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av

Berkant Savas

Reg nr: LiTH–MAT–EX–2003–01

Supervisor: Lars Eldén

Examiner: Lars Eldén
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Abstract

This report is a masters thesis written at the Department of Mathematics, Linköping
University. Two different classification algorithms for handwritten digit recogni-
tion have been thoroughly analysed. The first algorithm uses Higher Order Singular
Value Decomposition (HOSVD) of the training digits. The second algorithm re-
lies on a specific distance measure, which is invariant to different transformations,
called Tangent Distance (TD). This algorithm was modified in the implementation
part by the use of numerical derivatives and an approximation of the blurring op-
erator. Two more classification algorithms were constructed by combining the first
two algorithms. All constructed algorithms have been tested with good perfor-
mance for some of them. The best results were achieved by the Tangent Distance
classifier with an error rate of 3 %. Finally the results of a few other classifiers are
presented and compared with the test results obtained in this report.

Keywords: Handwritten digit recogintion, digit recognition, classification algo-
rithms, tensor SVD, tangent distance, data mining.
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Notation

This page contains the most common symbols, operators and abbreviations used
in this report.

Symbols

a,b,α Lower–case letters are used for scalars
a,b Bold lower–case letters are used for vectors
A, B, A, B Capitals and bold capitals denote matrices
A, B Calligraphic letters denote tensors of at least third order
R, C The set of reel and complex numbers

Operators and functions

A · B Indicates the usual matrix product
A×n B n–mode product of a tensor by a matrix
⊂ Subset
O(n) Function with the property that O(n)/n is bounded as n → ∞

Abbreviations

SVD Singular Value Decomposition
HOSVD Higher Order Singular Value Decomposition
RI Right Identifications
WI Wrong Identifications
NBM Number of Basis Matrices
TD Tangent Distance
USPS United States Postal Service (database)
MNIST Modified National Institute of Standards and Technology (database)
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Chapter 1

Introduction

The pattern recognition ability, like visually recognizing objects, understanding
spoken words, discriminating things by feeling or smelling them, is very highly
evolved among humans. Pattern recognition might be described as the process
of making a decision based on data input. This is certainly a very huge domain
with many practical applications in many fields of science. Having reliable, accu-
rate and automated recognition devices would clearly be very useful. There are
already several areas, with more to come, where pattern recognition is used, even
in a commercial way. Some examples for that are: fingerprint recognition, hand-
written character recognition, speech recognition, DNA sequence recognition, gas
recognition, face recognition and much more.

This report is a masters thesis with the main purpose to analyse, develop and
test a few classification algorithms used for identification of handwritten characters,
especially digits.

1.1 The classification problem

The character classification problem is considered to be very fundamental in this
context and many scientists have spent a lot of time in the past decades trying
to solve the problem. No unified answer is presented. Instead there are many
classification algorithms performing more or less well in specific areas.

There are several ways of dividing the problem into principally different cate-
gories. Then it is only natural that the most suitable methods to solve the problem
in various cases might differ. Many algorithms are derived based on different math-
ematical theories. Linear algebra, functional analysis and statistics are just a few
of them.

On–line and off–line classification

One way of distinguishing between the algorithms is to look at how they are used in
the final application. If the algorithm is used in real–time it is often referred to be
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2 Introduction

an on–line classification algorithm. If the classification objects are stored and the
classification is performed at some other time the algorithm is referred to be an off–
line classification algorithm. Besides these algorithms might have an incorporated
time aspect attached to the data input. On–line algorithms, with attached time
aspect or not, are more sensitive to the required amount of computation, but even
so there are cases with acceptable results. In general, off–line classification without
incorporated time aspect is a harder problem than on–line classification with time
aspect [1]. An intuitive reason is that less data is used in the first case compared to
the second case. Character recognition on scanned documents is most often done
off–line and there are algorithms with good performance for this task. Systems in
personal digital assistants (PDAs), on the other hand, are implementing on–line
versions of classification algorithms with incorporated time aspect [1], [10].

Pixel images and curves

Another way of distinguishing between algorithms is to look at the way the char-
acters are represented. For instance when we write with a pen, a shape symbol is
imprinted on the paper. This shape can be represented in at least two ways - as
a pixel image or as curves in a plane. Thus, the structure of the input data has a
major impact on the way an algorithm is built. One might favour the curve rep-
resentation in this case because the original shapes, which we want to classify, are
curves and are written in a curve motion by the hand and not as dots or pixels with
various intensities. Online algorithms are more suited for the curve representation.

In this report we only consider pixel images representing digits in offline classifica-
tion algorithms without incorporated time aspect.

1.2 Outline of the report

The rest of the report is divided in the following chapters.

Chapter 2: The first algorithm that was analysed and tested is based on
tensors and singular value decomposition of third order tensors. Initially a brief
theory on tensors is presented with the main results and theorems that are required
in the algorithm construction. Parts of this theory are then implemented and
detailed description of this is given. Many of the conducted tests are thoroughly
described in a separate section. The last part of this chapter is aimed for further
analysis and useful comments to get a deeper insight of the algorithm.

Chapter 3: The second algorithm described incorporates a rather new kind
of distance measure called tangent distance [14]. The theoretical background of
this measure is presented. Some modifications in the implementation part are
made with the purpose to get a more computationally efficient algorithm. A very
simple algorithm on bases of this tangent distance is then constructed and the
implementation is given in detail. The results of the conducted tests are presented
and the chapter ends with some discussion.
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Chapter 4: In chapter four the theory for the preceding algorithms are com-
bined to build at least two new classification algorithms. The idea of combining
these methods was suggested by my supervisor Lars Eldén. Advantages and disad-
vantages are pointed out for the different combinations. One of the new algorithms
is performing rather well according to test results.

Chapter 5: The last chapter is a brief reflection on some other classification
algorithms that are usual in the field. Their performance is presented with the
intention to be compared with results achieved in this report. Finally a short
summary of the whole report is given.

Appendix: Proofs, definitions, information about the data sets and other de-
tails of interest are gathered in the appendix.
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Chapter 2

Classification by Singular

Value Decomposition of

Tensors

2.1 Tensor Theory

Mathematical structures or quantities as vectors and matrices are sometimes not
suitable for describing the true nature of data from various fields of signal pro-
cessing. Those structures can easily be extended to more general higher–order
structures called multimode arrays, multidimensional matrices or, as they will be
called in this report, simply as tensors. Vectors and matrices are equivalent to first
and second order tensors, respectively. The constructed algorithm relies mainly
on the special case of this theory for third order tensors. Therefore most of the
presented theory in this section is for third order tensors. The generalization of
some parts of the theory presented here is placed in Appendix A.

2.1.1 Basic definitions and properties

Different kinds of quantities will be represented in the following manner: scalars
are written as lower–case letters (a, b, . . . ; α, β, . . . ), vectors (first order tensors) are
written as bold lower–case letters (a,b, . . . ), matrices (second order tensors) are
denoted as bold–face capitals (A,B, . . . ) and higher order tensors as calligraphic
letters (A,B, . . . ).

Tensor representation

It is easy to define a general (I1 × I2 × · · · × IN )–tensor but hard to visualize in
its natural shape (all cases where N ≥ 3). The tensor dimensions Ii are called
modes in this field. Each Nth order tensor A ∈ CI1×I2×···×IN can be unfolded to

5



6 Classification by Singular Value Decomposition of Tensors

a matrix along each of its modes. Unfolding a tensor along its nth mode yields a
matrix A(n) ∈ CIn×(In+1...IN I1...In−1) where each element of A gets its unique place
in A(n). Folding an unfolded tensor will of course give the original tensor without
changing anything.

Unfolding a third order tensor

Any third order tensor A can be represented in three different ways. Consider the
case where A is an (n1 ×n2×n3) tensor with real entries. The tensor is illustrated
in figure 2.1.

�
�

�

�
�

�

�
�

�n1

n2

n3

= A

Figure 2.1. Illustration of a third order tensor.

This is obviously a block tensor in which the number of rows is given by n1, the
number of columns by n2 and n3 is the number of slices in the third mode. The
word slice refers to the matrices, that are obtained when the index of the third
mode is kept fixt. The unfolding process gives the following matrices:

A(1) := (A(:, 1, :) A(:, 2, :) . . . A(:, n2, :)) ∈ R
n1×n2n3 ,

A(2) := (A(:, :, 1)T A(:, :, 2)T . . . A(:, :, n3)
T ) ∈ R

n2×n1n3 ,

A(3) := (A(1, :, :)T A(2, :, :)T . . . A(n1, :, :)
T ) ∈ R

n3×n1n2 .

A(:, 1, :) is interpreted as a part of the tensor where the first index in the second
mode is kept fixt. This is a matrix consisting of the first columns in every slice.
Equivalently A(:, :, 2) is the whole second slice in the tensor and the columns in
A(n, :, :) are the nth row vectors in each slice. These unfoldings are written in
pseudo–Matlab notation. It should be noticed that fixing one index in any mode
yields a matrix because the other indexes of the other two modes are free to vary.
The unfoldings are obtained by putting the matrices next to each other as shown
above.

The precise definition of the unfolding operation for tensors in general is given
in A.1.

Rank properties

There is no unique way of generalising the rank concept for higher order tensors
from the definitions of rank for matrices. One way is to consider the usual rank for
matrices and define the n–rank of a tensor as follows.
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Definition 2.1 (n–rank) The n–rank Rn of a tensor A is the dimension of the

vector space spanned by the n–mode vectors i.e.

Rn = rankn(A) = rank(A(n)), (2.1)

where A(n) is the unfolding of A along the nth mode.

It is easy to verify that different n–ranks of a higher order tensor are not necessarily
equal as is the case considering matrices.

There is a second way of defining the rank of a tensor [2], but the definition
will be omitted in this context.

Scalar product, orthogonality and norm

The scalar product for vectors is generalized to include tensors of any order in a
straightforward way.

Definition 2.2 The scalar product 〈A,B〉 of two tensors A,B ∈ CI1×I2×···×IN is

defined as

〈A,B〉 =
∑

i1

∑

i2

...
∑

iN

b∗i1i2...iN
ai1i2...iN

, (2.2)

in which the ∗ denotes complex conjugation.

Notice that this is completely equivalent to the scalar product for vectors. The
definitions for orthogonality and norm of tensors are as follows.

Definition 2.3 Two tensors A and B are said to be orthogonal if their scalar

product is equal to zero, 〈A,B〉 = 0.

Definition 2.4 The Frobenius norm of a tensor A is defined as

‖A‖
F

=
√
〈A,A〉. (2.3)

2.1.2 Multiplication of a tensor by a matrix

When we look at the matrix case when deriving the singular value decomposition1

for matrices one lets orthogonal coordinate transformations induce a special rep-
resentation of the matrix. These transformations correspond to multiplications of
the original matrix by matrices from left and from right. The same idea for the
tensor case results in a product definition between a tensor and a matrix. The
multiplications from left and right are generalized to multiplications along each
mode of the tensor. It is easy to realize that the tensor and the matrix have to be
compatible in some way. The definition for third order tensors is as follows.

Definition 2.5 The n–mode product of a third order tensor A ∈ CI1×I2×I3 by a

matrix F ∈ CJ×In , denoted by A ×n F, is a (J × I2 × I3)–tensor when n = 1,
(I1 × J × I3)–tensor when n = 2 and (I1 × I2 × J)–tensor when n = 3. Letting

B = A×n F, the entries of B are given by folding Bn, where B(n) = F · A(n).

1The singular value decomposition will be explained in the next section.
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Some explanation of the above definition might be insightful. Consider a tensor
matrix multiplication along the first mode, i.e. B = A×1 F. Then F is a (J × I1)–
matrix and A(1), which is the unfolding of A along the first mode, is an (I1×I2I3)–
matrix. The compatibility of the matrices F and A(n) is clearly seen. This means
that B(n) is a (J × I2I3)–matrix and folding it along the first mode we get the
desired B which is a (J × I2 × I3)–tensor. It should be noted that an arbitrary
matrix can be folded in several ways. Knowing the final size of the n–mode product
and folding the matrix to a tensor of this particular size will give the right tensor.

The definition of the n–mode product for arbitrary tensors is a straightforward
generalization and is given in Appendix A.

Given the tensor A ∈ C
I1×I2×I3 and the matrices F ∈ C

Jn×In , G ∈ C
Jm×Im

and H ∈ CKn×Jn the n–mode product satisfies the following properties,

(A×n F) ×m G = (A×m G) ×n F = A×n F ×m G, (2.4)

(A×n F) ×n H = A×n (H ·F). (2.5)

These equations are also valid when A is an arbitrary (I1 × I2 × · · · × IN )–tensor,
without any modifications [2].

2.1.3 SVD of a tensor

One of the most important results in linear algebra is the Singular Value Decom-
position (SVD) theorem. The theorem is presented below for matrices and then a
generalization is made for tensors.

Theorem 2.1 (Matrix SVD) Every complex matrix F ∈ Cm×n can be written

as the product

F = U · Σ · VH , (2.6)

with the following properties:

1. U is an (m × m) unitary matrix.

2. V is an (n × n) unitary matrix.

3. Σ is an (m × n) diagonal matrix with real and non–negative entries, ordered

in the followint way:

σ1 ≥ σ2 ≥ ... ≥ σmin(m,n) ≥ 0. (2.7)

The columns of U and V are called the left and right singular vectors respectively

and the σi are the singular values.

A proof of the SVD theorem can be found in Golub [6]. The H in equation (2.6)
indicates transposition and complex conjugation.

Just to mention an example of the usefulness of the decomposition, consider
the minimization problem

min
X

‖F− X‖2,



2.1 Tensor Theory 9

with rank(X) = r and r < n = rank(F). The solution to this problem gives the
best2 rank r matrix X that approximates a given matrix F. SVD gives the solution,
namely the product X = U · Σ̃ ·VH in which Σ̃ has only the first r singular values
along the diagonal from the original Σ.

Considering the matrix as a second order tensor it is possible to express the
SVD in terms of the n–mode product.

