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Figure 6.1. An itemset lattice.

6.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 6.1 shows an itemset lattice for I = {a, b, c, d, e}. In general, a data set
that contains k items can potentially generate up to 2k − 1 frequent itemsets,
excluding the null set. Because k can be very large in many practical appli-
cations, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
support count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 6.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive because it requires
O(NMw) comparisons, where N is the number of transactions, M = 2k − 1 is
the number of candidate itemsets, and w is the maximum transaction width.

If  , how 
many possible 
itemsets are 

there?

M = | I |

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Let   be the set of all itemsI
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adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Answer:  ; Cannot enumerate all possible sets 2M − 1



Anti-monotone Property

 ∀A, B ∈ 2I : A ⊆ B ⇒ f(A) ≥f(B)

A function   (defined on sets) is said to follow 
the anti-monotone property if

f

  is the set of all items 
  denotes the power set of  
I
2I I

Support follows the anti-monotone property
 σ : 2I → N
 , the 
set of natural numbers
N = {0,1,…, ∞} σ(A) = |{t ∈ T : A ⊂t} |
 : the set of all transactionsT
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Figure 6.3. An illustration of the Apriori principle. If {c, d, e} is frequent, then all subsets of this

itemset are frequent.

Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets
must be infrequent too. As illustrated in Figure 6.4, the entire subgraph
containing the supersets of {a, b} can be pruned immediately once {a, b} is
found to be infrequent. This strategy of trimming the exponential search
space based on the support measure is known as support-based pruning.
Such a pruning strategy is made possible by a key property of the support
measure, namely, that the support for an itemset never exceeds the support
for its subsets. This property is also known as the anti-monotone property
of the support measure.

Definition 6.2 (Monotonicity Property). Let I be a set of items, and
J = 2I be the power set of I. A measure f is monotone (or upward closed) if

∀X, Y ∈ J : (X ⊆ Y ) −→ f(X) ≤ f(Y ),

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf
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Figure 6.4. An illustration of support-based pruning. If {a, b} is infrequent, then all supersets of {a, b}
are infrequent.

which means that if X is a subset of Y , then f(X) must not exceed f(Y ). On
the other hand, f is anti-monotone (or downward closed) if

∀X, Y ∈ J : (X ⊆ Y ) −→ f(Y ) ≤ f(X),

which means that if X is a subset of Y , then f(Y ) must not exceed f(X).

Any measure that possesses an anti-monotone property can be incorpo-
rated directly into the mining algorithm to effectively prune the exponential
search space of candidate itemsets, as will be shown in the next section.

6.2.2 Frequent Itemset Generation in the Apriori Algorithm

Apriori is the first association rule mining algorithm that pioneered the use
of support-based pruning to systematically control the exponential growth of
candidate itemsets. Figure 6.5 provides a high-level illustration of the frequent
itemset generation part of the Apriori algorithm for the transactions shown in

Corollary: If a set is not frequent, then its supersets are also not frequent

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf



A-priori Algorithm

1. Find all frequent itemsets of size    
(only have to check   possible sets) 

2. For  
• Extend frequent itemsets of size   

to create candidate itemsets of size  
• Find candidate sets that are frequent

1
M = | I |

k = 1,2,…M
k − 1

k



A-priori Algorithm

6.2 Frequent Itemset Generation 337

enumerating all itemsets (up to size 3) as candidates will produce

(
6

1

)
+

(
6

2

)
+

(
6

3

)
= 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number decreases to

(
6

1

)
+

(
4

2

)
+ 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Ck denote the set of candidate
k-itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, F1, will be known (steps 1 and 2).

• Next, the algorithm will iteratively generate new candidate k-itemsets
using the frequent (k − 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧σ({i}) ≥ N × minsup}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: Ck = apriori-gen(Fk−1). {Generate candidate itemsets}
6: for each transaction t ∈T do
7: Ct = subset(Ck, t). {Identify all candidates that belong to t}
8: for each candidate itemset c ∈Ct do
9: σ(c) = σ(c) + 1. {Increment support count}

10: end for
11: end for
12: Fk = { c | c ∈Ck ∧σ(c) ≥ N × minsup}. {Extract the frequent k-itemsets}
13: until Fk = ∅
14: Result =

⋃
Fk.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Interpret minsup as a fraction here
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adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf



Generating Candidates Ck

Objectives
1. No Duplicates: A candidate itemsets must be 

unique. 
2. Completeness: At least, all frequent k-

itemsets should be included.
3. No infrequent subsets: A candidate should 

not have any infrequent subset.



Generating Candidates Ck

Questions 
1. How many k-itemsets are there? 
2. How to reduce number of candidates using the computations 

already performed? 
1.  : combine frequent (k-1)-itemsets with frequent  1-

itemsets to get candidates of size k. 

