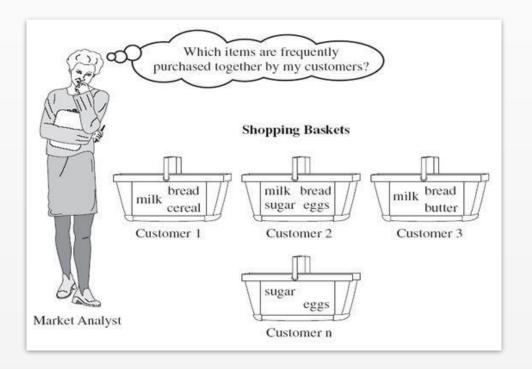
Mining Frequent Itemsets with A-Priori

Market Basket Analysis



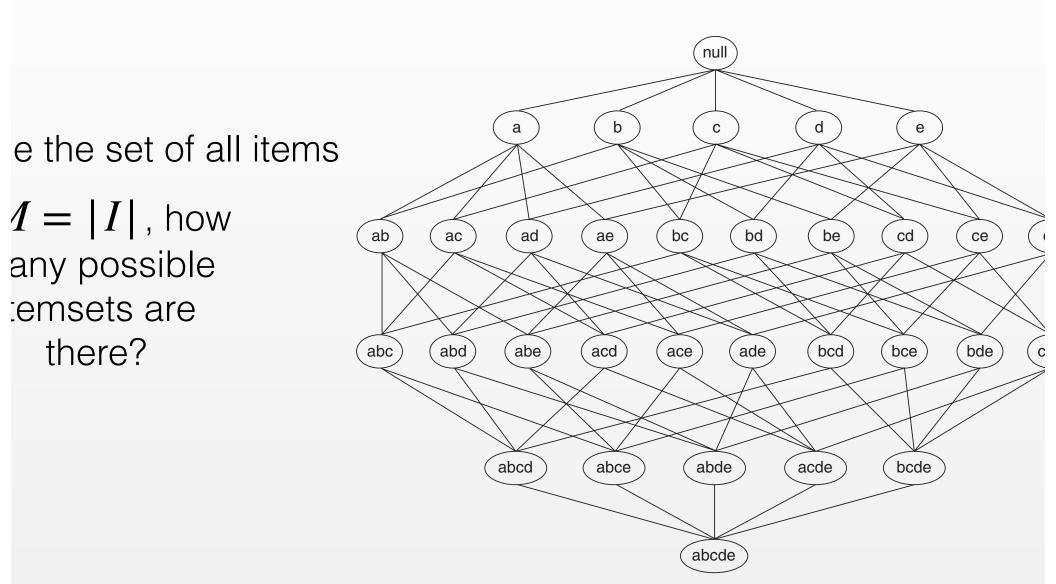
Baskets of items

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Association Rules

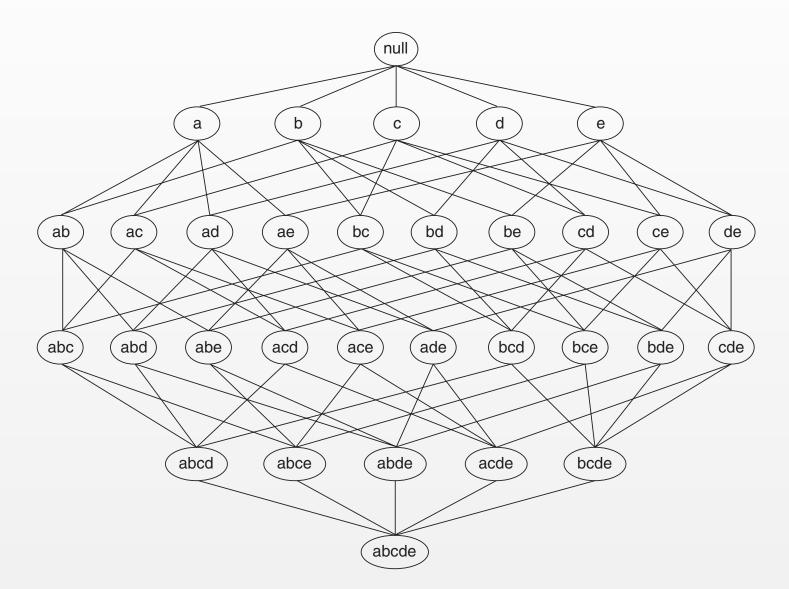
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}