F = Σ ×1 U ×2 V. (2.8)

For higher order tensors very similar results are obtained. Those are presented
in the theorem below.

Theorem 2.2 (HOSVD) An arbitrary tensor A ∈ C
I1×I2×···×IN can be written

as the product

A = S ×1 U(1) ×2 U(2) × ... ×N U(N), (2.9)

with the following properties:

1. U(n) are unitary (In × In)–matrices.

2. S is a complex tensor of the same dimensions as A, where the subtensors

Sin=α, obtained by fixing any mode–index n, fulfil two conditions:

• all–orthogonality, meaning that two different subtensors fixed in the same

mode are orthogonal,

〈Sin=α,Sin=β〉 = 0 when α 6= β, (2.10)

• and ordering: the norms of the subtensors satisfy

‖Sin=1‖ ≥ ‖Sin=2‖ ≥ · · · ≥ ‖Sin=In
‖ ≥ 0. (2.11)

The two conditions are valid for all possible n.

Proof of theorem 2.2 is given in Appendix A.
An example might be in place to give some insights of the all–orthogonality

condition and the subtensors. Consider a matrix as a tensor. The subtensors
are simply the columns and the row vectors. If the first mode is fixed then the
corresponding subtensors are the row vectors and fixing the second mode will give
the columns as subtensors. Putting F = U ·S ·VH , it is clear that the columns of S
are orthogonal. The same is true for the row vectors. S obviously is all–orthogonal,
but we already knew that. Another important fact about the HOSVD is that there
is no diagonal structure in S as in Σ in the matrix SVD. All the entries of S might
have values different from zero.

The Frobenius norms in (2.11) are in fact the singular values, σ
(n)
i , of the A(n).

Even the U(n) belong to the SVD of A(n). With this knowledge it is straightforward

2Best in a least square and Frobenius norm sense.
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to compute the whole Higher Order Singular Value Decomposition – HOSVD.
Produce the unfolding of A along every mode, compute the U(n) matrices for all

of them by SVD and finally multiply A with U(n)H

along the nth mode to get S.
An illustration is given below

S = A×1 U(1)H

×2 U(2)H

· · · ×N U(N)H

. (2.12)

More detailed information about tensors is found in [2].

2.1.4 Matlab implementation of Higher Order SVD

Matlab can handle arrays with more than two indexes but unfortunately there
are no functions implementing the tensor theory described above. The following
functions were constructed to implement the theory. These functions work in the
case of third order tensors only, but can easily be generalized.

The unfold function

According to Theorem 2.2 all three unfoldings are needed in the computation of a
complete third order singular value decomposition. More specifically, the unfolding
along each mode is needed when computing the unitary matrices U(n). Once they
are computed the all–orthogonal core tensor S can be obtained simply by tensor
multiplications.

The unfolding process was implemented in a Matlab function taking two argu-
ments

A(n) = unfold(A, n) , n = 1, 2 or 3. (2.13)

This function does exactly the same thing as described previously in section 2.1.1.

Tensor matrix multiplication function

The second function constructed was the n–mode product for tensors. The defini-
tion gave this function with three arguments.

B = A×n U = tmul(A,U, n) , n = 1, 2 or 3. (2.14)

The multiplication is implemented by computing A(n) with the unfolding function,
performing the matrix multiplication U · A(n) and finally folding it back in the
proper way into B.

HOSVD function

Now we have all the functions needed to compute the whole decomposition. In the
case of third order tensors it is given by

A = S ×1 U(1) ×2 U(2) ×3 U(3). (2.15)

A straightforward implementation of Theorem 2.2 is:
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1. Compute all the unfoldings of A.

2. Compute the matrix SVD of the A(n).

3. Multiply the unitary matrices U(n)T

into A along respective mode with the
newly built product function to obtain S.

Notice that the actions in the third point are illustrated below. This is the same
operation as in equation (2.12) but for the special case of a third order tensor.

S = A×1 U(1)T

×2 U(2)T

×3 U(3)T

. (2.16)

These operations were put together in a function called svd3 to compute the whole
HOSVD for third order tensors. The function is given below in pseudo–Matlab
notation.

[U(1),U(2),U(3),S, Σ1, Σ2, Σ3] = svd3(A), (2.17)

[U(1), Σ1, v] = svd(unfold(A, 1)),

[U(2), Σ2, v] = svd(unfold(A, 2)),

[U(3), Σ3, v] = svd(unfold(A, 3)),

S = tmul(tmul(tmul(A,U(1)T

, 1),U(2)T

, 2),U(3)T

, 3).

Notice that the V matrices in the SVD are not required in the computation of
HOSVD and therefore not needed to be computed. The general SVD algorithm can
be customized in this application to speed up and reduce the amount of calculations.
The n–mode singular values stored in the diagonals of Σ1, Σ2 and Σ3 are not in
the HOSVD theorem but it turns out that a closer investigation of them gives us
some useful and interesting information.

2.1.5 Orthogonal basis matrices

A matrix F can be written as a sum of rank 1 matrices

F = U · Σ · VT =
n∑

1

σiuiv
T
i , (2.18)

where σi are the singular values and the ui and vi are the columns of U and V
respectively. The sum is illustrated in figure 2.2. Notice that the outer product is
taken between the ui and vi.

A similar decomposition can be achieved also for arbitrary third order tensors.

A =

n3∑

i=1

Ai ×3 u
(3)
i in which Ai = S(:, :, i) ×1 U(1) ×2 U(2) are orthogonal.

(2.19)
It follows from (2.19) that every tensor A can be split up in a sum of tensors.
An equivalent illustration for (2.19) as in figure 2.2 is given below. The squares
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F = σ1 + σ2 + . . .

Figure 2.2. Illustration of the decomposition in (2.18).

A =

�
�

�

+

�
�

�

+ . . .

Figure 2.3. Illustration of the decomposition in (2.19).

represent the Ai and the tilted lines above them are the u
(3)
i vectors representing

third mode multiplications yielding tensors.
An interesting fact is that each tensor in the sum consists of multiples of the

same matrix Ai. Consider the first element for example. S(:, :, 1) is the first
slice from the all–orthogonal block tensor and is a matrix. The first and second
mode multiplications are the usual matrix multiplications from left and right, all
according to (2.6) and (2.8), so Ai is also a matrix. A third mode multiplication

remains to be carried out. u
(3)
1 is the first column from the third unitary matrix

U(3). Consequently u
(3)
1 has n3 elements. This is the same number as the dimension

along the third mode of A and it has to be that if the terms in the sum ought to

have the same size as A. Thus multiplying a matrix A1 with a vector u
(3)
1 along

the third mode yields a third order tensor in which the first slice is A1 multiplied

with the first element of the vector u
(3)
1 – u

(3)
1 (1), the second slice is A1 multiplied

with the second element of u
(3)
1 – u

(3)
1 (2), the third A1 multiplied with u

(3)
1 (3) and

so on whole the way. All terms in the sum are computed in this way.
Remember that the different slices of S i.e. S(:, :, i) are orthogonal to each

other, the all–orthogonality condition. A simple computation gives that the Ai are
also orthogonal.

〈Ai,Aj〉 = tr(AT
i Aj) = tr((U(1)S(:, :, i)U(2)T

)T · (U(1)S(:, :, j)U(2)T

)) =

= tr(U(2)S(:, :, i)TU(1)T

U(1)S(:, :, j)U(2)T

) =

= tr(U(2)S(:, :, i)TS(:, :, j)U(2)T

) = tr(U(2) · 0 ·U(2)T

) = 0 when i 6= j.

These orthogonal matrices can be interpreted as a set of linearly independent basis
matrices. The tr in the calculation above denotes trace.
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2.2 The Data Sets

In all the tests carried out in this report two different data sets of handwritten
digits were used. These sets are freely available on the Internet and are frequently
used throughout the world for evaluation of classification algorithms. Thus there
are extensive results and references to the data, making it easy to do an impartial
comparison of the achieved performance of the algorithms.

2.2.1 U.S. Postal Service Database

The digits in this database are extracted by scanning the ZIP code on envelopes
from U.S. Postal mail. The size of the images is 16 × 16 pixels and each pixel has
an intensity range of 0 to 255. This set was downloaded from the homepage of
Hastie [7].

Two sets are available, one training set containing 7291 digits and one test set
containing 2007 digits. Of course the right answers to all of the pixel images are
included. The digit distribution is given in table 2.1.

0 1 2 3 4 5 6 7 8 9 Total
Train 1194 1005 731 658 652 556 664 645 542 644 7291
Test 359 264 198 166 200 160 170 147 166 177 2007

Table 2.1. The digit distribution in the U.S. Postal Service data sets.

Both of the sets were converted to Matlab data files and reshaped to third order
tensors. To each tensor there is an associated vector in which the corresponding
digits (the right answers) are stored. In detail we have the following data to our
disposal:

1. One (16×16×7291)–tensor, which is the training set, and one (16×16×2007)–
tensor, which is the test set.

2. Two vectors containing the right answers to each tensor.

Figure 2.4 gives some examples from the U.S. Postal Service database.
According to Hastie [7] this set is rather difficult from a classification point of

view when compared to other data sets. For example the MNIST database, de-
scribed in next section, is easier than the envelope numbers. This is also confirmed
in the test results. Notice that the images in the figure above are quite well written,
there are many others that are badly written.

2.2.2 Modified NIST Database

In the spring of 1992 the National Institute of Standards and Technology organized
a classification competition for handwritten digits. To disposal there was a training
set of 223,000 patterns and a test set of 59,000 patterns, that is the original NIST
database. These two sets had different distributions and this affected the test
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Figure 2.4. Examples from the U.S. Postal Service database.

results. A modified database was built by combining the two sets using a 50/50
ratio into a new training set with 60,000 patterns and 10,000 test patterns. The
new database is called the Modified NIST or simply MNIST.

The digit distribution of the test set is given in the table below.

0 1 2 3 4 5 6 7 8 9 Total
Test 980 1135 1032 1010 982 892 958 1028 974 1009 10000

Table 2.2. The digit distribution of the test set in the MNIST database.

The main difference between this set and the previous one is the size of the
patterns. Digits in the MNIST database are slightly bigger and stored in images
of 28 × 28 pixels, but the grey level in the pixels still have an intensity range of 0
to 255. Some examples from the test set are given in figure 2.5.

It should be pointed out that each pattern is embedded in an image of 28 × 28
pixels but the patterns do not fill the whole frame as the digits in the U.S. Postal
Service database do.

The MNIST database was downloaded from the website located at

http://yann.lecun.com/exdb/mnist/.
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Figure 2.5. Digits from the MNIST database.

2.3 Algorithm 1

This part of the chapter is intended to describe in detail how the theory in the
previous section is used to build a complete algorithm able to classify unknown
handwritten digits. The main idea is to construct a set of orthogonal basis matrices
for each class namely the digits 0, 1 up till 9 and then decide which of the bases sets
describes the unknown digit in the best way. This is a very vague formulation but
is still the basic thought behind the whole algorithm and everything will hopefully
be clarified.

The database files downloaded from the Internet were converted so that every
handwritten digit took the form of a matrix with pixel values as elements. These
matrices were then put together to build a third order tensor. The different digit
images are the different slices in this block tensor. Doing this we end up with two
different third order tensors, one training set and one test set. The training set is
used when constructing the algorithm, which is the training phase, and the test set
is used in the evaluation phase.

2.3.1 Constructing a basis

Building an algorithm with the objective to discriminate an unknown digit to one of
predefined classes, some kind of information must be incorporated in the algorithm
about each class. This information is then used in the classification process. In our
special case the algorithm must contain information about each kind of digit and
this information is retrieved from the training set as mentioned earlier.

Computing the basis matrices

A set of basis matrices, as described in section 2.1.5, is constructed for each class,
i.e. an orthogonal basis for the ones, one for the twos, for the threes and so on.
The source for the bases is a tensor with all the digits of the same kind from the
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training set. In other words, to construct a set of bases for the twos, all of the twos
in the training set have to be gathered in a separate tensor and this new tensor is
the data for the HOSVD function. This will give the decomposition from which
the basis matrices Aj

i are computed. The j indicates the class belonging of the
basis matrix. There are ten classes (ten different kinds of digits), and therefore j
varies from one to ten. The i indicates the number of the actual basis matrix for
a given class.

Let us look more closely what this means. Let Atwos ∈ R16×16×n3 be the tensor
with the twos and assume that the HOSVD is already computed. Then according
to equation (2.19)

Atwos =

n3∑

i=1

Atwo
i ×3 u

two,(3)
i ,

where the Atwo
i are orthogonal basis matrices. This also means that every 2 in

Atwos is a unique linear combination of the same basis matrices Atwo
i . The coeffi-

cients in the linear combination are given by the elements of the u
two,(3)
i vectors.

For example, the first 2 in Atwos, which also is the first slice, can be written like
this

A(:, :, 1) = u
(3)
1 (1)A1 + u

(3)
2 (1)A2 + u

(3)
3 (1)A3 + · · · + u(3)

n3
(1)An3

. (2.20)

The j index, which is two, is omitted here for simplicity. In this case the coefficients

in front of the bases are the first elements of u
(3)
i . The coefficients for the second 2

in the source tensor are the second elements of u
(3)
i and similar for all the others.

The linear combination in (2.20) is illustrated in figure 2.6 for an arbitrary 2 in
Atwos.

2
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�
�

� =

�
�

�
u

A1
+
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�
u

A2
+ . . .

Figure 2.6. Illustration of a linear combination as in (2.20).

The block in figure 2.6 represents all the twos. A particular two is chosen from
this tensor. This two is a linear combination of the Ai with coefficients from the
vectors marked with dots.

2.3.2 Least squares problem

Suppose that the basis matrices are constructed and available for all the classes.
Which set of bases is then describing an unknown digit X in the best way? Consider
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the minimization problem

min
α

j

i

‖X−

k∑

i=1

αj
iA

j
i‖F

, j fixed, (2.21)

in which the αj
i are unknown scalars to be determined and k is the number of basis

matrices (vectors) used. This is a least squares problem and is particularly easy to
solve when the Aj

i are orthogonal and they are orthogonal when j is kept fixed. In
terms of the minimization the answer to the question above is: The set of bases,
which gives the smallest norm. Notice that the Aj

i matrices in (2.21) actually
belong to one specific class given by index j. This means that the minimization
problem is solved with the basis matrices for each class, totally ten times. The
unknown is most probably belonging to the class with the set of bases that gives
the smallest norm.