2.  : combine frequent (k-1)-itemsets with other frequent  
(k-1)-itemsets that differs in only 1 item to get candidates of size 
k. 

Fk−1 × F1

Fk−1 × Fk−1

 {a, b, c} ∪ {a, b, d} = {a, b, c, d}

{a, b, c} ∪ {d} = {a, b, c, d}



Generating Candidates Ck

 {a, b, c} ∪ {a, b, d} = {a, b, c, d}
{a, b, c} ∪ {a, c, d} = {a, b, c, d}

{a, b, c} ∪ {d} = {a, b, c, d}
{a, b, d} ∪ {c} = {a, b, c, d}

Duplicates
Combining sets arbitrary pairs of sets from 
   and   will lead to duplicate candidatesFk−1 F1

Combining sets arbitrary pairs of sets from 
   will lead to duplicate candidatesFk−1

Each candidate of size k 
could be generated k 

times

Each candidate of size k 
could be generated 

  times( k
k − 2)



Generating Candidates Ck

Solution to duplicates

Sort the items 
• Item ordering: Define an ordering on all items  

• Either by assigning a unique id to each item. The 
items are ordered based on their ID. 

• Or by a lexicographic ordering on the item string; e.g. 
‘coke’ < ‘cookie’ 

• Assume that the items in the itemsets in   are 
sorted.  

Fk−1
a1 < a2 < … < ak in A = {a1, a2, …, ak}

ID based ordering will 
have computational 

advantage since 
comparing numbers 

is cheaper than 
comparing strings



Generating Candidates Ck
Solution to duplicates

 : Combine    and   only if  .  
• Combine   with   to give candidate  . 
• Do not combine   with  . 
• No duplicates: Each candidate has only one way of being 

generated.   can only be generated by combining   
and  .  

• Completeness: If  is indeed frequent,   and   have 
to be present in   and  . And they would get combined to 
generate  . 

• Subsets of generated candidates might still be infrequent

Fk−1 × F1 A ∈ Fk−1 B = {b} ∈ F1 ∀a ∈ A a < b
{a, c, e} {f} {a, c, e, f}

{a, c, e} {d}

{a, c, e, f} {a, c, e}
{f}

{a, c, e, f} {a, c, e} {f}
F3 F1

{a, c, e, f}

Combine if all 
items in   are 
less than the 
only item in B

A



Generating Candidates Ck
Solution to duplicates
 : Combine    and   only if 
  and  . 

• Combine   with   to give candidate  . 
• Do not combine   with  . 
• No duplicates: Each candidate has only one way of being 

generated.   can only be generated by combining   
and  .  

• Completeness: If  is indeed frequent,   and   
have to be present in  . And they would get combined to 
generate  . 

• Subsets of generated candidates might still be infrequent

Fk−1 × Fk−1 A ∈ Fk−1 B ∈ Fk−1
ai = bi, for i = 1,2…k − 2 ak−1 < bk−1

{a, c, e} {a, c, f} {a, c, e, f}
{a, c, e} {a, b, e}

{a, c, e, f} {a, c, e}
{a, c, f}

{a, c, e, f} {a, c, e} {a, c, f}
F3

{a, c, e, f}

Combine if the first 
  items in   and B 
are the same and the 

last element  of   is less 
than that of  .

k − 2 A

A
B



Generating Candidates Ck
How to efficiently find itemsets that could be combined? 
• Itemset Ordering: Use the ordering on items to define an ordering of 

itemsets 
• Assume that the items in each itemset are presorted. 

  
•   if  , where   is the index of the first item differing in   and  . 

  or  

a1 < a2 < … < ak in A = {a1, a2, …, ak}
A < B ai < bi i A B
{apple, bread, coke, sauce} < {apple, bread, cookie, milk} {4,7,21,50} < {4,7,25,40}

Elements of   sorted with the itemset ordering 
 

Fk−1
{a, b, c}, {a, b, e}, {a, b, g }, {a, c, d}, {a, c, g }…

  can’t be combined with any 
itemset beyond  . So no need 

to compare beyond  

{a, b, c}
{a, b, g }

{a, c, d}

Without exploiting the itemset ordering 
  comparisons 

need to be made
|Fk−1 | ( |Fk−1 | − 1)/2

Fk−1 × Fk−1



Generating Candidates Ck

Pruning candidates with infrequent subsets 
• For a candidate of size  , one only needs to check 

subsets of size  . 
• Enumerate subsets of size   by removing one 

element at a time from the candidate. 
• Search for the subsets one after the other in   until 

a subset is not found or the list of subsets is exhausted 
• Binary search could be performed if   is sorted 

under the itemset ordering for an efficient search. 
• Alternatively a hash tree could be build to store the 

itemsets of   for an efficient search.  
• If a subset wasn’t found the candidate should be 

discarded.  

k
k − 1

k − 1

Fk−1

Fk−1

Fk−1

If all size  subsets 
are frequent so are 
subsets of smaller sizes. 