Finding Frequent Item Sets



Finding Frequent Item Sets

Answer: $2^M - 1$; Cannot enumerate all possible sets



Anti-monotone Property

A function f (defined on sets) is said to follow the anti-monotone property if

$$\forall A, B \in 2^{I}: \quad A \subseteq B \Rightarrow f(A) \ge f(B)$$

I is the set of all items 2^{I} denotes the power set of I

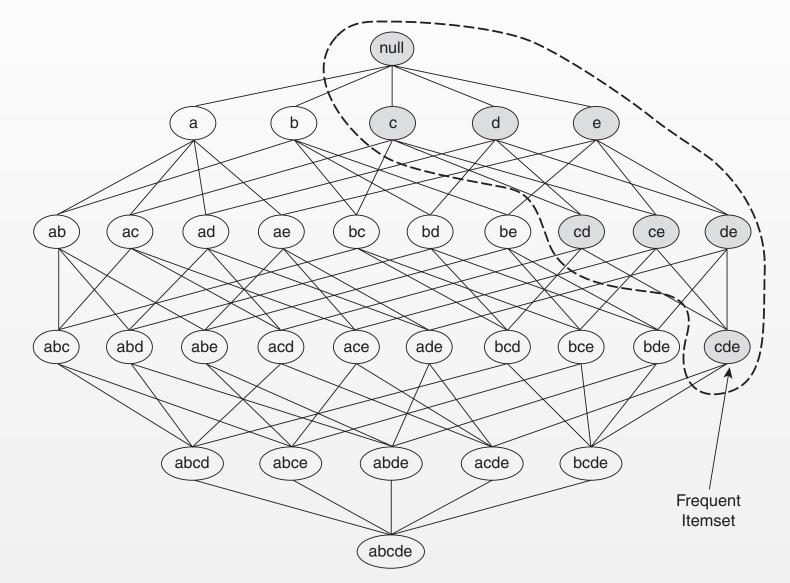
Support follows the anti-monotone property

$$\sigma(A) = |\{t \in T : A \subset t\}|$$

 $\sigma: 2^{I} \to \mathbb{N}$ $N = \{0, 1, \dots, \infty$ set of natural nurT: the set of all tra

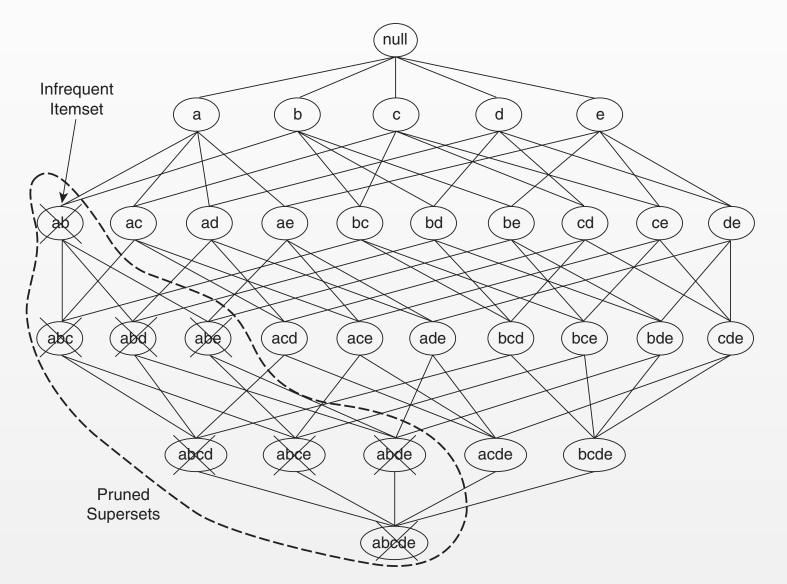
Intuition: A-priori Principle

Observation: Subsets of a frequent item set are **also** frequent



Intuition: A-priori Principle

Ilary: If a set is **not** frequent, then its supersets are **also** not freq



adapted from: Tan, Steinbach & Kumar, "Introduction to Data Mining", http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

A-priori Algorithm

- Find all frequent itemsets of size 1

 (only have to check M = |I| possible sets)

 For k = 1,2,...M
 - Extend frequent itemsets of size k 1 to create *candidate* itemsets of size k
 - Find candidate sets that are frequent

A-priori Algorithm

Algorithm 6.1 Frequent itemset generation of the *Apriori* algorithm. 1: k = 1. 2: $F_k = \{ i \mid i \in I \land \sigma(\{i\}) \ge N \times minsup \}.$ {Find all frequent 1-itemsets} 3: repeat Interpret minsup as a fraction here 4: k = k + 1. 5: $C_k = \operatorname{apriori-gen}(F_{k-1}).$ {Generate candidate itemsets} **for** each transaction $t \in T$ do 6: $C_t = \text{subset}(C_k, t).$ {Identify all candidates that belong to t} 7: for each candidate itemset $c \in C_t$ do 8: $\sigma(c) = \sigma(c) + 1. \quad \{\text{Increment support count}\}\$ **9**: end for 10: end for 11:

12:
$$F_k = \{ c \mid c \in C_k \land \sigma(c) \ge N \times minsup \}.$$
 {Extract the frequent k-itemsets}
13: **until** $F_k = \emptyset$
14: Result = $\bigcup F_k$.

tching Transactions to Candidate S

gorithm 6.1 Frequent itemset generation of the Apriori algorithm.

k = 1. $F_k = \{ i \mid i \in I \land \sigma(\{i\}) \ge N \times minsup \}.$ {Find all frequent 1-itemsets} repeat k = k + 1. $C_k = \operatorname{apriori-gen}(F_{k-1}).$ {Generate candidate itemsets} for each transaction $t \in T$ do $C_t = \text{subset}(C_k, t).$ {Identify all candidates that belong to t} for each candidate itemset $c \in C_t$ do $\sigma(c) = \sigma(c) + 1. \quad \{\text{Increment support count}\}\$ end for end for $F_k = \{ c \mid c \in C_k \land \sigma(c) \ge N \times minsup \}.$ {Extract the frequent k-itemsets} until $F_k = \emptyset$ Result = $\bigcup F_k$.

