Decision Trees

some slides/drawings thanks to Carlos Guestrin@CMU

Course Map / module1

- two basic supervised learning algorithms
- decision trees
- linear regression
- two simple datasets
- housing
- spam emails

Module 1 Objectives/Decision Trees

- Decision Trees
- Splitting Criteria
- decision stumps
- how to look for the best splits
- Regression Trees
- regression criteria
- Run a Decision Tree in practice
- Pruning

Data Partition Rules

- $\mathrm{x}_{1}, \mathrm{x}_{2}=$ data features
- Each path in the tree corresponds to a region
- Deeper paths correspond to smaller regions

Data Partition Rules

Data Partition Rules

Decision Trees

- Goal: Learn from training set a decision tree
- initially all training datapoints at root
- iterative splits:
- pick a terminal node (leaf) with inconsistent labels
- use a split criteria to branch data so that each resulting child node has [more] consistent labels
- until no terminal nodes are inconsistent
- Use learned tree for prediction on the test set

Walkthrough Decision Tree Example

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad		high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75 to 78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79t083	america
bad		high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad		medium	medium	medium	medium	75to78	europe

40 Records

- Data (matrix) example : automobiles
- Target : mpg $\in\{$ good, bad\} - 2 class /binary problem

Decision Tree Split

- Split by feature "cylinders", using feature values for branches

Decision Tree Splits

- each terminal leaf is labeled by majority (at that leaf). This leaf-label is used for prediction.

Decision Tree Splits

Splitting criteria: entropy-based gain

$$
H(Y)=\sum_{j} P\left(y_{j}\right) \log _{2}\left(\frac{1}{P\left(y_{j}\right)}\right)
$$

Entropy after split by X feature

$$
H(Y \mid X)=\sum_{i} P\left(x_{i}\right) \sum_{j} P\left(y_{j} \mid x_{i}\right) \log _{2}\left(\frac{1}{P\left(y_{j} \mid x_{i}\right)}\right)
$$

Mutual information (or Information Gain).

$$
I G(X)=H(Y)-H(Y \mid X)
$$

- $Y=$ labels random variable, $H(Y)$ its entropy
- X is a feature of the data used for splitting

Entropy gain toy example

At each split we are going to choose the feature that gives the highest information gain.

\mathbf{x}^{1}	\mathbf{x}^{2}	Y
T	T	T
T	F	T
T	T	T
T	F	T
F	T	T
F	F	F
F	T	F
F	F	F

Figure 6: 2 possible features to split by

$$
\begin{aligned}
H\left(Y \mid X^{1}\right)=\frac{1}{2} H\left(Y \mid X^{1}=T\right)+\frac{1}{2} H\left(Y \mid X^{1}\right. & =F)=0+\frac{1}{2}\left(\frac{1}{4} \log _{2} \frac{1}{4}+\frac{3}{4} \log _{2} \frac{3}{4}\right) \approx .405 \\
I G\left(X^{1}\right) & =H(Y)-H\left(Y \mid X^{1}\right)=.954-.405=.549
\end{aligned}
$$

$$
\begin{array}{r}
H\left(Y \mid X^{2}\right)=\frac{1}{2} H\left(Y \mid X^{2}=T\right)+\frac{1}{2} H\left(Y \mid X^{2}=F\right)=\frac{1}{2}\left(\frac{1}{4} \log _{2} \frac{1}{4}+\frac{3}{4} \log _{2} \frac{3}{4}\right)+\frac{1}{2}\left(\frac{1}{2} \log _{2} \frac{1}{2}+\frac{1}{2} \log _{2} \frac{1}{2}\right) \approx .905 \\
I G\left(X^{2}\right)=H(Y)-H\left(Y \mid X^{2}\right)=.954-.905=.049
\end{array}
$$

checkpoint: information gain

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyea	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75 to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad		high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

40 Records

- compute the information gain for $f=$ cylinders and for $\mathrm{f}=$ displacement
- once a split by $\mathrm{f}=$ cylinders is performed, for the branch "cylinders=4" compute the information gain for $\mathrm{f}=$ displacement and for $\mathrm{f}=$ maker

Regression Tree

- same tree structure, split criteria
- assume numerical labels
- for each terminal node compute the node label (predicted value) and the mean square error

Estimate a predicted value per tree node

$$
g_{m}=\frac{\sum_{t \in \chi_{m}} y_{t}}{\left|\chi_{m}\right|}
$$

Calculate mean square error

$$
E_{m}=\frac{\sum_{t \in \chi_{m}}\left(y_{t}-g_{m}\right)^{2}}{\left|\chi_{m}\right|}
$$

- choose a split criteria to minimize the weighted error at children nodes

Regression Tree

- choose a split criteria to minimize the weighted or total error at children nodes
- in the example total error after the split is $14.75+$ $2=16.75$

Prediction with a tree

- for each test datapoint $x=\left(x^{1}, x^{2}, \ldots, x^{d}\right)$ follow the corresponding path to reach a terminal node n
- predict the value/label associated with node n

Prediction with a tree

- testpoint:

- cylinder=4
- maker=asia
- horsepower=low
- weight=low
- displacement=medium
- modelyear=75to78

Overfitting

- decision trees can overfit quite badly
- in fact they are designed to do so due to high complexity of the produced model
- if a decision tree training error doesn't approach zero, it means that data is inconsistent
-
- some ideas to prevent overfitting:
- create more than one tree, each using a different subset of features; average/vote predictions
- do not split nodes in the tree that have very few datapoints (for example less than 10)
- only split if the improvement is massive

Pruning

- done also to prevent overfitting
- construct a full decision tree
- then walk back from the leaves and decide to "merge" overfitting nodes
- when split complexity overwhelms the gain obtained by the spit

tree implementation

- perl/python : easy to use a hash
- matlab : use a vector/matrix
- C/Java: use a struct/object with pointers to children nodes.

Decision Tree Screencast

- http://www.screencast.com/t/J0jLmCdBW0M6