Each candidate of size   
will give   subsets of 
size   

k − 1

k
k

k − 1
For each candidate 

  comparisons 
might be needed in the 
worst case, if searching 

naively. 
This can be improved by 

binary search 
  or 

constructing hash table 

O(k |Fk−1 | )

O(k log( |Fk−1 | ))



Generating Candidates Ck

1. Self-joining: Find pairs of sets in Fk-1  
that have first   items in common and 
differ by one element. 

2. Pruning: Remove all candidates  
with infrequent subsets

k − 2



Example: Generating Candidates Ck

• Frequent itemsets of size 2:  
{b,c}:5, {b,m}:4,{c,j}:3 {c,m}:3 

•  Self-joining:  
{b,c,m}, {c,j,m} 

• Pruning:  
{c,j,m} since {j,m} not frequent 

• Frequent items of size 3: 
{b,c,m}

 B1 = {b, c, m} B2 = {j, m, p} 
 B3 = {b, m} B4= {c, j} 
 B5 = {b, c, m} B6 = {b, c, j, m} 
 B7 = {b, c, j} B8 = {b, c}
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enumerating all itemsets (up to size 3) as candidates will produce

(
6

1

)
+

(
6

2

)
+

(
6

3

)
= 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number decreases to

(
6

1

)
+

(
4

2

)
+ 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Ck denote the set of candidate
k-itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, F1, will be known (steps 1 and 2).

• Next, the algorithm will iteratively generate new candidate k-itemsets
using the frequent (k − 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧σ({i}) ≥ N × minsup}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: Ck = apriori-gen(Fk−1). {Generate candidate itemsets}
6: for each transaction t ∈T do
7: Ct = subset(Ck, t). {Identify all candidates that belong to t}
8: for each candidate itemset c ∈Ct do
9: σ(c) = σ(c) + 1. {Increment support count}

10: end for
11: end for
12: Fk = { c | c ∈Ck ∧σ(c) ≥ N × minsup}. {Extract the frequent k-itemsets}
13: until Fk = ∅
14: Result =

⋃
Fk.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf
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adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Interpret minsup as a fraction here



Problem: Naive Matching is Expensive

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf
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Figure 6.2. Counting the support of candidate itemsets.

There are several ways to reduce the computational complexity of frequent
itemset generation.

1. Reduce the number of candidate itemsets (M). The Apriori prin-
ciple, described in the next section, is an effective way to eliminate some
of the candidate itemsets without counting their support values.

2. Reduce the number of comparisons. Instead of matching each can-
didate itemset against every transaction, we can reduce the number of
comparisons by using more advanced data structures, either to store the
candidate itemsets or to compress the data set. We will discuss these
strategies in Sections 6.2.4 and 6.6.

6.2.1 The Apriori Principle

This section describes how the support measure helps to reduce the number
of candidate itemsets explored during frequent itemset generation. The use of
support for pruning candidate itemsets is guided by the following principle.

Theorem 6.1 (Apriori Principle). If an itemset is frequent, then all of its
subsets must also be frequent.

To illustrate the idea behind the Apriori principle, consider the itemset
lattice shown in Figure 6.3. Suppose {c, d, e} is a frequent itemset. Clearly,
any transaction that contains {c, d, e} must also contain its subsets, {c, d},
{c, e}, {d, e}, {c}, {d}, and {e}. As a result, if {c, d, e} is frequent, then
all subsets of {c, d, e} (i.e., the shaded itemsets in this figure) must also be
frequent.

Cost: O(N M), where N is number of baskets and M is number of candidates



Strategy 1: Enumerating Transaction SubsetsSubset Operation

1  2  3  5  6

Transaction, t
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Subsets of 3 items

Level 1

Level 2

Level 3

63 5

Given a transaction t, what 
are the possible subsets of 
size 3?