Objectives

- 1. No Duplicates: A candidate itemsets must be unique.
- 2. Completeness: At least, all frequent kitemsets should be included.
- *3.* **No infrequent subsets**: A candidate should not have any infrequent subset.

stions

w many k-itemsets are there?

w to reduce number of candidates using the computations ready performed?

 $F_{k-1} \times F_1$: combine frequent (k-1)-itemsets with frequent 1-itemsets to get candidates of size k.

 $\{a, b, c\} \cup \{d\} = \{a, b, c, d\}$

 $\begin{aligned} F_{k-1} \times F_{k-1}: \text{ combine frequent } (k-1)-\text{ itemsets with other freque} \\ (k-1)-\text{ itemsets that differs in only 1 item to get candidates of size} \\ k. \\ & \{a,b,c\} \cup \{a,b,d\} = \{a,b,c,d\} \end{aligned}$

ıplicates

Combining sets arbitrary pairs of sets from F_{k-1} and F_1 will lead to duplicate candidates $\{a, b, c\} \cup \{d\} = \{a, b, c, d\}$ $\{a, b, d\} \cup \{c\} = \{a, b, c, d\}$ Each candidate of size could be generated k times

Combining sets arbitrary pairs of sets from F_{k-1} will lead to duplicate candidates

$$\{a, b, c\} \cup \{a, b, d\} = \{a, b, c, d\}$$
$$\{a, b, c\} \cup \{a, c, d\} = \{a, b, c, d\}$$

Each candidate of siz could be generate $\binom{k}{k-2}$ times

tion to duplicates

Sort the items

- Item ordering: Define an ordering on all items
 - Either by assigning a unique id to each item. The items are ordered based on their ID.
 - Or by a lexicographic ordering on the item string; e.g.
 'coke' < 'cookie'
- Assume that the items in the itemsets in F_{k-1} are sorted. $a_1 < a_2 < \ldots < a_k$ in $A = \{a_1, a_2, \ldots, a_k\}$

ID based have co advar compar is che compa

tion to duplicates

× F_1 : Combine $A \in F_{k-1}$ and $B = \{b\} \in F_1$ only if $\forall a \in A$ a < b. Formbine $\{a, c, e\}$ with $\{f\}$ to give candidate $\{a, c, e, f\}$. To not combine $\{a, c, e\}$ with $\{d\}$. Or duplicates: Each candidate has only one way of being

enerated. $\{a, c, e, f\}$ can only be generated by combining $\{a, c, e\}$ nd $\{f\}$.

completeness: If $\{a, c, e, f\}$ is indeed frequent, $\{a, c, e\}$ and $\{f\}$ hav be present in F_3 and F_1 . And they would get combined to enerate $\{a, c, e, f\}$.

ubsets of generated candidates might still be infrequent

Generating Candidates C_k

Combine

k-2 items

are the san

than tha

last element

tion to duplicates

- × F_{k-1} : Combine $A \in F_{k-1}$ and $B \in F_{k-1}$ only if *i*, for i = 1, 2...k - 2 and $a_{k-1} < b_{k-1}$.
- ombine $\{a, c, e\}$ with $\{a, c, f\}$ to give candidate $\{a, c, e, f\}$. o not combine $\{a, c, e\}$ with $\{a, b, e\}$.
- o duplicates: Each candidate has only one way of being enerated. $\{a, c, e, f\}$ can only be generated by combining $\{a, c, e, f\}$ nd $\{a, c, f\}$.
- **completeness:** If $\{a, c, e, f\}$ is indeed frequent, $\{a, c, e\}$ and $\{a, c, f\}$ ave to be present in F_3 . And they would get combined to enerate $\{a, c, e, f\}$.
- ubsets of generated candidates might still be infrequent

Generating Candidates C_k

to efficiently find itemsets that could be combined

set Ordering: Use the ordering on items to define an ordering (

sume that the items in each itemset are presorted.

 $< a_2 < ... < a_k$ in $A = \{a_1, a_2, ..., a_k\}$ < B if $a_i < b_i$, where i is the index of the first item differing in A and ople, bread, coke, sauce} $< \{apple, bread, cookie, milk\}$ or $\{4,7,21,50\} < \{4,7,21,50\}$

ements of F_{k-1} sorted with the itemset ordering $\{a, b, c\}, \{a, b, e\}, \{a, b, g\}, \{a, c, d\}, \{a, c, g\}...$

b, c can't be combined with any set beyond $\{a, b, g\}$. So no need to compare beyond $\{a, c, d\}$

k-1

Without exploiting the itemset $|F_{k-1}|(|F_{k-1}| - 1)/2 \operatorname{comp}$ need to be made

If all size k-1

are frequent s

subsets of sm

Each candida

will give k sub

size k-1

ng candidates with infrequent subsets

- or a candidate of size k, one only needs to check ubsets of size k-1.
- numerate subsets of size k 1 by removing one ement at a time from the candidate.
- earch for the subsets one after the other in F_{k-1} until $O(k|F_{k-1}|)$ subset is not found or the list of subsets is exhausted might be ne Binary search could be performed if F_{k-1} is sorted under the itemset ordering for an efficient search. Alternatively a hash tree could be build to store the itemsets of F_{k-1} for an efficient search. a subset wasn't found the candidate should be iscarded.