It should also be noticed that the whole theory is built on the assumption that
unknown digits from one class are described well as a linear combination of the
basis matrices for that specific class. Particularly, the algorithm relying on this
theory is useful if the unknown digits in a specific class are described well with few
of the basis matrices for that class.

Cosine measure

In the special case when k = 1 and the matrices X and A1 are normed, ‖X‖
F

=
‖A1‖F

= 1, α1 is given by the cosine of the angle between two matrices. The defi-
nition of the cosine angle of the matrices is in complete analogy with the definition
for vectors.

k = 1 gives α1 = cos(θ) = 〈X,A1〉. (2.22)

This special case only uses the first basis matrix in each set and may not be
suitable in all applications, not even this one. Good performance for this algo-
rithm would mean that the test digits are very well written and the variation in a
given class is not so big. These are of course not realistic assumptions in practical
applications.

General solution

Even in the general case the particular least squares problem (2.21) is easy to solve
due to the fact that the basis matrices Ai are orthogonal. The class index j is
omitted for simplicity. If the basis matrices are also normalized, i.e. 〈Ai,Ai〉 = 1,
the solution is given by αi = 〈X,Ai〉. Proof of this statement is given in Appendix
A. Inserting the solution into equation (2.21) gives the following expression of the
squared norm

min
αi

‖X−

k∑

i=1

αiAi‖
2
F

= tr[(X −

k∑

i=1

αiAi)
T (X −

k∑

i=1

αiAi)] =
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= 〈X −

k∑

i=1

αiAi,X−

k∑

i=1

αiAi〉 =

= 〈X,X〉 − 2

k∑

i=1

〈X, αiAi〉 +

k∑

i=1

α2
i = 〈X,X〉 −

k∑

1

α2
i ,

where we have used the fact 〈Ai,Aj〉 = δij (Kronecker delta). If also the unknown
digits are normalized to unity, the only computations in the classification phase
are the squares of the scalar products 〈X,Ai〉, summations and a comparison test.
The basis sets are available at all times and are therefore a part of the algorithm.

The reduction of the data from the training set to a set of basis matrices is
actually a data compression. From approximately 1000 digits belonging to one
class a basis is constructed by HOSVD consisting of at most 20 matrices of the
same size as the original digits. This is a data compression by approximately 98%.

The complete classification algorithm is as follows.

• Training phase:

1. Collect the digits from the training set into tensors with digits of the same
type.

2. Compute the HOSVD of these tensors.

3. Compute and store the basis matrices. This is a data compression.

• Test phase:

1. Solve the least squares problem for each set of bases, i.e. compute the
scalar products 〈X,Aj

i 〉 for all i and j.

2. Take the label of the set that gives the lowest minimum as a guess.

2.4 Tests and results

The process described this far is very general and there are several parameters that
can be varied to customize an algorithm. One such parameter is the number of
basis matrices to be used in the classification. In this section most of the tests
conducted to validate the algorithms are presented.

2.4.1 Test 1

The first step is a test of the first basis matrix against the source tensor from the
training set that it was constructed from. Thus we are looking for the answer of
how well the digits of a specific kind are represented by their own first basis matrix.
Figure 2.7 shows the look of the first basis matrix for few digits. It is seen clearly
which digit the basis matrices represent.

There is a good agreement between digits if the cosine measure is as close to one
as possible. The smaller the cosine angle is the closer and more alike two matrices
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Figure 2.7. The first basis mtrix for few digits from the U.S. Postal Service database.
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Figure 2.8. The cosine between the first basis matrix for three different classes and their
respective source tensor, which include all digits of the same kind from the training set.

are. During the test it was established that not all the digits are described well
by their first basis matrix. For example the ones are described very well by their
first basis matrix while the cosine between the twos and their first basis matrix are
considerably lower. See figure 2.8. Notice that the spikes indicate that there are
less well written digits in the training set. The average of the cosines for all the
digits are given in the table below. Here we get a first indication about which digits
are hard to identify. According to the table twos and fives are not characterized
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Digit 0 1 2 3 4 5 6 7 8 9
Average
cosine 0,71 0,96 0,67 0,76 0,75 0,69 0,79 0,83 0,76 0,83
angle

Table 2.3. The average of the cosine angles for all the digits.

well by the first basis matrix. One would then expect that these digits are harder
to classify than others. This is verified in the next tests.

2.4.2 Test 2

The second series of tests were a continuation of the previous one, but this time
the whole test set was tested against the first basis matrices at a time. In the
tests the cosines were measured between the first matrices and all the test digits.
An unknown digit was decided to belong to a certain class if the cosine was close
enough to one. In other words if the cosine was above a given threshold value , the
digit was assumed to belong to the same class as the basis matrix. The results are
summarized in table 2.4, where RI and WI mean right identification and wrong
identification respectively.

Digit (Total) 0 (356) 1 (264) 2 (198)
RI 181 222 265 246 255 258 25 72 118
WI 3 34 84 6 25 61 12 262 518

Border value 0.70 0.65 0.60 0.85 0.80 0.75 0.75 0.70 0.65

Digit (Total) 3 (166) 4 (200) 5 (160)
RI 82 113 135 24 73 110 41 54 70
WI 14 72 291 1 37 153 14 38 126

Border value 0.75 0.70 0.65 0.85 0.80 0.75 0.75 0.73 0.70

Digit (Total) 6 (170) 7 (147)
RI 109 117 121 128 66 76 93 97 107
WI 6 22 42 74 3 21 38 52 76

Border value 0.78 0.76 0.74 0.72 0.85 0.83 0.81 0.80 0.78

Digit (Total) 8 (166) 9 (177)
RI 35 47 69 81 63 86 103 116 129
WR 3 9 26 74 5 15 40 69 99

Border value 0.82 0.80 0.78 0.76 0.88 0.86 0.84 0.82 0.80

Table 2.4. Test results for the cosine angles for all digits in the test set.

The following conclusions are drawn from the table. Lowering the threshold
value implies that more digits of the same class can be identified. But this also
implies that more wrong identifications are made. In almost all of the cases the
proportions between RI and WI are unacceptable, besides RI is not even close to
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identify all the digits of the same kind. Also these tests confirm that especially
twos and fives are hard to recognize and other digits can easily be mistaken as a
two or a five due to the high WI.

2.4.3 Test 3

The third test round is conducted precisely as the algorithm formulation in section
2.3. Up to 20 bases for each class were used in the classification and 10 least squares
problems are solved for every unknown. A digit is said to belong the class of the
basis set that gives the lowest minimum. In each test the number of basis matrices
was the same for all the classes. This is the first and most natural way to use the
algorithm in real classification applications. Both data sets were tested with this
method.

NBM 1 2 3 4 5 6 7 8 9 10

WI 0 64 24 17 11 8 10 8 8 5 6
WI 1 4 12 8 8 10 6 4 4 3 3
WI 2 60 46 36 26 23 24 19 22 20 19
WI 3 35 23 28 27 22 23 22 18 19 20
WI 4 53 49 38 31 33 31 28 21 18 17
WI 5 49 35 33 29 29 28 26 25 23 21
WI 6 25 14 13 9 10 11 10 11 10 10
WI 7 25 16 17 13 10 9 9 10 8 9
WI 8 41 33 34 32 34 32 26 25 23 21
WI 9 42 23 19 15 16 16 15 16 19 11

WI total 398 275 243 201 195 190 167 160 148 137
WI in % 19.8 13.7 12.1 10.0 9.72 9.47 8.32 7.97 7.37 6.83

Table 2.5. The total number of wrong identifications for the U.S. Postal Service test set.

NBM stands for number of basis matrices and WI stands, as earlier, for wrong
identifications. The middle part of the table gives the distribution of the digits
that are identified wrong. It is clear that the more basis matrices that are used,
the better the algorithm performs. But this does not mean that the incorrect
classifications for all of the different kinds of digits decrease. The overall result
gets better. As an example of this examine the WI 3 row or WI 6 row in the table.

One interesting thought is to use different number of basis matrices for different
kinds of digits. This subject was not investigated in detail but the few tests made
indicate that such a construction is not beneficial for the overall result. The test
results are omitted.

Table 2.5 gives detailed information about the test results for the U.S. Postal
Service digits with ten basis matrices used in the algorithm, at most. Figure 2.9
gives the total error rate for both sets with up to 20 basis matrices.

It is obvious that the MNIST database is easier to classify. An equivalent
conclusion would be that the amount less well written digits in USPS database is
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Figure 2.9. Classification results with 20 basis matrices for both data sets.

greater than in the MNIST set. This classification algorithm gives approximately
an error rate of 6 % for the USPS test set and 3 % for the MNIST test set for the
optimal number of basis matrices.

2.4.4 Test 4

It is not always desired to classify as many objects as possible in all applications.
Sometimes it is more important to be confident that an algorithm makes the right
classification in every case. If there is a high risk that a wrong classification is to
be made then the particular object should be sorted out as unidentified. This is
easily taken care of if an extra condition is added to the second step in the test
phase of the algorithm. The condition is: If the lowest minimum is significantly
lower then all the other minima then take the label of that basis set.

This idea was implemented in a fourth series of tests simply by comparing the
lowest minimum for each number to the second lowest minimum. If the difference
is bigger than a given value, let us call it buffer value, then classify as before. But
if the difference is smaller then sort out the digit as unidentified. The latter would
mean that there is at least one other minimum in the buffer region. The results
for six tests with increasing buffer value from top to bottom are given in table 2.6.
SO stands for sorted out, which is the same as the number of unidentified digits.

Increasing the buffer value makes the algorithm become more reliable. The
price for this confidence is the large number of unidentified digits. Increasing the
number of basis matrices also gives less wrong identifications. But the number of
correctly identified digits does not necessarily increase. This is clearly seen in the
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NBM 1 2 3 4 5 6 7 8 9 10

RI 1528 1658 1690 1751 1743 1746 1761 1786 1806 1816
WI 260 186 160 119 125 112 92 95 86 83
SO 219 163 157 137 139 149 154 126 115 108
RI 1440 1571 1619 1660 1667 1666 1681 1696 1712 1723
WI 167 116 95 69 66 68 52 57 51 51
SO 400 320 293 278 274 273 274 254 244 233
RI 1332 1467 1503 1547 1560 1576 1591 1595 1606 1608
WI 102 71 52 34 40 34 33 31 27 29
SO 573 469 452 426 407 397 383 381 374 370
RI 1271 1372 1389 1433 1462 1469 1471 1485 1490 1489
WI 59 39 25 20 18 19 20 17 17 16
SO 731 596 593 554 527 519 516 505 500 502
RI 985 1139 1131 1181 1198 1207 1195 1191 1157 1137
WI 17 10 9 7 7 4 6 6 5 5
SO 1005 858 867 819 802 796 806 810 845 865
RI 757 883 898 944 940 896 874 857 729 701
WI 6 4 5 4 5 4 4 4 1 1
SO 1244 1120 1104 1059 1062 1107 1129 1146 1277 1305

Table 2.6. Results from six series of tests with test digits from the U.S. Postal Service
set. The number of basis matrices is varied from 1 to 10 in each series. The buffer values
are in the order 1, 5, 10, 15, 20 and 25 in the different series.

last test in table 2.6.
One might also suspect that correctly identified digits are shovelled over to

the unidentified digits when increasing the number of basis matrices. And this is
exactly what happens. Increasing the number of basis matrices for a class gives a
lower minimum for the least squares problem. The consequence of this is a higher
probability that another minimum gets into the buffer region with the result of
sorting out the digit.

2.5 Analysis and discussions

In this last part of the chapter the algorithm will be analysed and discussed in
several sections. The point is to better understand the theory and get some insights
of why and when the classification algorithm will perform acceptably well.

2.5.1 Vector space interpretation

The entire theory can be viewed in a second way in very simple linear algebra terms.
The digit images are represented as matrices but they could also be presented as
vectors. Then one might look at these vectors as objects of a high dimensional
vector space. If the size of the images are (m×n) then the vectors would have mn
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elements and be a vector in Rmn. It is natural to assume that digits of the same
kind are close to each other in this space, at least closer to digits from its own class
than to digits from any other class. This would imply that the different classes are
somewhat separated in space. I.e. all the ones are gathered in a certain region, the
twos are gathered in another region and the same for the other classes.

The process of computing the basis matrices with help of the SVD on the
training set would correspond to building a subspace for a given class. The SVD
gives automatically basis vectors that span the subspace in a way that most of the
variation in the training set is taken care of. A subspace is computed for each class.

Then there is the least squares minimization problem. An unknown digit is
somewhere in Rmn. Now we have to decide which class it belongs to. It is most
likely that the unknown digit belongs to the closest located class. One way to mea-
sure the closeness of a vector in space to a given subspace is to take the orthogonal
projection of the vector into this subspace. Then the vector is split in two parts.
One of these lies in the subspace and the other, called the residual, is orthogonal to
the subspace. The closer the vector is to the subspace, the smaller is the norm of
the residual vector. The classification algorithm makes 10 orthogonal projections
into different subspaces. Each subspace symbolizes different digits, and the label of
the unknown is given by the subspace that gives the smallest norm of the residual
vectors. This is the interpretation of the least squares solution.

2.5.2 Angles between subspaces

In the previous section a subspace interpretation of the basis sets was discussed.
In this section the relations between different classes will be discussed. Once again
the basis matrices for a given class are considered as basis vectors spanning a
subspace. And the question is how close a given subspace is to another given
subspace. The question is very relevant because the answer will give information
about the closeness of the different regions in the space, in which the digits are
grouped.

For example the threes, the fives and the twos have shapes pretty similar to
each other. One would expect that their regions in this high dimensional space are
close. Then comes other questions: is this good and if not how bad is it? Can the
regions be separated? Knowing the answers to these questions will give a further
understanding why the algorithm works as it does or perhaps why it does not work
well as one might expect.