Yijun Zhao

DATA MINING TECHNIQUES Association Rule Mining

33 / 55

(items are sorted)

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf



Hash Tree for ItemsetsAssociation Rule Discovery: Hash tree
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Hash on 
1, 4 or 7

Candidate Hash Tree

Yijun Zhao
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30 / 55adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

15 candidate 3-itemsets, distributed across 9 leaf nodes



Association Rule Discovery: Hash tree
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Hash Tree for Itemsets

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

15 candidate 3-itemsets, distributed across 9 leaf nodes
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Strategy 2: Hashing Itemsets

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

15 candidate 3-itemsets, distributed across 9 leaf nodes



Strategy 2: Hash Tree for Candidates

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1 2 3 5 6

1 + 2 3 5 6 3 5 62 +

5 63 +

1,4,7
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adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function1 2 3 5 6

3 5 61 2 +

5 61 3 +
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1 + 2 3 5 6
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Strategy 2: Hash Tree for Candidates



Subset Operation Using Hash Tree

1 5 9

1 4 5 1 3 6
3 4 5 3 6 7

3 6 8
3 5 6
3 5 7
6 8 9

2 3 4
5 6 7

1 2 4
4 5 7

1 2 5
4 5 8

1,4,7

2,5,8

3,6,9

Hash Function1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15 candidates
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adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Strategy 2: Hash Tree for Candidates

Minor correction: This 
branch won’t be reached. 
{3,5,6} only reaches the 

middle branch

9



A-priori Algorithm

6.2 Frequent Itemset Generation 337

enumerating all itemsets (up to size 3) as candidates will produce

(
6

1

)
+

(
6

2

)
+

(
6

3

)
= 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number decreases to

(
6

1

)
+

(
4

2

)
+ 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Ck denote the set of candidate
k-itemsets and Fk denote the set of frequent k-itemsets:

• The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, F1, will be known (steps 1 and 2).

• Next, the algorithm will iteratively generate new candidate k-itemsets
using the frequent (k − 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: k = 1.
2: Fk = { i | i ∈ I ∧σ({i}) ≥ N × minsup}. {Find all frequent 1-itemsets}
3: repeat
4: k = k + 1.
5: Ck = apriori-gen(Fk−1). {Generate candidate itemsets}
6: for each transaction t ∈T do
7: Ct = subset(Ck, t). {Identify all candidates that belong to t}
8: for each candidate itemset c ∈Ct do
9: σ(c) = σ(c) + 1. {Increment support count}

10: end for
11: end for
12: Fk = { c | c ∈Ck ∧σ(c) ≥ N × minsup}. {Extract the frequent k-itemsets}
13: until Fk = ∅
14: Result =

⋃
Fk.

adapted from: Tan, Steinbach & Kumar, “Introduction to Data Mining”, http://www-users.cs.umn.edu/~kumar/dmbook/ch6.pdf

Interpret minsup as a fraction here



Rule Generation
• Items of each frequent itemset   can be partitioned into the 

consequent and the the antecedent to give a rule. For an   
  

•   could give the six rule  
  

• A frequent k-itmeset can potentially give to   rules.  
• Not all rules are confident  

• How to find confident association rule without enumerating them all?

Y
X ⊂Y

X → Y − X
Y = {a, b, c} {a, b} → {c}, {a, c} → {b},
{b, c} → {a}, {a} → {b, c}, {b} → {a, c}, {c} → {a, b} .

2k − 2

Pick a subset of the 
  items as a 

consequent. The 
remaining items 

become the 
antecedent. Remove 
  and  

k

Y → ∅ ∅ → Y

 C(X → Y − X) = σ(Y)/σ(X) < minconf

   is also frequent by anti-
monotonicity. However, the rule 

might not meet the minimum 
confidence threshold.

X



Rule Generation
Rule Pruning 
•



Rule Generation



Compacting the Output
• To number of frequent item 

sets can be exponential in 
the number of items. 

• Might be useful to work with 
compact representations 

• Maximal frequent itemsets:  
No immediate superset is 
frequent 
•Gives more pruning

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



Compacting the Output
Closed frequent itemsets:  
• No immediate superset has same 

count 
• Stores not only frequent 

information, but exact counts 
• The counts of non-closed frequent 

items can be obtained as the 
maximum of its closed frequent 
superset 

• Redundant association rules are 
not generated if using closed 
frequent itemsets. 

adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

  and   will have the 
same support and confidence 

because   is not closed, but   is

{b} → {a} {b, c} → {a}

{b} {b, c}



Example: Maximal vs Closed

Frequent itemsets: 
{m}:5, {c}:6, {b}:6, {j}:4, 
{m,c}:3, {m,b}:4, {c,b}:5, {c,j}:3,  
{m,c,b}:3

 B1 = {m, c, b} B2 = {m, p, j} 
 B3 = {m, b} B4= {c, j} 
 B5 = {m, c, b} B6 = {m, c, b, j} 
 B7 = {c, b, j} B8 = {b, c}

Closed
Maximal



Example: Maximal vs Closed
Maximal vs Closed Itemsets

Frequent
Itemsets

Closed
Frequent
Itemsets

Maximal
Frequent
Itemsets
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