- Self-joining: Find pairs of sets in F_{k-1} that have first k 2 items in common and differ by **one** element.
- *Pruning:* Remove all candidates with infrequent subsets

Example: Generating Candidates C_k

- *equent itemsets of size 2:* ,c}:5, {b,m}:4,{c,j}:3 {c,m}:3
- *elf-joining:* ,c,m}, {c,j,m}

uning: j,m} since {j,m} not frequent

- equent items of size 3:
- ɔ,c,m}

- $B_1 = \{b, c, m\}$ $B_2 = \{j, k\}$
- $B_3 = \{b, m\}$ $B_4 = \{c, d\}$
- $B_5 = \{b, c, m\}$ $B_6 = \{b, c, m\}$
- $B_7 = \{b, c, j\}$ $B_8 = \{b, c, j\}$

tching Transactions to Candidate S

gorithm 6.1 Frequent itemset generation of the Apriori algorithm.

k = 1. $F_k = \{ i \mid i \in I \land \sigma(\{i\}) \ge N \times minsup \}.$ {Find all frequent 1-itemsets} repeat k = k + 1. $C_k = \operatorname{apriori-gen}(F_{k-1}).$ {Generate candidate itemsets} for each transaction $t \in T$ do $C_t = \text{subset}(C_k, t).$ {Identify all candidates that belong to t} for each candidate itemset $c \in C_t$ do $\sigma(c) = \sigma(c) + 1. \quad \{\text{Increment support count}\}\$ end for end for $F_k = \{ c \mid c \in C_k \land \sigma(c) \ge N \times minsup \}.$ {Extract the frequent k-itemsets} until $F_k = \emptyset$ Result = $\bigcup F_k$.

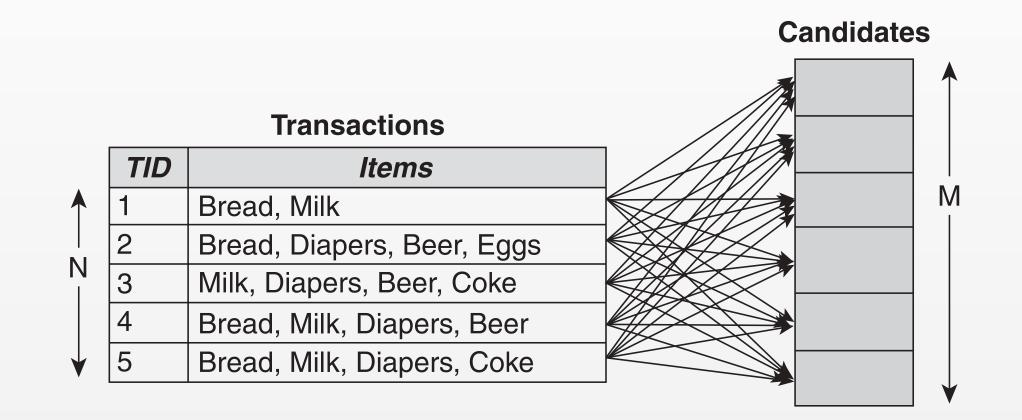
A-priori Algorithm

Algorithm 6.1 Frequent itemset generation of the *Apriori* algorithm. 1: k = 1. 2: $F_k = \{ i \mid i \in I \land \sigma(\{i\}) \ge N \times minsup \}.$ {Find all frequent 1-itemsets} 3: repeat Interpret minsup as a fraction here 4: k = k + 1. 5: $C_k = \operatorname{apriori-gen}(F_{k-1}).$ {Generate candidate itemsets} **for** each transaction $t \in T$ do 6: $C_t = \text{subset}(C_k, t).$ {Identify all candidates that belong to t} 7: for each candidate itemset $c \in C_t$ do 8: $\sigma(c) = \sigma(c) + 1. \quad \{\text{Increment support count}\}\$ **9**: end for 10: end for 11:

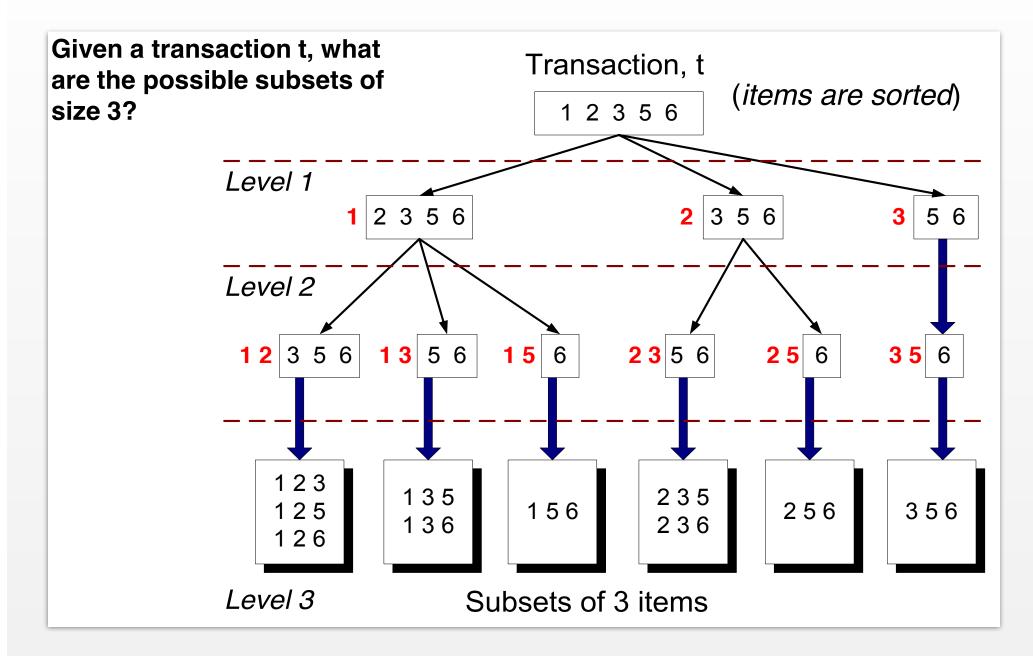
12:
$$F_k = \{ c \mid c \in C_k \land \sigma(c) \ge N \times minsup \}.$$
 {Extract the frequent k-itemsets}
13: **until** $F_k = \emptyset$
14: Result = $\bigcup F_k$.