Let F and G represent subspaces in R
m. Then a set of angles, called the

principal angles, is derived measuring how much these subspaces are separated. A
method of computing the principal angles between two subspaces is described in
Golub [6]. The basis vectors spanning the subspace for one class are the columns
of F and the basis vectors for the other class are the columns of G. Table 2.7 gives
a few sets of angles between subspaces.

The principal angles are for the classes given in the first two columns. The
dimension of the subspaces was chosen to be eight. This means that the first eight
basis matrices for each class were used. First thing to notice is that the angles
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Class of F Class of G The principal angles

0 1 0.30 0.91 1.22 1.32 1.45 1.51 1.54 1.56
1 3 0.37 0.95 1.38 1.43 1.45 1.50 1.53 1.56
1 5 0.30 1.01 1.29 1.33 1.43 1.47 1.54 1.55
2 5 0.30 0.87 0.99 1.08 1.27 1.32 1.43 1.56
3 5 0.30 0.38 0.67 0.74 0.90 1.14 1.37 1.50
3 8 0.30 0.56 0.77 0.80 1.14 1.31 1.42 1.54

Table 2.7. Principal angles between some of the classes given by F and G.

are between 0 and π/2 as they should be. If two vectors are separated as much
as possible, then they are orthogonal and the angle between orthogonal vectors is
π/2. Second thing to notice is that the first three sets of angles are typically a bit
higher than the last three sets. But then again the last three sets of angles are
taken between similar in shape digits. The first three comparisons - zero to one,
one to three and one to five are not so similar and the angular distribution is rather
much the same.

This is a confirmation that some digits are closer to each other in the high di-
mensional space. This will result in difficulties when trying to identify an unknown
digit that belongs to classes who are close to each other, especially if it is less well
written.

Increasing the number of basis matrices when describing a class gives better
performance of the algorithm, but increasing the number of basis matrises also
makes the risk for intersection between subspaces bigger. This would result in that
an unknown digit can be written arbitrarily well as a linear combination of the
basis for some other class than its own. This is not a desirable situation! If the
number of bases is kept low, the algorithm will also need less memory and run
faster, which is a positive effect.

2.5.3 Singular values

The question of how many basis matrices that are needed in the algorithm is of
crucial importance. The algorithm performs better if the number of basis matricis
is increased, but then the memory requirements and the computation time will
increase. One way, besides tests, to decide the number of basis matrices for each
class is to examine the singular values for the training tensors in the third mode.
This is the same as examining the norms for the basis matrices given that they are
not normalized.

Figure 2.10 gives the singular values along the third mode for the tensors con-
taining the ones, the twos and the threes. These third mode singular values reflect
the nature of the source tensors from the training set. Ideally it is desired that the
singular values decrease towards zero as fast as possible. If this was the case the
variation of the digits in the same class would be very small. I.e. the variation of
the digits of the same class from the training set is given of the third mode singular
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Figure 2.10. Singular values for three digit classes.

values. Examine the three curves in figure 2.10. The singular values for the ones
decrease with the highest rate. The singular values for the twos are considerably
higher and the singular values for the threes are placed somewhere in between.
This is in total agreement with the presented test results. The ones are easy to
find and the twos are relatively hard to identify. The classification of the threes is
harder than for the ones but not quite as difficult as for the twos. This reasoning
implies that the natural variation of the threes is greater than for ones. The twos
have even higher variation.

This is not as strange as it might sound. On the contrary it is very logical if
the actual look of the different digits is considered. It is quite clear that a one is
a simpler digit than a two or a three. Analysis of the singular values can be very
useful to get an idea of the variation of the objects in a given class.

2.5.4 Residual curves

In general increasing the number of basis matrices gives overall better results but
the error for different classes do not necessarily decrease. This was already men-
tioned earlier and test results confirming this is found in table 2.5. In this section
the minima of the least squares problem will be examined. Especially we will see
the progress of the smallest minimum of a badly written digit. Consider the digit
in figure 2.11, it is no doubt that the five is badly written.

The curves in next figure are all the minima for a given number of basis ma-
trices and the 10th values are the values for the zero class. The rings indicate the
minimum of a curve. Therefore the rings also indicate the output of the algorithm.
For example the smallest minimum in the curve of one basis matrix occurs at four.
This is not the right answer of course, because the digit is a five. Increasing the
number of basis matrices to three gives a new minimum, namely at eight, but still
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Figure 2.11. A badly written five from the U.S. Postal Service set.

not the right one. Adding another basis matrix gives the right answer - at last the
minimum is at five. These curves are in the first part of figure 2.12.
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Figure 2.12. Residual curves for the five above.

Continuing this procedure, increasing the number of bases, shows that the min-
imum does not remain at the right place just because it was there previously. The
second part of the figure is a continuation of the residual curves. The curve for
four basis matrices is the same as in the first part. The other curves are for five
and six basis matrices. The minimum jumps to seven and then backs to five again.
In five cases the algorithm gives four different outputs. This is not a desirable
characteristic of the ugly digits or of the algorithm.

Notice that the curves are completely under each other, no intersections. This is
natural because increasing the number of basis matrices gives a smaller minimum,
for all the classes.

Notice also that the minimum for some classes decrease a lot and others almost
do not decrease at all. In terms of the subspaces spanned by the basis matrices it
can be interpreted in the following way. When increasing the number of basis the
subspaces for the classes are enlarged. All digits have their specific places in the
high dimensional space and adding a new basis matrix enlarges the different sub-
spaces in different directions in space. Some of these directions are towards a given
digit, others not. If the subspace is enlarged in the wrong way the minimum will



28 Classification by Singular Value Decomposition of Tensors

not be affected, but if the subspace is enlarged toward a given digit the minimum
will decrease considerably.

2.5.5 Number of operations

How fast an algorithm performs a classification is of great importance in real appli-
cations. The training phase of the algorithm is also important even though it is not
relevant at all in an actual application. An overview of the amount of computation
needed to construct this algorithm is given below.

Training phase

In this algorithm the only thing done in the training phase is the computation of
the basis matrices, which are stored and available at any time in the test phase.
Inserting equation (2.12) in (2.19) gives

B = A×3 U(3), (2.23)

which is a consequence of property (2.5). The slices of B are the basis matrices for
the class in question. Thus the only computations needed for computing the basis
matrices for one specific class is the usual SVD of the third mode unfolding A(3)

and a third mode multiplication equivalent to a usual matrix product.

There are several algorithms for the SVD computation and Golub [6] gives the
number of operation or flop counts for a specific algorithm to be approximately
4m2n + 22n3, assuming an (m × n)–matrix. The matrix product between two
matrices A ∼ (m × n) and B ∼ (n × p) takes 2mnp flop counts.

Having a (I1 × I2 × I3)–tensor would give SVD of (I3 × I1I2)–matrix, which is
approximately (1000 × 800) for digits from the MNIST database, and a product
with a (I3 × I3)–matrix from left. In these terms the total amount of flop counts
for one class would be

6I2
3I2I1 + 22I2

2I2
1 .

In our case there are ten classes, but the digits in the training sets are not equally
distributed. Therefore the total number of operations will be approximately ten
times the expression above.

Test phase

In the test phase a series of scalar products between (I1 × I2)–matrices are com-
puted. Each scalar product is equivalent to a (I1I2) sized vector scalar product.
Assuming that the algorithm uses m basis matrices for each class and there are
ten classes the total number of operations needed to be calculated in an actual
application is approximately

20mI1I2 + 10m.
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Besides these calculations a comparison test between ten numbers to get the min-
imum is also done in each classifications. Notice that the operations above are for
classification of only one digit.

One of the advantages of this algorithm is that all the computation of the bases,
i.e. the training phase, is done off–line, before the classification device is put in
use. The only computations that are needed in real–time, when the device is in
use, are the operations given in the test phase.

2.5.6 Last comments

Firstly, the theory is so basic that researchers proposed a pattern recognition al-
gorithm using principal components, which is very close to SVD, as early as in
the seventies. In an article written by Wold [15] the algorithm was applied in a
small recognition problem involving three different classes. In a more recent article
from 1997 [8], the classes for handwritten digits were modelled using SVD. The
subspaces spanned by the basis matrices are models of the different classes for the
digits. The main difference between the theory in those articles compared to the
theory in this report is that they worked from a matrix and a statistical point
of view, while the theory here was presented in the framework of tensor theory.
The HOSVD and the basis matrices make this theory very easy to overview and
is intuitively attractive in the terms presented. Of course all the results could and
can be achieved only in terms of matrices but then again it would be a bit messier.

Secondly, the U(1) and U(2) matrices are not used in any way. These matrices
can be used for compressing the data, suggested in [3] and [4]. The method is
applied to electronic nose sensor data with promising results. It would not be
beneficial to compress the source data along the first and second mode in our case
because the digits are already quite small, but in other applications with bigger
objects to classify the method might have significant role in reducing the amount
of computation and memory requirements.

Another analysis on this algorithm, that might give further insights and per-
haps improve the performance, would be to examine the distributions of the αi

coefficients in equation (2.21). A quick check of this revealed that different dig-
its have different coefficient distributions. How this fact can be useful is an open
question. Perhaps it might be useful for detecting less well written digits.
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Chapter 3

Tangent Distance

Classification

The main parts of this chapter are the introduction of the tangent distance, tangent
vectors and implementing these ideas in a classification algorithm. Finally some
tests and results will be presented.

Usually there is a large variation of the digits in a given class. The digits might
have different styles, they can be rotated, written big or small, and the lines might
be thin or thick. All these and other factors contribute to the variation of the digits
in the class. At the same time digits from different classes might be very similar
to each other. Clearly a good algorithm has to distinguish between the differences
within a class and the differences between classes. The algorithm described in the
previous chapter takes only the greatest variation into account when classifying.
This is not an optimal way of identification if the aim is to minimize the error rate.
The thought behind the tangent distance is to address and handle different kinds
of invariant transformations.

3.1 Transformation invariance

The closeness between different objects in a number of classification algorithms can
be measured through the Euclidean distance. Nearest neighbour or the k–nearest
neighbours classifiers in [13], [7] are examples of such algorithms. The Euclidean
distance between two vectors x and y in R

n, written d
E
(x,y), is given by

d
E
(x,y) =

√√√√
n∑

i=1

(xi − yi)2. (3.1)

The nearest neighbour classifiers calculate a distance, for example the Euclidean
distance, between an unknown and all the prototypes. The digits in the training
set would be the prototypes and the unknown is labelled as the label of the closest

31
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digit. The label of the majority of the k closest digits gives the decision in the
k–nearest neighbours classifiers.

In this context the digits are represented as vectors as seen and commented on
earlier. For the envelope digts (USPS), which are stored in 16 × 16 grey level pixel
images, are seen as vectors of a 256 dimensional space called pixel space [14].

The problem with the Euclidean distance is its high sensitivity to different kinds
of transformations. Consider a translation of some digit along the x– or y–axis.
The Euclidean distance between a digit and a translated version of the same digit
is clearly not zero and it might increase if the translation is made bigger. Such
a translation should not affect the distance measure at all. But the Euclidean
distance cannot take this property into account and often causes misclassifications.
There is a need for a distance measure that is invariant to translations in the pixel
space.

Translation is only one kind of transformation that the distance measure should
be invariant to. Other transformations such as rotations, line thickening or thin-
ning, scaling and others should also be invariant in the measured distance.

In the case of character recognition these transformations are familiar [14]. It
is not obvious to what kind of transformations the distance measure should be
invariant to in other applications. Therefore the transformations are application
specific and have to be predefined.

In many cases even small differences do cause wrong classification in nearest
neighbour algorithms. Consider the digits in figure 3.1. The first digit is an un-
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Figure 3.1. According to the Euclidean distance the unknown digit is closer to prototype
B even in this simple case.

known to be classified. The other two are prototypes with known labels. Calcu-
lation of the Euclidean distance between the unknown and the two prototypes A
and B gives 13.9 and 13.6 respectively. Thus a smaller distance for prototype B
resulting in a wrong classification even in this very obvious case. A small clockwise
rotation, a bit line thickening and resizing the pattern are the transformations in
question that after transforming the unknown might give the right answer.

To sum up the discussion so far, the desired distance measure has to filter out
the variations inside a class and at the same time be able to detect the differences
between separate classes in the classification process.
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3.2 Tangent distance

This section is intended to describe the tangent distance [14]. First some assump-
tions have to be made. All the digits in both the training and test set are considered
as vectors in pixel space. The dimension of the pixel space is 256 for the envelope
digits and 784 (= 28 × 28) for the MNIST digits. The second assumption is that
the invariant transformations are already defined and continuous. These transfor-
mations will be described closely further ahead in this chapter.

3.2.1 Set of transformations and manifolds

Consider any given pattern p and its translated version along the x–axis. The
transformation or the translated version can be written s(p, αx) where αx is the
amount of translation. αx is a variable in this case and letting it vary continuously
a whole set of translated versions of p is produced. This set constitutes a one–
dimensional curve in pixel space. The curve is continuous because αx is varying
continuously and the transformation function s(p, αx) is continuous. Remember
that all digits are presented as vectors therefore the pattern is denoted with bold
lower–case letter.

Introducing other kinds of transformations such as translation along the y–axis,
rotation and scaling would give four parameters to vary, appropriately denoted αx,
αy, αθ and αsca. The set of transformed patterns that are obtained by varying the
α parameters in s(p, (αx, αy, αθ, αsca)) = s(p, α) gives a four–dimensional surface
in pixel space. In general n transform parameters in α gives a manifold for the set
of all transformed patterns. The word manifold should be interpreted as a higher
dimensional surface embedded in pixel space. The dimension of this manifold is at
most n. Denoting the manifold Sp, we can write

Sp = {x : x = s(p, α)}, (3.2)

where α is a vector with allowable transform parameters. The general transform
functions s(p, α) is assumed to be differentiable with respect to p and all the
transform parameters αi [14]. Furthermore it is required that s(p,0) = p.

