Decision Trees

some slides/drawings thanks to Carlos Guestrin@CMU

Course Map / module1

- two basic supervised learning algorithms
 - decision trees
 - linear regression
- two simple datasets
 - housing
 - spam emails

Module 1 Objectives / Decision Trees

- Decision Trees
- Splitting Criteria
 - decision stumps
 - how to look for the best splits
- Regression Trees
 - regression criteria
- Run a Decision Tree in practice
- Pruning

Data Partition Rules

Data Partition Rules

Data Partition Rules

- Goal: Learn from training set a decision tree
 initially all training datapoints at root
- iterative splits:
 - pick a terminal node (leaf) with inconsistent labels
 - use a split criteria to branch data so that each resulting child node has [more] consistent labels
 - until no terminal nodes are inconsistent
- Use learned tree for prediction on the test set

Walkthrough Decision Tree Example

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

40 Records

- Data (matrix) example : automobiles
- Target : mpg \in {good, bad} 2 class /binary problem

Decision Tree Split

 Split by feature "cylinders", using feature values for branches

Decision Tree Splits

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia (Similar recursion in the other cases)

 each terminal leaf is labeled by majority (at that leaf). This leaf-label is used for prediction.

Decision Tree Splits

Splitting criteria: entropy-based gain

$$H(Y) = \sum_{j} P(y_j) \log_2\left(\frac{1}{P(y_j)}\right)$$

Entropy after split by X feature

$$H(Y|X) = \sum_{i} P(x_i) \sum_{j} P(y_j|x_i) \log_2(\frac{1}{P(y_j|x_i)})$$

Mutual information (or Information Gain).

$$IG(X) = H(Y) - H(Y|X)$$

- Y = labels random variable, H(Y) its entropy
- X is a feature of the data used for splitting

Entropy gain toy example

At each split we are going to choose the feature that gives the highest information gain.

Figure 6: 2 possible features to split by

$$H(Y|X^{1}) = \frac{1}{2}H(Y|X^{1} = T) + \frac{1}{2}H(Y|X^{1} = F) = 0 + \frac{1}{2}(\frac{1}{4}\log_{2}\frac{1}{4} + \frac{3}{4}\log_{2}\frac{3}{4}) \approx .405$$
$$IG(X^{1}) = H(Y) - H(Y|X^{1}) = .954 - .405 = .549$$

$$H(Y|X^{2}) = \frac{1}{2}H(Y|X^{2} = T) + \frac{1}{2}H(Y|X^{2} = F) = \frac{1}{2}(\frac{1}{4}\log_{2}\frac{1}{4} + \frac{3}{4}\log_{2}\frac{3}{4}) + \frac{1}{2}(\frac{1}{2}\log_{2}\frac{1}{2} + \frac{1}{2}\log_{2}\frac{1}{2}) \approx .905$$
$$IG(X^{2}) = H(Y) - H(Y|X^{2}) = .954 - .905 = .049$$

checkpoint: information gain

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
•	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

40 Records

 compute the information gain for f=cylinders and for f=displacement

 once a split by f=cylinders is performed, for the branch "cylinders=4" compute the information gain for f=displacement and for f=maker

- same tree structure, split criteria
- assume numerical labels
- for each terminal node compute the node label (predicted value) and the mean square error

Estimate a predicted value per tree node

$$g_m = \frac{\sum_{t \in \chi_m} y_t}{|\chi_m|}$$

Calculate mean square error

$$E_m = \frac{\sum_{t \in \chi_m} (y_t - g_m)^2}{|\chi_m|}$$

 choose a split criteria to minimize the weighted error at children nodes

Regression Tree

- choose a split criteria to minimize the weighted or total error at children nodes
 - in the example total error after the split is 14.75 + 2=16.75

- for each test datapoint x=(x¹,x²,...,x^d) follow the corresponding path to reach a terminal node n
- predict the value/label associated with node n

Prediction with a tree

• testpoint:

- cylinder=4
- maker=asia
- horsepower=low
- weight=low
- displacement=medium
- modelyear=75to78

Overfitting

- decision trees can overfit quite badly
 - in fact they are designed to do so due to high complexity of the produced model
 - if a decision tree training error doesn't approach zero, it means that data is inconsistent
- some ideas to prevent overfitting:
 - create more than one tree, each using a different subset of features; average/vote predictions
 - do not split nodes in the tree that have very few datapoints (for example less than 10)
 - only split if the improvement is massive

Pruning

- done also to prevent overfitting
- construct a full decision tree
- then walk back from the leaves and decide to "merge" overfitting nodes
 - when split complexity overwhelms the gain obtained by the spit

- perl/python : easy to use a hash
- matlab : use a vector/matrix
- C/Java: use a struct/object with pointers to children nodes.

http://www.screencast.com/t/J0jLmCdBW0M6