oblem: Naive Matching is Expensiv

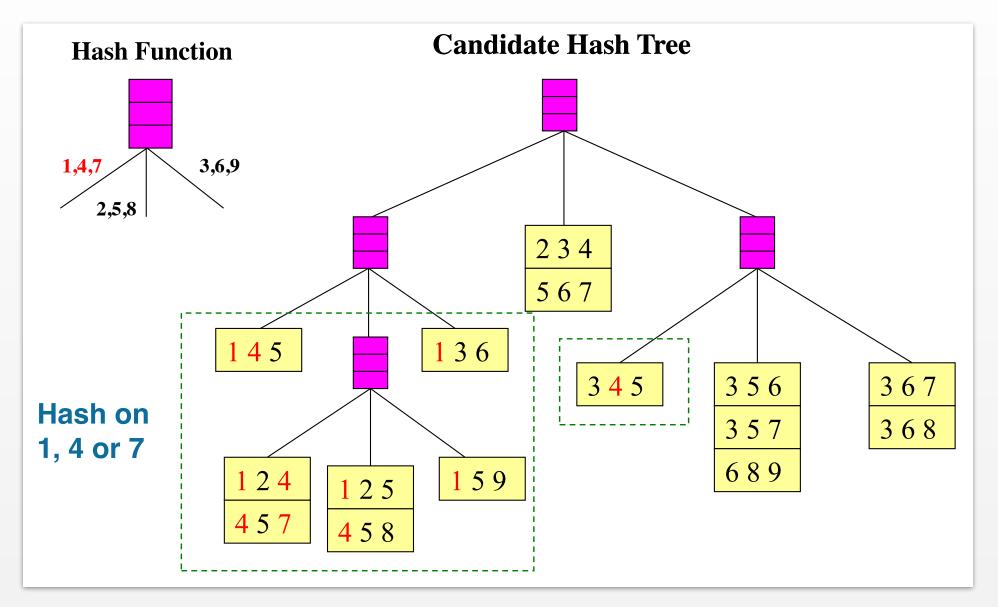
D(N M), where N is number of baskets and M is number of canc