This manifold can in principle be used in the following way. For every unknown
digit to be classified the manifold could be calculated. We could also calculate
the respective manifolds for the prototype digits. Doing this we would have two
manifolds in pixel space. The true invariant distance between an unknown and
a prototype digit would be the minimal distance between these two manifolds or
surfaces.

Practically there are problems with this approach. Consider the rotation pa-
rameter. Small rotations are no problem, but rotating a given number, for example
a ”6”, would eventually give a ”9” and vice versa. This is not good because all the
sixes and nines would melt down to one class and separating them through this
invariant distance would be impossible. These manifolds give global invariance but
only local invariance is desired. Another serious problem is that in most applica-
tions there is no simple analytical expression for the manifold Sp in equation (3.2).
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Even if the expression for the manifolds were given, finding this minimal distance is
a non–linear problem with multiple minima. These kinds of minimzation problems
are very difficult to solve.

3.2.2 Illustration of the tangent distance

Consider s(p, αx) again, the non–linear one dimensional curve in pixel space rep-
resenting all the translated versions of pattern p. A local approximation of this
manifold (curve) can be obtained by a first order Taylor expansion of s(p, αx)
around αx = 0. The linear approximation is given by

s(p, αx) = s(p, 0) + αx

∂s(p, αx)

∂αx

+ O(α2
x) ≈ p + αxt, (3.3)

where t = ∂s(p,αx)
∂αx

, evaluated at αx = 0, is called the tangent vector. Obviously
the local Taylor approximation is given by the pattern p and the tangent vector t.

This is illustrated in figure 3.2. The elements in the upper row are x–translated
variants of the pattern in the transformation function, starting with two pixels to
the left, one to the left, no translation i.e. the original pattern, one pixel to the
right and finally two pixels to the right. The linear approximation of the non–linear
manifold is presented in the row below. It is the same as the right hand side of (3.3).
The pattern p and the tangent vector t are reshaped to matrices and five different
approximations with the corresponding αx are given. The approximations are good

s
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Figure 3.2. First row is exact x–translations of the pattern P, which are elements of the
manifold SP. The elements in the second row are approximations all lying on the tangent
plane, in this case it is a tangent line.

for the inner two digits with αx = ±3 but less good for the outer digits. This is
a clear consequence of omitting the higher order terms in the Taylor expansion in
(3.3). It should be noticed that αx is not the wanted translations in pixels. Notice
also that nothing is said about how the tangent vector is computed. The objective
is only to present the structure of the manifolds and the vectors on them. The
tangent vectors will be the subjects of the next section where they will be analysed
in detail.

Approximation of both manifolds, the one belonging to the unknown and the
other belonging to the prototype, will give two lines. The tangent distance is then
defined to be the smallest distance between these two lines. This problem, on
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the other hand, is a linear one and the solution is easily computed with effective
algorithms.

In general there are n transform variables. Taylor expansion of the manifold Sp

gives n tangent vectors. Each tangent vector is a partial derivative of the transform
function s(p, α). The corresponding expression for equation (3.3) is

s(p, α) = s(p,0) + α1
∂s(p, α)

∂α1
+ α2

∂s(p, α)

∂α2
+ · · · + αn

∂s(p, α)

∂αn

+ O(|α|2) ≈

≈ p + α1t1 + α2t2 + · · · + αntn =

= p +
(

t1 t2 . . . tn

)
α = p + Tα. (3.4)

The columns of matrix T are the different tangent vectors and right hand side of
equation (3.4) is interpreted as a hyperplane, also called tangent plane, in pixel
space. Planes with higher dimensions embedded in a high dimensional space are
called hyperplanes.

Figure 3.3. Illustration of the manifolds SE and SP and the distance between them, the
Euclidean distance between the unknown P and the prototype E, the linear approxima-
tions and most importantly the Tangent Distance.

The whole concept is illustrated in figure 3.3. There are two patterns, P and
E. These are still vectors but are denoted with capitals for aesthetic reasons. The
line between P and E is the Euclidean distance. Varying the respective transform
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variables in s(P, αP ) and s(E, αE) two manifolds are produced, SP and SE . These
manifolds are not linear and therefore presented as curves. The true invariant
distance between P and E is the minimal distance between the two manifolds,
also drawn in the figure. The Taylor approximations are the tangent lines of these
manifolds at P and E. These tangent lines do not intersect in pixel space and the
minimal distance between them is the tangent distance [14]. The dimension of the
hyperplanes (the tangent lines in the figure) is much smaller than the dimension
of the pixel space and the probability that two hyperplanes belonging to different
patterns will intersect is extremely, vanishing small.

3.2.3 Implementation of the tangent distance

In this section the computation of the tangent distance will be described. It is
assumed that all the tangent vectors are computed. Suppose that there are n
transform variables and the pattern p is given. A first order hyperplane approx-
imates the non–linear manifold Sp. This hyperplane is tangent to Sp at p. The
tangent vectors, which are the partial derivatives of the transform function evalu-
ated at α = 0, together build a matrix giving the tangent plane. The expression
for this matrix Tp, as in (3.4), is

Tp =
∂s(p, α)

∂α

∣∣∣∣
α=0

=

[
∂s(p, α)

∂α1
,
∂s(p, α)

∂α2
, . . . ,

∂s(p, α)

∂αn

]

α=0

. (3.5)

Letting TPp symbolize the entire tangent plane, the tangent distance between
the patterns p and e can formally be defined by

dTD(p, e) = min
x∈TPp,y∈TPe

||x − y||, (3.6)

where TPp and TPe are the respective tangent planes. The equations for the
tangent planes TPp and TPe are explicitly given by

p′(αp) = p + Tpαp, (3.7)

e′(αe) = e + Teαe. (3.8)

Now x and y are on the tangent planes given by (3.7) and (3.8) with certain values
of αp and αe respectively. Inserting the equations into (3.6) we get a minimization
problem to solve. The terms are either vectors or matrices. Restructuring the
elements the whole minimization problem boils down to the least squares problem
given below.

dTD(p, e) = min
αp,αe

||p + Tpαp − (e + Teαe)|| =

= min
αp,αe

∥∥∥∥
(

Tp −Te

)( αp

αe

)
− (e − p)

∥∥∥∥ = min
x

||Ax − b||.

All the presented thoughts until now are found in [14], but some of the problems
we have chosen to solve in different, maybe more efficient, way. The first departure
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from [14] is made when solving the least squares problem. Notice that the primary
interest is to get the residual of the least squares problem, not the specific vector
x that gives the solution for the minimum.

Knowing this, the minimization problem can be split up into two separate
problems, the first one where the matrix A is non–singular and the second one
where A is singular. In almost all cases A will be non–singular but to guarantee
that the algorithm works every time the case of A being singular must also be
considered. The meaning of a singular A is that the two tangent planes have
parallel tangent vectors.

Case 1: A non–singular

Assuming that A is non–singular and knowing that its dimensions are approxi-
mately 250 × 15 the minimization problem is solved conveniently using the QR
decomposition of A. Let A = QR, where Q is an orthogonal matrix and R trian-
gular matrix. Then the least squares problem can be written as

‖b− Ax‖2 =

∥∥∥∥Q
Tb−

(
R
0

)
x

∥∥∥∥
2

=

∥∥∥∥
(

c
d

)
−

(
Rx
0

)∥∥∥∥
2

=

= ‖c− Rx‖2 + ‖d‖2.

Minimum is obtained by choosing x = R−1c. Then the first term in the right hand
side vanishes and the norm of the residual and the minimum is given by ‖d‖.

Case 2: A singular

In the case when A is singular a similar solution method is used but this time with
SVD instead of QR. Let A = UΣV T , z = V T x and c = UTb. Then

‖b− Ax‖2 = ‖UTb − ΣV Tx‖2 = ‖c− Σz‖2 =

∥∥∥∥
(

c1

c2

)
−

(
Σr 0
0 0

)(
z1

z2

)∥∥∥∥
2

= ‖c1 − Σrz1‖
2 + ‖c2‖

2.

Choosing z1 = Σ−1
r c1 causes, once again, the first term to vanish and the minimum

is ‖c2‖. More detailed information about these solutions is found in [6] and [16].

3.2.4 Illustration

In this section some illustrative results are presented. The difference between the
Euclidean and the tangent distance will be illustrated when those are used in simple
classification tests. We will have 10 known digits, one of each kind arbitrarily
chosen from the test set. Those digits are presented in figure 3.4. Both distances,
the Euclidean and the tangent distance, will be computed between a specific digit,
namely the 3 in the figure, and all the other numbers in the figure including itself.
This will be done for a whole series of x–translated versions of the 3. The amount
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Figure 3.4. These 10 digits were used in the distance tests.

of translation is given in the x–axis and is ranging from four pixels to the left and
four pixels to the right. The results are given in figure 3.5. The Euclidean distances
are presented in the first graph and the tangent distances in the second. Notice
first of all that there are 10 curves in each graph, one for each digit. On each curve
there are 9 markers at the integer values of the x–axis. Those are the computed
distances.

Examine the graph labelled with 3. The distance between the original 3 and
itself is 0, for both distances. This is seen in the both graphs and is nothing strange,
on the contrary it is trivial. But when the 3 is translated and both distances are
computed to the original 3 the tangent distance remains low for a bigger interval
than for the Euclidean distance. The local invariance property is clearly seen for
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Figure 3.5. Test results between the digits from figure 3.4. Both the Euclidean and the
tangent distance is computed between the translated versions of the 3 and all the other
digits.

the tangent distance. If this test is considered as a nearest neighbour classification
the tangent distance gives a correct answer for a bigger translation interval. Look
at the Euclidean distance. After a translation of the 3 two pixels to the left and
three to the right the smallest minimum or the nearest digit is no longer the 3 as it
should be. This interval is enlarged in the case with the tangent distance and the
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classifier makes a wrong decision only when the 3 is translated four pixels to the
left. Similar results are obtained for other digits and transformations. Analogous
results with figure 3.5 are also presented in [14] and [9] for the same dataset.

3.2.5 Some comments

Hierarchy of distances

This method is very computationally heavy. There are several ways to reduce the
amount of computations. One way is to use a hierarchy of distances as described
in [14]. Such a hierarchy is for example the Euclidean distance with increasing
resolutions and the tangent distance with increasing number of tangent vectors.
The idea is first to use simple and fast algorithms and, as the classification gets
more difficult change to a distance measure higher in the hierarchy and eventually
use the full tangent distance only on the hardest classifications. According to the
article [14] the overall computational cost is thereby greatly reduced.

One–sided tangent distance

Another way of reducing the amount of computations is to use so called one–sided
tangent distance. Everything is the same as before but the tangent vectors for one
of the comparing patterns is completely omitted. This gives fewer tangent vector
computations and smaller minimization problems [14], [9].

3.3 Tangent vectors

In this section the computation of the different tangent vectors will be described.
The mathematical background for the tangent vectors is rather complex. It involves
several mathematical fields. Most of the theory will be presented with details and
the results of other parts of the theory will be used without the proper derivation.

3.3.1 Blurring

The classification data can be preprocessed in several ways [12], [13]. Preprocessing
means that the digits we want to classify are changed with the purpose to get a
better result in the classification. Blurring and normalization are examples of
preprocessing.

According to Simard [14] blurring is of great importance for the identification
process, at least when classifying handwritten digits. The blurring can be described
as smoothing the pattern or making sharp edges and corners softer.

Different kinds of blurring can be obtained depending on the function used in
the operation. One usual function that is often used is the Gaussian function

g(x, y) = e−
x2+y2

2σ2 . (3.9)
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The standard deviation σ is used to control the amount of blurring. If σ is small the
blurring is small and if σ is big the blurring is large. This thought can be illustrated
by using the Gaussian function with one variable and plotting the function for few
σ. See figure 3.6 below. These functions can be interpreted as if we had an element
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Figure 3.6. Three plots of the Gaussian function g(x) with σ1 = 0.3, σ2 = 1 and σ3 = 4.

with only one pixel located at zero with amplitude one. The corresponding blurred
image would be one of the plotted functions depending on the blurring factor σ.
Usually only the values of the Gaussian function at the integers on the x–axis are
used. Figure 3.7 gives two examples with different σ together with the original
pattern. It is clear that we get a smother and softer image but we also see a danger

Figure 3.7. First image is the original pattern. This patterns is blurred with σ = 0.7
(the second image) and with σ = 1 (the third image).

in blurring an image too much. The gap in the lower part of the five is getting
smaller. Increasing σ will eventually close the gap in the lower part and the image
can be mistaken to be a six or even an eight because the gap in the upper right
side of the image will also close. The blurring is good and the more the better but
without causing any damage to the pattern shape that is vital for the digit.

3.3.2 Differential geometry concepts

Until now a very important stage in the derivation of the tangent distance has
been left out, namely the actual computation of the tangent vectors. The theory of
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differential geometry gives us the means to compute these tangent vectors. These
aspects of the theory will not be described in detail, but only the parts that are
necessary to continue this presentation.

Let f(x, y) be a continuous function with two variables that has the shape of
some digit. Imagine f(x, y) as a continuous equivalent of a discrete digit. Remem-
ber that all the digits in the data sets are discrete images. Assume that we want
to compute the tangent vector corresponding the transform variable αx, i.e. the
x–translation. The appropriate transformation is given by

tαx
:

(
x
y

)
7−→

(
x + αx

y

)
. (3.10)

Applying the action of this transformation to the function f we get the set of all
x–translated versions of the function f . This is written s(f, αx) and the non–linear
manifold is given by

Sf = {f ′ : f ′ = s(f, αx)}. (3.11)

Notice that this is in complete analogy with thoughts presented in section 3.2. The
only difference is that now we have a continuous function f instead of the pattern
p. s is seen as a functional that takes the function f and a transform variable αx

as arguments. Using the transformation tαx
and the function f we can write s as

s(f, αx)(x, y) = f(x + αx, y). (3.12)

Differentiating this around αx = 0 we get

∂s(f, αx)(x, y)

∂αx

∣∣∣∣
αx=0

=

[
∂f(x, y)

∂x

d(x + αx)

dαx

+
∂f(x, y)

∂y

dy

dαx

]

αx=0

=
∂f

∂x
. (3.13)

This approach gives an operator

Lαx
=

∂

∂x
, (3.14)

corresponding to the actual transformation and a way to compute the tangent
vector. In this case the tangent vector (here a more appropriate name would be
tangent function) is simply the x–derivative of the function f i.e. Lαx

(f) = ∂f
∂x

. The

linear approximation (the tangent plane) of the non–linear manifold is f + αx
∂f
∂x

,
compare with (3.3).

