find all frequent 1-itemsets\}
3: repeat
4: $\quad k=k+1$.
5: $\quad C_{k}=\operatorname{apriori-gen}\left(F_{k-1}\right) . \quad$ \{Generate candidate itemsets\}
6: for each transaction $t \in T$ do
7: $\quad C_{t}=\operatorname{subset}\left(C_{k}, t\right) . \quad\{$ Identify all candidates that belong to $t\}$
8: $\quad$ for each candidate itemset $c \in C_{t}$ do
9: $\quad \sigma(c)=\sigma(c)+1 . \quad$ \{Increment support count $\}$
10: end for
11: end for
12: $\quad F_{k}=\left\{c \mid c \in C_{k} \wedge \sigma(c) \geq N \times\right.$ minsup $\} . \quad$ \{Extract the frequent $k$-itemsets $\}$
13: until $F_{k}=\emptyset$
14: Result $=\bigcup F_{k}$.

## Rule Generation

эms of each frequent itemset $Y$ can be partitioned into the onsequent and the the antecedent to give a rule. For an $X \subset Y$

$$
X \rightarrow Y-X
$$

$=\{a, b, c\}$ could give the six rule $\{a, b\} \rightarrow\{c\},\{a, c\} \rightarrow\{b\}$,
), c\} $\rightarrow\{a\},\{a\} \rightarrow\{b, c\},\{b\} \rightarrow\{a, c\},\{c\} \rightarrow\{a, b\}$.
frequent $k$-itmeset can potentially give to $2^{k}-2$ rules. ot all rules are confident

$$
C(X \rightarrow Y-X)=\sigma(Y) / \sigma(X)<\text { minconf }
$$

$X$ is also frequent by antimonotonicity. However, the rule might not meet the minimum confidence threshold. ow to find confident association rule without enumerating them all?

## Tue

## ə Pruning

Theorem 6.2. If a rule $X \longrightarrow Y-X$ does not satisfy the confidence threshold, then any rule $X^{\prime} \longrightarrow Y-X^{\prime}$, where $X^{\prime}$ is a subset of $X$, must not satisfy the confidence threshold as well.


Figure 6.15. Pruning of association rules using the confidence measure.

## Rule Generation

```
Algorithm 6.2 Rule generation of the Apriori algorithm.
    1: for each frequent \(k\)-itemset \(f_{k}, k \geq 2\) do
    2: \(\quad H_{1}=\left\{i \mid i \in f_{k}\right\} \quad\{1\)-item consequents of the rule. \(\}\)
    3: call ap-genrules \(\left(f_{k}, H_{1}\right.\).
    4: end for
```

```
Algorithm 6.3 Procedure ap-genrules \(\left(f_{k}, H_{m}\right)\).
    1: \(k=\left|f_{k}\right| \quad\) \{size of frequent itemset.\}
    2: \(m=\left|H_{m}\right| \quad\) \{size of rule consequent.\}
    3: if \(k>m+1\) then
    4: \(\quad H_{m+1}=\operatorname{apriori}-g e n\left(H_{m}\right)\).
    5: for each \(h_{m+1} \in H_{m+1}\) do
    6: \(\quad\) con \(f=\sigma\left(f_{k}\right) / \sigma\left(f_{k}-h_{m+1}\right)\).
    7: \(\quad\) if \(\operatorname{con} f \geq \operatorname{mincon} f\) then
        output the rule \(\left(f_{k}-h_{m+1}\right) \longrightarrow h_{m+1}\).
        else
            delete \(h_{m+1}\) from \(H_{m+1}\).
            end if
            end for
            call ap-genrules \(\left(f_{k}, H_{m+1}\right.\).)
        end if
```


## Compacting the Output

umber of frequent item can be exponential in lumber of items.
it be useful to work with pact representations imal frequent itemsets: nmediate superset is dent
es more pruning


Figure 6.16. Maximal frequent itemset.

## Compacting the Output

## equent itemsets:

nediate superset has same
not only frequent ation, but exact counts iunts of non-closed frequent zan be obtained as the um of its closed frequent ;et
dant association rules are nerated if using closed nt itemsets.
$\rightarrow\{a\}$ and $\{b, c\} \rightarrow\{a\}$ will have the same support and confidence
 ause $\{b\}$ is not closed, but $\{b, c\}$ is

## Example: Maximal vs Closed

$$
\begin{array}{ll}
B_{1}=\{m, c, b\} & B_{2}=\{m, p, j\} \\
B_{3}=\{m, b\} & B_{4}=\{c, j\} \\
B_{5}=\{m, c, b\} & B_{6}=\{m, c, b, j\} \\
B_{7}=\{c, b, j\} & B_{8}=\{b, c\}
\end{array}
$$

Frequent itemsets:
\{m\}:5, \{c\}:6, \{b\}:6, \{j\}:4,
$\{m, c\}: 3,\{m, b\}: 4,\{c, b\}: 5,\{c, j\}: 3$,
Closed
\{m,c,b\}:3

## Example: Maximal vs Closed