egy 1: Enumerating Transaction Sub

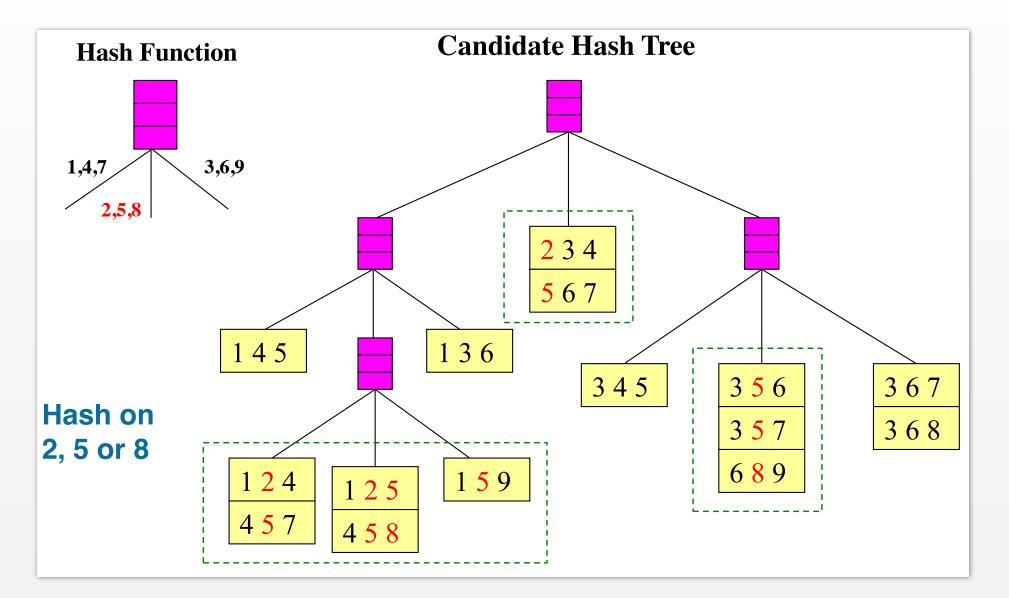


Hash Tree for Itemsets



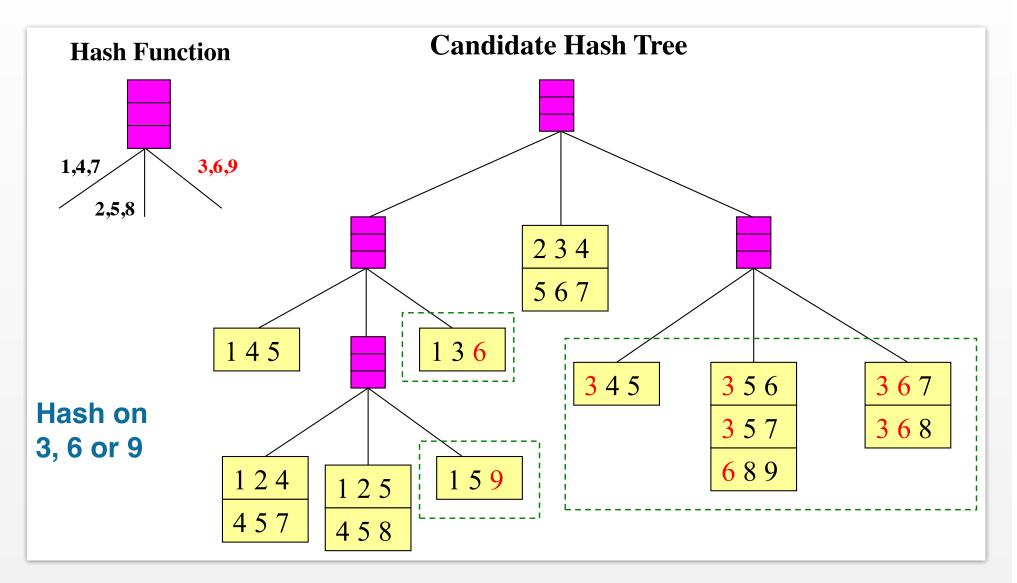
15 candidate 3-itemsets, distributed across 9 leaf nodes

Hash Tree for Itemsets



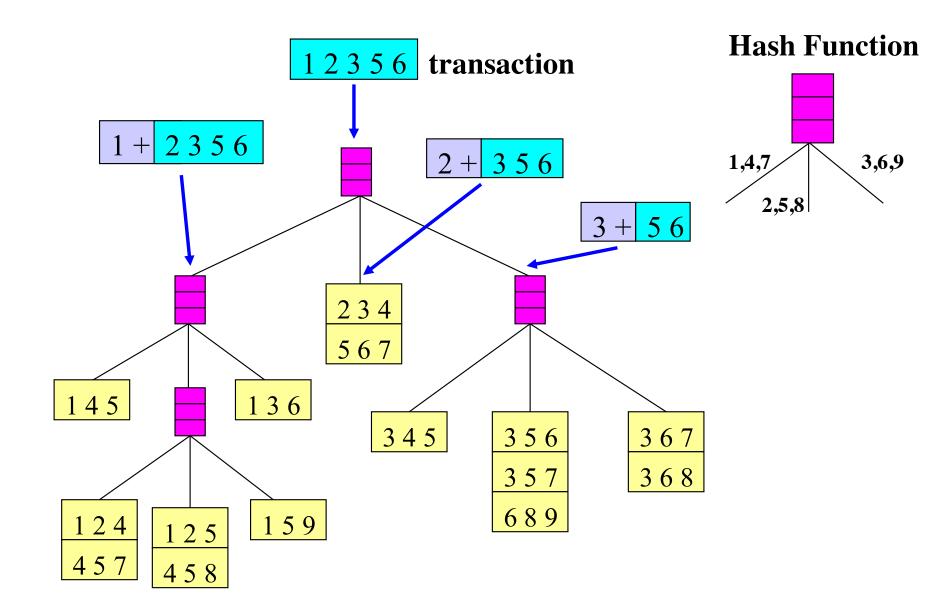
15 candidate 3-itemsets, distributed across 9 leaf nodes