3.3.3 Computation of the tangent vectors

There are two parts left in the presentation of the tangent distance. One of them
is to connect the continuous function f(x, y) with the discrete images of the digits.
This is the subject of this section. The other part is to present all the transfor-
mations that are used in the classification. These transformations are given in the
next section.
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Thus we need a way of transforming the discrete vector images to continuous
functions. Let the pattern p be given. Reshape this vector to a matrix, as it would
be displayed on a screen. Then the pattern could be written as P [i, j] where i and
j are integers covering the domain in the xy–plane. For every i and j the value of
P [i, j] is given by the corresponding pixel value. This can be written as a single
discontinuous function using the delta function δ(x). The result is

P ′(x, y) =
∑

i,j

P [i, j]δ(x − i)δ(y − j). (3.15)

Convolution of P ′ with a Gaussian function yields a continuous function f . The
Gaussian is the same as in equation (3.9) and the mapping is given by

C : P 7−→ f = P ′ ∗ gσ. (3.16)

This convolution gives the two dimensional continuous function representing the
pattern p as follows

f(x, y) = P ′ ∗ gσ(x, y) =

∫∫
P ′(ξ, η)gσ(x − ξ, y − η)dξdη =

=
∑

i,j

P [i, j]gσ(x − i, y − j). (3.17)

This is clearly a continuous function because it is a sum of two–dimensional Gaus-
sians.

The patterns can be made continuous in several ways by doing the mapping
C differently or by using some other function instead of the Gaussian function.
Simard [14] gives two reasons of why this mapping is favoured: The σ parameter
in the Gaussian can be used to control the smoothing factor, very similar to the
blurring process. As before blurred and smoothed patterns are preferred because if
the pattern is smooth the local approximation (the tangent plane) by the tangent
vectors will be valid in a greater interval around the pattern. The second reason
for the Gaussian is that when applying the transform operators Lα on the function
f the computation of the tangent vector becomes particularly easy. For the case
of x–translation the computation is

Lαx
(f) =

∂

∂x
(P ′ ∗ gσ) = P ′ ∗

∂gσ

∂x
=
∑

i,j

P [i, j]
∂gσ(x − i, y − j)

∂x
. (3.18)

Evaluating this two dimensional function at x = i and y = j over the domain of the
original image gives the corresponding tangent vector. This is in matrix form at the
moment, but reshaping it gives the tangent vector, and this time it is a vector with
the same size as the pattern. The whole computation is a series of multiplications of
the pixels from the original pattern and values from the two–dimensional Gaussian
taken from appropriate places and a summation.

Now it is time to present the different kinds of transformations.



3.3 Tangent vectors 43

3.3.4 Important transformations

In total seven different transformations were used. All of them are given in this
section together with the transform function, the corresponding operator and an
illustration of the transformation. Remember that the aim of these transformations
is to make the classification algorithm invariant with respect to the variation inside
a given class.

X–translation

The transform function that makes the classification algorithm locally invariant
with respect to translation along the x–axis is given by

tα :

(
x
y

)
7−→

(
x + α

y

)
. (3.19)

The corresponding operator is given by

LX =
∂

∂x
. (3.20)

This is the same operator as examplified in section 3.3.2. The action of the operator
is illustrated in figure 3.8. The lines drawn in the graphs are meant as support

Figure 3.8. The first graph is the image of the x–translation tangent vector. The second
and the fourth are translated images of the third one according to Px−tran = P +αT with
one negative and one positive α value. P is the third image and T is the tangent vector.

lines to better see the differences between the images.

Y –translation

The transform function that makes the classification algorithm locally invariant
with respect to translation along the y–axis is given by

tα :

(
x
y

)
7−→

(
x

y + α

)
. (3.21)

The corresponding operator is given by

LY =
∂

∂y
. (3.22)

The action of the operator is illustrated in figure 3.9. Support lines are also includet
in these graphs.
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Figure 3.9. The first graph is the image of the y–translation tangent vector. The second
and the fourth are translated images of the third one according to Py−tran = P +αT with
one negative and one positive α value. P is the third image and T is the tangent vector.

Rotation

The transform function that makes the classification algorithm locally invariant
with respect to rotation is given by

tα :

(
x
y

)
7−→

(
x cos α − y sin α
x sin α + y cosα

)
. (3.23)

The corresponding operator is given by

LR = y
∂

∂x
− x

∂

∂y
. (3.24)

The action of the operator is illustrated in figure 3.10. Notice that one of the

Figure 3.10. The first graph is the image of the rotation tangent vector. The second
and the fourth are rotated images of the third one according to Prot = P + αT with one
negative and one positive α value. P is the third image and T is the tangent vector.

rotations is clockwise and the other is counter clockwise.

Scaling

The transform function that makes the classification algorithm locally invariant
with respect to scaling is given by

tα :

(
x
y

)
7−→

(
x + αx
y + αy

)
. (3.25)

The corresponding operator is given by

LS = x
∂

∂x
+ y

∂

∂y
. (3.26)
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Figure 3.11. The first graph is the image of the tangent vector. The second and the
fourth are scaled images of the third one according to Psca = P + αT with one negative
and one positive α value. P is the third image and T is the tangent vector.

The action of the operator is illustrated in figure 3.11. We see that the same
tangent vectors makes the image both smaller and bigger depending on the sign of
α. The same is true for all the other tangent vectors.

Parallel hyperbolic transformation

The transform function that makes the classification algorithm locally invariant
with respect to streching is given by

tα :

(
x
y

)
7−→

(
x + αx
y − αy

)
. (3.27)

The corresponding operator is given by

LPH = x
∂

∂x
− y

∂

∂y
. (3.28)

The action of the operator is illustrated in figure 3.12. This operation can be seen

Figure 3.12. The first graph is the image of the tangent vector. The second and the
fourth are stretched images of the third one according to Ppar−hyp = P + αT with one
negative and one positive α value. Here P is the third image and T is the tangent vector.

as a stretching along one axis and compression along the other. Changing the sign
of α makes the operation in the opposite direction.

Diagonal hyperbolic transformation

The transform function that makes the classification algorithm locally invariant
with respect to a second type of streching is given by

tα :

(
x
y

)
7−→

(
x + αy
y + αx

)
. (3.29)
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The corresponding operator is given by

LDH = y
∂

∂x
+ x

∂

∂y
. (3.30)

The action of the operator is illustrated in figure 3.13. The difference here is that

Figure 3.13. The first graph is the image of the tangent vector. The second and the
fourth are stretched images of the third one according to Pdia−hyp = P + αT with one
negative and one positive α value. Here P is the third image and T is the tangent vector.

the stretching and the compression is done along the diagonals.

Thickening

The last transformation is the thickening and thinning transformation. The deriva-
tion is a bit different in this case. There is no simple form of the transformation
function so it will be omitted. The operator that does the job is presented with
some intuitive reasoning. Complete derivation is found in [14]. The thickening and
thinning operator is given by

LTT =

(
∂

∂x

)2

+

(
∂

∂y

)2

. (3.31)

The action of the operator is illustrated in figure 3.14. Here is the reasoning of why

Figure 3.14. The first graph is the image of the tangent vector. The second and the
fourth are thinned and thickened images of the third one according to Pthick−thin = P+αT

with one negative and one positive α value. P is the third image and T is the tangent
vector.

this works. We want to build a matrix for a given image that when adding this
matrix to the image the sum image gets thicker and when subtracting the matrix
from the image we want the image to get thinner. This means that we either
increase or decrease the grey levels in the pixels near the boundary of the shape
in the image. Using the square of the x–derivative operator we get a matrix that
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increases the grey levels on the left and right side of the shape. The corresponding
y–derivative operator changes the regions above and below the shape. Taking the
sum of both operators we get the desired tangent vector, see figure 3.14 again.

3.4 Algorithm 2

The identification process with the tangent distance is actually a nearest neighbour
classifier and the whole concept is summarized in the following algorithm.

1. Compute the tangent vectors for the unknown digit.

2. Compute the tangent vectors for all the prototypes.

3. Solve the least squares problems to get the tangent distance between the unknown
and the prototypes.

4. Take the label of the prototype that gives the smallest tangent distance as the
output of the algorithm.

Notice that this time there is neither training nor test phase in the algorithm. All
the digits in the test set are used as prototypes. This means that the whole test
set is a part of the algorithm and all the test digits have to be stored and available
when using the algorithm. This is one of the major drawbacks of this algorithm.
It is very memory demanding and computationally heavy. Performing one–sided
tangent distance decreases the amount of computation but makes the performance
of the algorithm worse.

Extending this algorithm to be a k–nearest neighbour classifier is straightfor-
ward. The only difference is that the label of the majority of the k–smallest tangent
distances is taken as the output of the algorithm.

3.5 Approximations and simplifications

The theory behind the tangent distance, described in the previous sections, is
very mathematical and not always suited for applications. At least not if it is
to be applied strictly. The algorithmic implementation of the tangent distance is
very slow due to the extensive amount of computations. Two different methods are
presented in the section which highly reduce the amount of computations performed
by the algorithm. First, the blurring operator will be approximated and second,
numerical derivatives on the patterns will be used instead of the derived operators.

3.5.1 Approximation of the blurring operator

Once again, the blurring of the patterns is very important. The error rate is greatly
reduced if the images are blurred before they are classified. The Gaussian function,
used in the blurring, is decreasing rather fast. One obvious way to approximate it
is to cut the tail off when it is low enough.
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The blurring factor is set to σ = 0.9, the same as Simard used in their exper-
iments. This σ value is considered to give high enough blurring without making
any damage to the information in the patterns. It will also be easy to compare the
achieved results.

Let us consider the one–dimensional equivalence of the two dimensional Gaus-
sian function in 3.9. This function is plotted in the figure below with σ = 0.9.
Taking the values of the three closest pixels we get g(1) = 0.54, g(2) = 0.085 and
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Figure 3.15. Plot of the one dimensional Gaussian g(x) = e
−

x2

2σ2 with σ = 0.9.

g(3) = 0.0039. We see that already three pixels away the function has decreased
considerably.

Consider the Gaussian with two variables. If the complete blurring is done
then we know that the Gaussian at every pixel has influence on every other pixel of
the image. This is because there is a Gaussian on every pixel and every Gaussian
covers the whole xy–plane. A pixel value of the blurred image is the sum of the
contributions from every Gaussian. For example if the images are 16 × 16 pixels
the computation of every pixel value (totally 256) involves a summation of 256
terms.

Applying the thought of cutting off the tail to the two–dimensional Gaussian
function is the same as letting the Gaussian on a pixel influence only the immediate
neighbourhood of the same pixel. Hopefully the error introduced by this approxi-
mation is small enough. The fast reduction of the Gaussian function argues that
this will work.

Look at figure 3.16. The squares are representing pixels on an image. The
coordinates of the square centres are integer valued. Suppose that there is a two-
dimensional Gaussian at the origin. The area with the darker squares is the neigh-
bourhood the Gaussian is allowed to influence. The maximum error from the
surrounding brighter area is calculated to be 0.0674. This is under the condition
that the images are normalized to a maximum pixel value of one. Zero is white
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Figure 3.16. The Gaussian influences only the immediate neighbourhood, the area
with darker squares, of the pixel at the origin. The maximum error originating from the
surrounding brighter area is calculated to be 0.0674.

and one is black. It should be observed that very few pixels are black. Most of the
pixels in the image are white and the probability that the whole surrounding area
has high pixel values is very low. Remember that the height of the Gaussian over
a pixel is given by the pixel value. The error from the surrounding brighter area is
probably much lower than the calculated maximum.

Doing this approximation reduces the summation terms to only 21, originally
256. The gain in computation time is enormous. But exactly how good is the
approximation? Figure 3.17 gives an example. We can notice a slight difference
between the two images. The first one is a bit darker than the second. How good
the performance is with the approximated blurring is found in the test section.

3.5.2 Numerical derivatives

The operators for the different tangent vectors are almost in every case a combina-
tion of x– and y–derivatives. These are theoretically applied to continuous functions
corresponding to specific digits. The tangent vectors are calculated through con-
volving the digits with the derivatives of the Gaussian (3.18). Applying this in an
algorithm would be hard and not very effective. The question we asked ourselves
was: Why not use numerical derivatives on the patterns as they are? An inves-
tigation with a few experiments showed that the operators can be approximated
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Figure 3.17. The first image is a complete blurring and the second is an approximation
of the blurring.

rather well with numerical derivatives.
This idea was implemented with central difference approximation of the deriva-

tive [5]. The central difference approximations of the x– and y–derivatives is given
by

∂f(x, y)

∂x
≈

f(x + h, y) − f(x − h, y)

2h
, (3.32)

∂f(x, y)

∂y
≈

f(x, y + h) − f(x, y − h)

2h
. (3.33)

The h in the equations is the distance between two pixels, which is one, and the
function f(x, y) symbolizes the image stored as a matrix. Using the P [i, j] instead
of f(x, y) and inserting h = 1 we get the following numerical derivatives,

Px[i, j] =
P [i + 1, j] − P [i − 1, j]

2
, (3.34)

Py [i, j] =
P [i, j + 1] − P [i, j − 1]

2
. (3.35)

The central differences are written as Px and Py where P is the image in matrix form
as displayed on the screen. We observe that the central difference approximation
takes pixel values outside the actual image. Extending the size of the image with
one pixel in each direction solves this problem.

The amount of computation for the tangent vectors is the same as for the
computation of the blurring of an image (if the original derivation is used). This
is because the derivative operation (x– or y–derivatives), applied on the convolved
image, can be moved in to act only on the Gaussian, see equation (3.18). In
this way the convolution is done with the derivatives of the Gaussian function.
The idea of approximating the blurring operator by cutting off the tail of the
Gaussian cannot be applied when computing the tangent vectors. The reason
for this is the look of the x– and y–derivatives of the Gaussian, they have high
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function values away from the origin and cutting off the tail of the derivatives is
simply not an approximation. This means that the complete convolution has to
be performed, at least when computing the tangent vectors. Furthermore, the use
of the Gaussian in the tangent vectors incorporates automatically the blurring of
an image. The image does not have to be blurred separately before its tangent
vectors are computed. If this was done the image would have been blurred twice.
Using numerical derivatives is much cheaper in computation compared with the
original derivative operations trough convlution. One and important difference is
that the blurring is not present in the numerical derivatives and therefore it has
to be applied on already blurred images. The whole phase of blurring the images
and computing the tangent vectors can be summed as: Blur the image with the
approximated blurring operator, compute the numerical x– and y–derivatives of the
blurred image and finally form the tangent vectors with the appropriate operations.

3.6 Tests and results

Only two tests were conducted using the tangent distance. In both tests the derived
approximation of the blurring and the numerical derivatives were implemented.
The algorithm was designed as a nearest neighbour classifier and all the tangent
vectors were used with a double–sided tangent distance calculation. The two tests
are actually the same but with a different approach.

3.6.1 Test 1

The first test was conducted in two phases. In the first part of the test only ten pro-
totypes were used in the classification. These prototypes were chosen as somewhat
ideal from each class in the training set. Reducing the amount of prototypes to
one pattern of each class decreases the amount of computations enormously. This
can be compared with ten tangent distance computations instead of over 7000 (the
total amount of prototypes). The output of the algorithm is the label of the digit
that gives the lowest tangent distance. It should be noticed that this is not a realis-
tic approach in reality because one digit together with the invariance properties of
the tangent vectors can not cover all the variation in a given class. The only reason
for this was to keep down the amount of computations. The performance is not
acceptable, as was expected and is given in the table below. The WI in the table

0 1 2 3 4 5 6 7 8 9 Total
WI 84 3 102 11 117 84 18 13 76 22 530

Table 3.1. Distribution of the incorrectly classified digits in the first phase of the test.

still means wrong identifications. Even though the result is poor it is surprisingly
good when taking into account that only 10 prototypes were used. This algorithm
is obviously good enough to classify correctly about 75 % of all the images with
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so few prototypes. Once again twos, fours, fives and zeros are harder to classify
correctly. Totally there are 530 wrong identifications in a test with 2007 unknowns.

The second part of this test is only on the 530 digits that were not classified cor-
rectly above. This time all the 7291 digits in training set were used as prototypes.
The test result is given in table 3.2. The achieved result is very good. The error

0 1 2 3 4 5 6 7 8 9 Total
WI 4 1 8 7 8 6 1 4 8 1 50

Table 3.2. Incorrectly classified digits in the second phase of the test.

rate is down at 2.5 % if we combine this with the first part of the test. Remember
that this approach of dividing the classification in two parts is not possible in real-
ity because there is no way of knowing witch digit is classified correctly and which
is not. Thus using this result to compare with presented results in other articles is
misguiding.

3.6.2 Test 2

The second test conducted was a complete one. All the digits in the training set
were used as prototypes in the classification of all the unknowns from the test
set. The result, given in table 3.3, is much more suited for comparison with results
from other articles. Totally there are 63 wrongly classified digits. This would mean

0 1 2 3 4 5 6 7 8 9 Total
WI 10 8 2 3 11 12 2 2 5 8 63

Table 3.3. Distribution of the incorrectly classified digits in the complete test.

that besides the 50 digits from the second part of the first test there are 13 more
digits that were incorrectly classified. 63 digits of 2007 is about 3.1 % and still
a very good achievement by the algorithm. We can compare this result with 2.5
% error rate in [14] for the same set of digits. The difference can be explained
by the blurring approximation and the numerical derivatives implemented in our
experiments. This loss in performance can be justified by the gain of computation
time due to the made simplifications.

3.7 Analysis and discussions

Some analysis and few comments are presented in this last section of chapter 3.
The analysis is a computation of the number of operations needed to perform
classification of one unknown digit. Finally an example is given of how this theory
is used with other purpose.
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3.7.1 Number of operations

The analysis presented here is valid only for the approximated version of the blur-
ring operator and when computing the tangent vectors with numerical derivatives.

Blurring operator

The approximation of the blurring is still used to imitate the blurring with the
two dimensional Gaussian function. This can be done as follows. For every pixel
compute all the contributions from the surrounding pixels with a weighted sum.
The weights in the sum are given by Gaussian function and the other terms are the
grey level values of the corresponding pixel. The value for one pixel, for the blurred
image, can be calculated with 24 arithmetic operations under the conditions that
all the weights are stored. If the size of the image is I1 × I2 pixels the complete
blurred image requires 24I1I2 arithmetic operations.

Tangent vectors

If the blurred image is computed the following operator computations are required
to get all of the tangent vectors:

∂

∂x
,

∂

∂y
, x

∂

∂x
, y

∂

∂x
, x

∂

∂y
, y

∂

∂y
,

(
∂

∂x

)2

,

(
∂

∂y

)2

.

The images corresponding to these operators can be computed with 10I1I2 flops.
To get the appropriate tangent vectors additional 5I1I2 flops are needed. This
gives totally 15I1I2 operations to get all the tangent vectors.

QR solution of least squares problem

Having all the tangent vectors the only thing remaining, to get the tangent distance,
is to solve the least squares problem in section 3.2.3. A least squares problem is
solved through QR factorisation with 2n2(m − n/3) flops [6], where m = I1I2 and
n the number of tangent vectors (=7) for the single–sided and double the numbers
of tangent vectors (=14) for the double–sided tangent distance.

Gathering all the phases we get about 430I1I2 flops for the computation of the
tangent distance between two digits.

3.7.2 Enlarging data sets

This theory is also useful in other purposes. Other classification algorithms as
neural network classifiers (not discussed previously) are strongly dependent on
having sufficient amount of patterns in the training set to get good performing
algorithms. If the training set is poor, and there is no way to get labelled patterns,
some kind of invariant transformation could be applied on the available patterns.
In this way artificial patterns can be produced from the existing patterns to enlarge
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the training set. It should be noticed that the invariant transformations inside a
given class have to be identified and implemented.

Enlarging the training set is not useful in our case because the tangent distance
between a given image and all of the transformed images computed with the tangent
vectors is zero. The new artificial images do not give any new information to the
training set and therefore do not contribute at all to the classification algorithm.
This whole theory can be seen in these terms as an algorithm that enlarges a
given training set and takes the digit from the enlarged set, which is theoretically
infinitely large, that is closest to a given unknown image in Euclidean norm.



Chapter 4

Combinations of TD and

HOSVD

The theories behind the algorithms, described in the previous two chapters, are
quite different. The memory usage in the HOSVD–algorithm is not big. The set of
the training digits is reduced to the orthogonal basis matrices for each class. If ten
basis matrices are used for each class and there are ten classes, the total number
of image–sized matrices, needed to be stored in the algorithm, is 100. This can
be compared with approximately 7000 digits for the USPS database and 10 000
digits for the MNIST database in the tangent distance classifier, where all of the
digits in the training set are stored in the algorithm. Taking into account that
each digit consists of 256 floating–point numbers (or digits) one concludes that the
reduction of the memory usage in the HOSVD–algorithm is enormous. Considering
the performance of both algorithms it is clear that the TD classifier does a better
job.

In this chapter we present two different methods of combining the theory of
the two algorithms. The first one incorporates the tangent vectors in the HOSVD
algorithm. The second incorporates the HOSVD in the tangent distance classifier.
Both methods are tested with the USPS database and finally some analysis and
comments are given.

4.1 HOSVD with tangent vectors

The idea for the first combination is the following: For a given digit, compute its
tangent vectors and consider the original digit together with its tangent vectors as
one object in a high dimensional vector space. Proceed with the classification in
the same way as described in chapter 2. This time the objects are not matrices but
third order tensors (or block tensors). The theory is the same as before but there
are obvious modifications in the implementation. Some of the details are given in
the subsequent section.
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4.1.1 Implenting HOSVD with tangent vectors

There are principally two different ways of computing the set of a basis matri-
ces, which are actually not equal but both are orthogonal and that is the main
requirement. Both methods are given below.

Method 1

One straightforward way of implementing the idea given above is to form the third
order tensors. Consider the four together with its tangent vectors reshaped to
matrices in figure 4.1. Those matrices are used to form a third order tensor in

Figure 4.1. The images of a four and its tangent matrices.

which the tangent matrices are the slices of the tensor. This is illustrated in figure
4.2. The whole third order tensor in the figure is considered as one object. If the

Figure 4.2. Illustration of the third order tensor formed by the tangent vectors and the
original image.

tangent vectors for all the digits in the training set are computed and reshaped to
third order tensors then we can build a forth order tensor. Assuming the size of the
matrices to be 16 × 16 and there are seven tangent matrices we get a third order
tensor with the dimensions 16 × 16 × 8. Each of these tensors corresponds to one
digit. If we have 100 digits then the forth order tensor would have the dimensions
16 × 16 × 8 × 100.

The first step in the HOSVD algorithm was to gather all the digits from a given
class and build a third order tensor. Applying this first step here gives a forth
order tensor. The dimension along the forth mode is the number of digits from
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the same class. This forth order tensor is used as a source tensor for the HOSVD
decomposition. From this decomposition the basis matrices are calculated but here
they are not matrices, they are third order tensors as the actual objects. A set of
basis, consisting of third order tensors, is calculated for every class. The next step
is to solve the least squares problems with the bases for each class. Also here is
a need for minor modifications to handle the tensor structure in the minimization
problem. The solution to the least squares problem is the same as before but
the scalar product is taken between tensors and not matrices. The output of the
algorithm is given as earlier.

To implement this algorithm, as described above, it would be necessary to
redesign almost all of the Matlab functions constructed in chapter 2. This was not
carried out. Instead the third order tensors were reshaped to matrices and those
matrices were used in the classification process precisely in the same way as in
chapter 2. The difference is that the matrices now are not representing a single
digit but all the eight matrices given in figure 4.1. By calculating the basis in this
way no new functions were needed. Observe that reshaping the basis matrices to
third order tensors gives the same end result as one would have obtained if the
algorithm was implemented to forth order tensors.

Method 2

Consider the digits as matrices and assume that HOSVD is performed as in chapter
2. Calculate one of the tangent vectors for the digits in the source tensor used in
the HOSVD. Form a new third order tensor, which consists of one of the tangent
vectors of the corresponding digits from the source tensor. Compute the HOSVD
decomposition and a set of orthogonal basis matrices of the tensor with the tangent
vectors. For every kind of tangent vector a third order tensor is build corresponding
to the digits from the original source tensor. Computing the HOSVD decomposition
for these tensors yields a set of orthogonal basis matrices for each kind of tangent
vector.

Now the basis for the different tangent vectors and the digits are orthogonal. If
we build a third order tensor with the first basis matrix for every kind of tangent
vector and the first basis matrix for the digits we obtain a tensor of the same size
as in figure 4.2. This tensor is set to be the first basis tensor. We continue building
basis tensors by taking the second basis matrices for the different kinds of tangent
vectors and the second basis matrix for the digits, the third basis matrices for the
tangent vectors and the digits, the fourth basis matrices, the fifth basis matrices
and so on.

The orthogonal property for tensors is given by the scalar product in definition
2.3. It is clear that each slice in the basis tensors is orthogonal to the slices in the
same positions from all the other basis tensors and thereby the whole basis tensors
are orthogonal. This is not true for the basis tensors calculated as in method 1,
the slices in the same positions in those basis tensors are not orthogonal but the
whole tensors are orthogonal. This property can be described in terms of matrices
in this manner: Consider two matrices A = [a1 a2 . . . an] and B = [b1 b2 . . . bn]
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in which the ai and bi are the respective column vectors. Assume that A and B
are orthogonal, i.e. 〈A, B〉 = 0. This corresponds to the relationship in method
1. The difference to method 2 is that not only the matrices are orthogonal but
also the column vectors from A and B with the same index are orthogonal, i.e.
ai · b

T
i = 0 for all i.

Having orthogonal basis matrices one can continue with the least squares prob-
lems in the same way as in method 1. But this is not the only way. The least
squares problems can be solved separately for every digit and every tangent vector
in exactly the same way as in chapter 2. Proceeding in this way does not neces-
sarily give better performance of the algorithm. The minimum of the least squares
problem for the digits already gives a first output alternative. If we suppose that
this output is incorrect, it would be required of the algorithm that the least squares
problems, belonging to the tangent vectors, give a different output. The contri-
bution of these least squares problems has to be in the right direction so that the
complete minimum accurse for some other class, that is potentially the right one.
It is not likely that solving the same problem for all the different tangent vectors
gives different answers because all of the tangent vectors are computed from the
same digits. This whole process can be seen as different preprocessings of the digits
before the classification is made.

Test results show that this method of incorporating the tangent vectors into the
HOSVD algorithm barely has any effect on the algorithm performance. In other
words the extra effort made in this section is redundant. Because of this the algo-
rithmic formulation will be omitted.

4.2 Tangent distance with HOSVD

The combination described in the previous section incorporates the tangent vectors
in the HOSVD algorithm without measuring the tangent distance. The combina-
tion can be done the other way around. In this section we incorporate the HOSVD
in the tangent distance classifier. By this we mean that instead of storing all the
digits in the training set we compute and store the basis matrices of each class as
in chapter 2, solve the least squares problem for every class. This gives ten virtual
digits, each one of them is a linear combination of the basis matrices for the differ-
ent classes. Finally the tangent distance is calculated between an unknown digit
and all ten virtual digits. The class of the digit that gives the smallest tangent
distance is the output of the algorithm. It turns out that this method can be an
alternative to the algorithms described in chapter 2 and 3.