Strategy 2: Hashing Itemsets

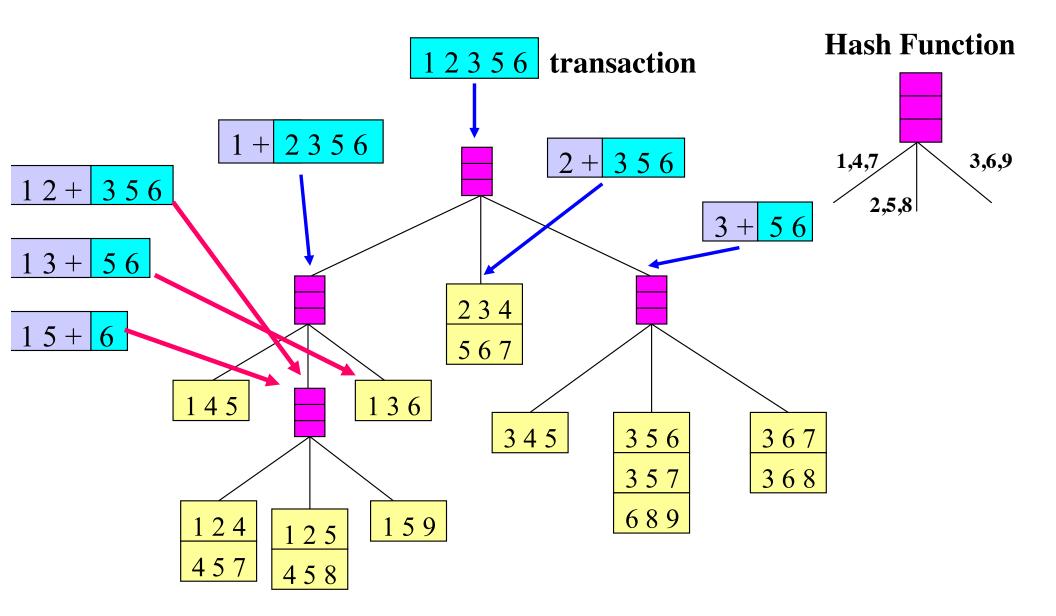


15 candidate 3-itemsets, distributed across 9 leaf nodes

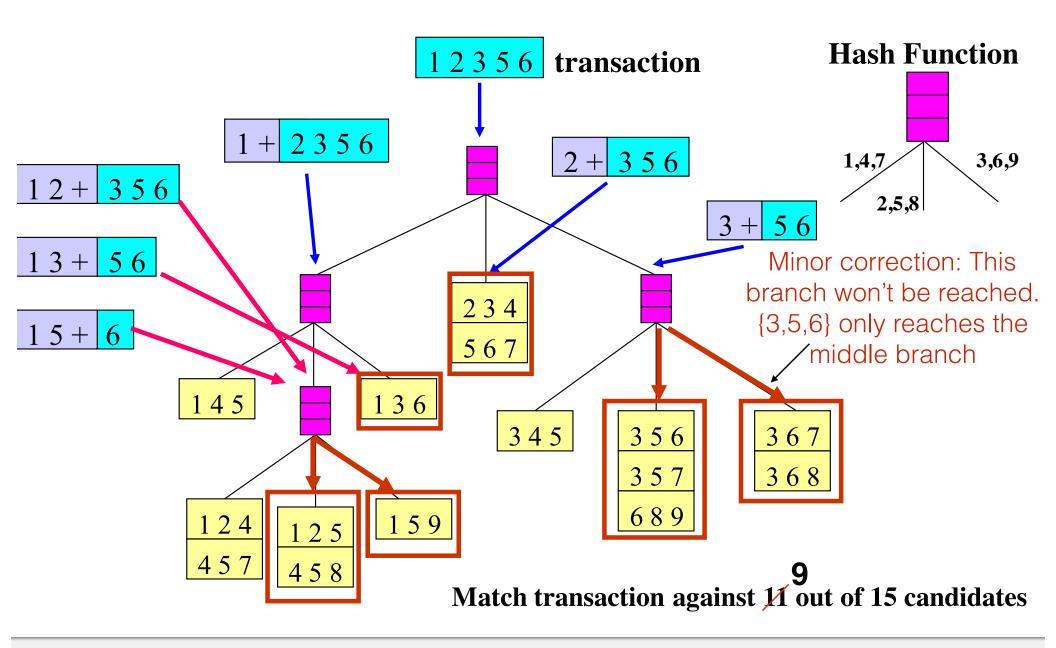
Strategy 2: Hash Tree for Candidates



Strategy 2: Hash Tree for Candidates



Strategy 2: Hash Tree for Candidates



A-priori Algorithm

Algorithm 6.1 Frequent itemset generation of the *Apriori* algorithm. 1: k = 1. 2: $F_k = \{ i \mid i \in I \land \sigma(\{i\}) \ge N \times minsup \}.$ {Find all frequent 1-itemsets} 3: repeat Interpret minsup as a fraction here 4: k = k + 1. 5: $C_k = \operatorname{apriori-gen}(F_{k-1}).$ {Generate candidate itemsets} **for** each transaction $t \in T$ do 6: $C_t = \text{subset}(C_k, t).$ {Identify all candidates that belong to t} 7: for each candidate itemset $c \in C_t$ do 8: $\sigma(c) = \sigma(c) + 1. \quad \{\text{Increment support count}\}\$ **9**: end for 10: end for 11:

12:
$$F_k = \{ c \mid c \in C_k \land \sigma(c) \ge N \times minsup \}.$$
 {Extract the frequent k-itemsets}
13: **until** $F_k = \emptyset$
14: Result = $\bigcup F_k$.

Rule Generation

ems of each frequent itemset Y can be partitioned into the consequent and the the antecedent to give a rule. For an $X \subset Y$

$$X \to Y - X$$

= {a, b, c} could give the six rule {a, b} \rightarrow {c}, {a, c} \rightarrow {b}, , c} \rightarrow {a}, {a} \rightarrow {b, c}, {b} \rightarrow {a, c}, {c} \rightarrow {a, b}. frequent k-itmeset can potentially give to $2^k - 2$ rules. ot all rules are confident Y k it conse rema bee antecee

Pick a

 $Y \to Q$

$C(X \rightarrow Y - X) = \sigma(Y)/\sigma(X) < \text{minconf}$

X is also frequent by antimonotonicity. However, the rule might not meet the minimum confidence threshold.

ow to find confident association rule without enumerating them all?

Rule Generation

Theorem 6.2. If a rule $X \longrightarrow Y - X$ does not satisfy the confidence threshold, then any rule $X' \longrightarrow Y - X'$, where X' is a subset of X, must not satisfy the confidence threshold as well.

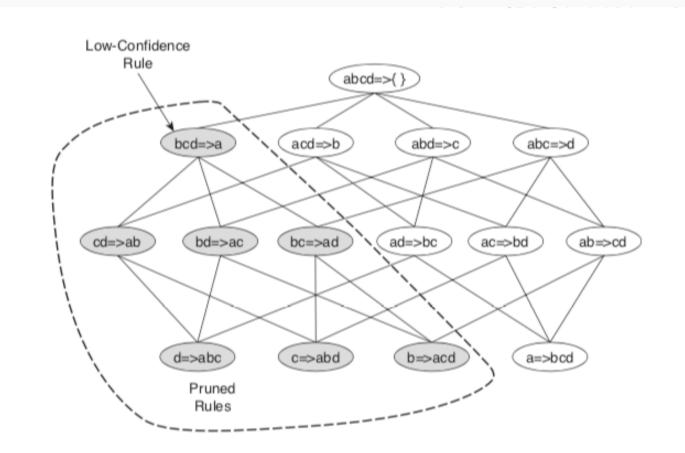


Figure 6.15. Pruning of association rules using the confidence measure.

Rule Generation

Algorithm 6.2 Rule generation of the Apriori algorithm.

- 1: for each frequent k-itemset $f_k, k \ge 2$ do
- 2: $H_1 = \{i \mid i \in f_k\}$ {1-item consequents of the rule.}
- 3: call ap-genrules $(f_k, H_1.)$
- 4: **end for**

Algorithm 6.3 Procedure $ap-genrules(f_k, H_m)$.

1: $k = |f_k|$ {size of frequent itemset.} 2: $m = |H_m|$ {size of rule consequent.} 3: if k > m + 1 then $H_{m+1} = \operatorname{apriori-gen}(H_m).$ 4: for each $h_{m+1} \in H_{m+1}$ do 5: $conf = \sigma(f_k) / \sigma(f_k - h_{m+1}).$ 6: if $conf \ge minconf$ then 7: **output** the rule $(f_k - h_{m+1}) \longrightarrow h_{m+1}$. 8: else 9: delete h_{m+1} from H_{m+1} . 10:end if 11: end for 12:**call** ap-genrules (f_k, H_{m+1}) 13:14: end if

Compacting the Output

- umber of frequent item can be exponential in number of items.
- nt be useful to work with pact representations
- imal frequent itemsets: mmediate superset is Jent

es more pruning

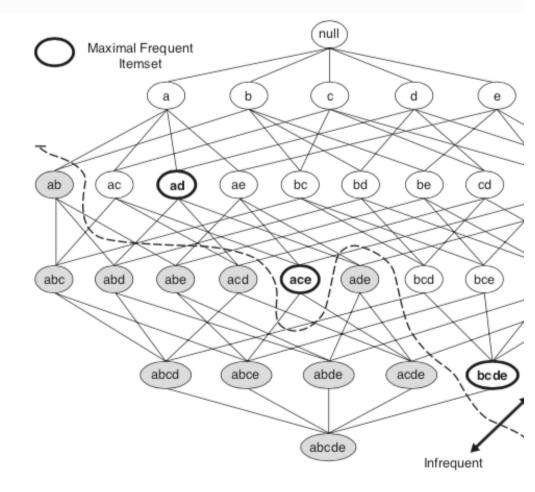
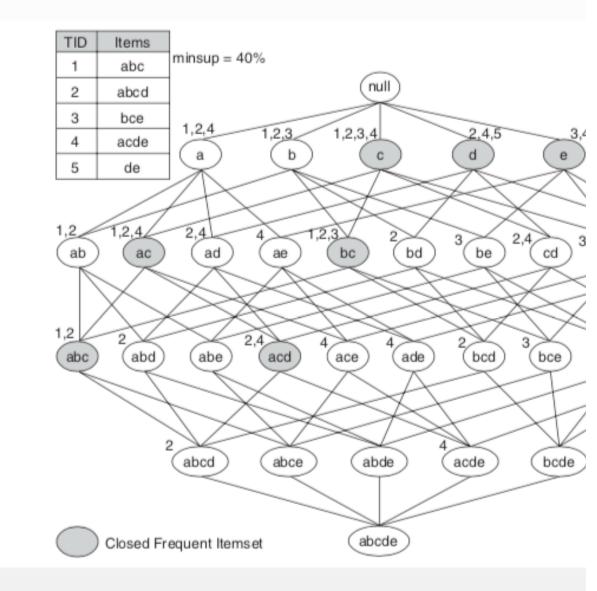


Figure 6.16. Maximal frequent itemset.

Compacting the Output

requent itemsets:

- nediate superset has same
- not only frequent ation, but exact counts
- ounts of non-closed frequent can be obtained as the um of its closed frequent set
- dant association rules are nerated if using closed nt itemsets.
- \rightarrow {*a*} and {*b*, *c*} \rightarrow {*a*} will have the same support and confidence ause {*b*} is not closed, but {*b*, *c*} is



Example: Maximal vs Closed

 $B_{1} = \{m, c, b\} \qquad B_{2} = \{m, p, j\}$ $B_{3} = \{m, b\} \qquad B_{4} = \{c, j\}$ $B_{5} = \{m, c, b\} \qquad B_{6} = \{m, c, b, j\}$ $B_{7} = \{c, b, j\} \qquad B_{8} = \{b, c\}$

Frequent itemsets:

 $\{m\}:5, \{c\}:6, \{b\}:6, \{j\}:4, Closed \\ \{m,c\}:3, \{m,b\}:4, \{c,b\}:5, \{c,j\}:3, Maximal \\ \{m,c,b\}:3$

Example: Maximal vs Closed