4.2.1 Implementing TD with HOSVD

The implementation is straightforward since no new theory is required and all
the necessary functions are already constructed. Let Aj

i with j = 1, . . . , 10 and

i = 1, . . . , k be the same basis matrices as in chapter 2. Remember that Aj
i is the
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ith basis matrix for the jth class. k is the number of basis matrices for each class
and is a design variable needed to be determined.

Next step is to solve the least squares problems:

min
α

j

i

‖X−

k∑

i=1

αj
iA

j
i‖F

, j = 1, . . . , 10. (4.1)

Remember that X is the unknown digit to be classified. The solutions to the
minimization problems above give the coefficients aj

i in the linear combination
with the basis matrices. The virtual digits, denoted Zj , are given by

Zj =

k∑

i=1

αj
iA

j
i , j = 1, . . . , 10. (4.2)

All the tangent vectors are computed for every Zj and the last step is to calcu-
late the tangent distances, dTD(X,Zj), between X and the Zj . The output is
determined from the smallest tangent distance.

The details for all of these operations are found in the previous two sections.

4.3 Algorithm 3

The process described in the previous section can be formulated as an algorithm
in the following way.

• Training phase:

1. Collect the digits from the training set into tensors with digits of the same
type.

2. Compute the HOSVD of these tensors.

3. Compute and store the basis matrices. This is a data compression.

• Test phase:

1. Solve the least squares problem for each set of basis matrices, i.e. compute
the scalar products 〈X,Aj

i 〉 = αj
i for all i and j.

2. Compute the virtual digits Zj .

3. Compute the tangent vectors for the unknown and for the virtual digits.

4. Solve the least squares problems to get the tangent distances between the
unknown and the virtual digits.

5. Take the label of the virtual digit that gives the smallest tangent distance
as the output of the algorithm.

Notice that the training phase is the same as in chapter 2. Also the test phase can
be distinguished from the algorithmic formulations in the previous chapters.
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4.4 Tests and results

The conducted tests in this chapter were not so extensive as in the previous chap-
ters. But they are sufficient enough to get an idea of how well the algorithm
performs and draw some conclusions.

4.4.1 Test 1

The first tests were an implementation, described in method 2 previously, of the
combination of the tangent vectors with the HOSVD decomposition. In a first test
ten basis tensors for each class were used. The original digits were also blurred be-
fore the tangent vector computations. The basis tensors were computed from third
order tensor objects consisting of the blurred images (not the original) together
with their tangent vectors.

The algorithm gave 118 (error rate of 5.88 %) incorrect classifications. This
can be compared to 137 (error rate of 6.83 %) incorrect classifications in chapter 2
when ten basis matrices were used. There is a small improvement in the algorithm
with incorporated tangent vectors.

A closer investigation showed that this improvement in performance is not origi-
nating from the tangent vectors. It originated from the use of blurred digits instead
of the original digits. A second test was conducted only using the blurred images,
i.e. without the tangent vectors. The test is the same as the tests in chapter
2. This time there were 119 (error rate of 5.93 %) incorrect classifications. The
contribution of the tangent vectors is barely noticeable.

4.4.2 Test 2

The conducted tests when HOSVD is incorporated in the TD are presented in this
section. The tests are implemented according to algorithm 3 in section 4.3. Ten
tests were carried out. The number of basis matrices, when computing the virtual
digits, was varied in the tests. The more basis matrices that are used the better
approximations are the virtual digits of the unknown digit. The test results are
given in table 4.1.

NBM 2 3 5 7 8 9 10 12 15 20
WI total 155 153 138 115 116 112 109 112 111 125
WI in % 7.72 7.62 6.88 5.73 5.78 5.58 5.43 5.58 5.53 6.64

Table 4.1. The total number of wrong identifications in the different tests.

NMB stands for number of basis matrices and WI stands for wrong identifications.
First thing to notice in the results is that the performance is not as good as in
chapter 3. This is not strange, because here we skip the whole training set and
instead use virtual digits. The basis matrices, forming the virtual digits, obviously
cannot replace the whole training set without loss of quality. But compared to
the results in chapter 2 we have an improvement. Another positive effect is that
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good result is obtained with very few basis matrices. The results show that the
performance gets better when increasing the number of basis matrices up till ten.
Further increase of the number of basis matrices does not seem to give better
performance.

The result 109 WI, when using ten basis matrices, can be compared to the
second test in the preceding section with 119 WI, in which also ten basis matrices
were used besides that the digits were blurred. This comparison argues that the
latter method with tangent distance is a bit better.

4.5 Analysis and comments

This part of the chapter is intended to give further insight and some comments to
the algorithms treated here.

4.5.1 Investigation of the virtual digits

We start with investigating how good the virtual digits are. They are not real
digits, they can be seen as vectors of a subspace, for some class, spanned by the
respective basis matrices. The virtual digits are the best approximations, in terms
of the bases of the different classes, to a given unknown. So in a way, the one
virtual digit that best describes the unknown is an alternative output. This is
done in the HOSVD algorithm. But we proceed with the tangent distance because
it has better performance. If we get the right answer at once there is no need to
compute the tangent distances between the unknown and the virtual digits. The
tangent distance is needed in approximately 10 % of all classifications. These are
the incorrectly classified digits and the tangent distance may correct the answer for
half of them. In other words we end at approximately 5 % incorrect classifications.
So much extra work for so little feedback one might think. The tangent distance
has to be calculated in all cases because there is no way of knowing which digits
are wrongly classified.

We will investigate two digits, one written rather well, the other written badly.
The digits are given in figure 4.3. The blurred versions are also given because the

Figure 4.3. Two digits together with their blurred versions. The three is rather well
written and the five is not.

virtual digits are actually approximating them and not the original digits.
The solution of equation (4.1) gives the αj

i constants and thereby enables the
computation of the virtual digits, Zj . A whole series of virtual digits was calculated
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for both of the digits. All virtual digits are found in figure 4.4 and figure 4.5. The
first figure belongs to the three and the second figure belongs to the five. The virtual
digits were calculated with three different number of basis matrices, namely five,

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

                    

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

                    

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Virtual digits belonging to the well written three. The first row is calculated
with five basis matrices, the second row with ten and the third row with 20.

ten and 20. There are ten digits in each row, which were computed with the basis
matrices for the respective classes. This means that the digits in the same column
are calculated with the basis matrices for the same class. The basis matrices for

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Virtual digits belonging to the badly written five. The first row is calculated
with five basis matrices, the second row with ten and the third row with 20.

the zeros are used for the first column, the basis matrices for the ones are used
for the second column and so on until the last, tenth column in which the basis
matrices for the nines are used. This is clearly seen in the first rows of both figures.

First of all we see that increasing the number of basis matrices the virtual digits
approximate the unknown digits better and better for all the classes. Examine the
third row in figure 4.4. There are several images that are approximating the three
very well, besides the one that is built with the basis matrices for the threes. The
images in the middle row are starting to get the shape of the three but one can still
observe what kind of basis matrices that are used. It is most obvious in the first
row which basis matrices are used, but there is no resemblance with the three. In
this case there is no need to use many basis matrices because even with few basis
the three is described well.

The same thing is not true for the badly written five. Here we need many basis
matrices to get good resemblance with the five. The reason for this is that the first
basis matrices are not suited to describe non–ideal fives. None of the first basis
are suited to describes non–ideal digits. We can observe that the resemblance is
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increasing for each row in figure 4.5. Not only for the image built with the basis
for the fives but also for the images built with the basis for the fours and eights.

4.5.2 Number of operations

Algorithm 3 described in section 4.3 is obviously more expensive, in computations
that is, than the pure HOSVD algorithm. But on the other hand it performs better.
The question is if the better performance is outweighing the extra computations.
We can also conclude that the pure tangent distance classifier is much more ex-
pensive compared to all other algorithms. The conclusion is drawn from the fact
that in a pure TD classifier thousands (all the digits in the training set) tangent
distances are calculated to be compared with only ten (the virtual digits) tangent
distances each one belonging to a different class.

Assuming the tangent vectors are calculated as in chapter 3 the only design
variable is the number of basis matrices. Since there are no new phases in the
algorithm all the necessary operations are given in the previous chapters.

Training phase

First of all the basis matrices need to be computed. This part is exactly the same
as in section 2.5.5 and will be omitted here.

Test phase

Assume that the algorithm uses k basis matrices when calculating the virtual im-
ages. The test phase can be split up in two parts: computation of the virtual digits
and computation of the tangent distances. Assume also that the size of the images
is (m × m) and that there are 10 classes. The calculation of the virtual digits is
done in approximately

10(2km3 + 2km2) = 20km2(m + 1)

flop counts.
The calculation of the tangent distance can be done with approximately 430m2

flops. This is derived in section 3.7.1 and is for the computation of one tangent
distance. Remembering that there are ten virtual digits and therefore ten tangent
distances are computed we get the total number of operations for the whole test
phase to be

20km2(m + 1) + 4300m2.
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Chapter 5

Comparison with Other

Algorithms, Summary and

Conclusions

Before the summary and the conclusions we will present, very shortly, few other
classification algorithms. They will not be analysed at all, only an intuitive picture
of how they work will be given.

5.1 Comparison with other algorithms

First of all we point out that there is an abundance of classification algorithms.
Most of them have the same starting point but differ in the way the implementation
is solved. The most usual starting point is the following. It is assumed that all
objects belong to some kind of space. The objects that belong to the same class
are gathered in that space. They are closer to each other than to objects from
other classes, in some sense that is. This point of view has already been presented
in this report, but where we go from here differs.

Furthermore, it is assumed that there are, at least theoretically, clear boundaries
between the different classes. The problem is to find functions that separate the
classes. Those functions will then give the boundaries in question and classification
can be done. To find these functions is a very hard problem. A usual way of
continuing is to form the boundaries with the help of elements that we already
know to which class they belong. This would be the training set.

Statistical methods

Statistical methods can be used to approximate the boundaries. But to get good
approximations the number of objects in the training set have to be very high.
The more objects there are the better the approximation becomes and also the
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performance. But there are certain questions that need to be answered such as:
How big training set is needed to get a given accuracy? Do I have training set of
that size? If not how can we generate more training samples? These questions are
not trivial. Detailed information about this method is found in [13], [7].

Neural networks

Another way to get an approximation of the boundaries is to use neural networks.
Neural networks is a very big field and can be used for many purposes. Classi-
fications is just one of them. The idea of neural networks is to imitate the way
nervecells in the brain are working. It can be seen as a black box with many in-
put and output channels. Different output channels or a combination of them is
activated depending on the activation on the input channels. There are a number
of variables or trainable parameters (hundreds, thousands or even ten thousands
depending on the complicity of the problem) in that black box that can be changed.
Changing the parameters also changes the output activations. Through those pa-
rameters any given boundary, surface or function can be expressed. The neural
network can thereby also be seen as a function fα given by

fα : R
m −→ R

n, (5.1)

were m is the number of inputs and n is the number of outputs. The function itself
is characterized by the parameters, which are contained in α.

The trainable parameters in neural networks are initially set to some default
values. These are eventually changed in an iterative process by using the training
set, often referred to as a learning process. This process is mainly characterized
by letting the samples in the training set pass through the network. Knowing the
wanted output for a given sample the actual output is observed and if necessary the
parameters are updated to get another, satisfying, output for the same sample. The
whole training set is passed through the network in each iteration. Because of this
neural networks are highly dependant on the training set. All possible variations
for all the classes have to be contained in the training set, which is not realistic.
Therefore to get good performance very large training sets are required.

The flexibility of neural networks is a great advantage. The former black box
can be customized or be given a special architecture for a particular problem. The
architecture is the actual structure of the network. There is much more to say
about neural networks but the line must be drawn at some point. For detailed
description of the wide possibilities for neural networks the reader is referred to
books on this topic [13], [7], [11].

Test results

There are many neural network classifiers with different architectures for handwrit-
ten digit recognition. These algorithms are most often tested on the digits from the
MNIST database. The best neural networks have an error rate of approximately
1 %, some even below. Those networks have high complexity and custom made
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architecture. Other standard neural network classifiers have an error rate of up to
4.5 % – 4.7 %. These networks are rather simple and do not have so many train-
able parameters. Other algorithms with low error rate are the tangent distance
classifier ≈ 1.1 % and support vector machines (SVM) ≈ 1 %. Nearest neighbour
algorithms have an error rate of approximately 5 %. All results are taken from an
article of LeCun [11]. For more information about the tests, test results and the
different classifiers the reader is referred to that article.

These results can be compared with approximately 3 % error rate for the
HOSVD–algorithm when using 20 basis matrices, figure 2.9. The MNIST database
was not used in the evaluation of the other algorithms. If we take into account
that the other algorithms (our TD–classifier and TD with HOSVD) in this report
actually do perform better than the HOSVD–algorithm and also that the USPS
database is harder to classify than the MNIST database then we might have an
error rate lower than 2 %. Of course these are pure speculations. But still 3 % in
error rate is not bad.

To skip speculations here we present similar results for the USPS database from
an other article [9]. The error rate for the different algorithms is as follows:

Human Performance 2.5 %
Neural Network 4.2 %
Support Vector Machine 3.0 %
Tangent Distance 2.5 %
Extended TD 2.4 %

After all the 3 % error rate in our complete TD–classification is fully acceptable.
Especially if we take into account the simplifications we made by the approximation
of the blurring operator and the numerical derivatives. The loss in performance is
obviously acceptable. If we compare these results with the achievements in chapter
4, especially for the TD with HOSVD algorithm, which had a best error rate of
approximately 5.5 %, we can conclude that it does not reach to the itemized results
above. Even though, this achievement is still rather good.

Memory usage and amount of computations

In an application the actual performance is not the only important factor. Other
important factors are memory usage and amount of computations. The TD–
classifiers do have large memory requirements and rely on extensive computations.
The methods with HOSVD have low memory requirements and moderate amount
of computation. This is because the HOSVD is making a compression of the train-
ing set. Neural network algorithms are hard to build and they are time demanding
in the construction process due to the iterative learning process. When the al-
gorithm is ready it is very fast in performing the actual classification in the test
phase. The memory usage for neural networks is moderate but can be high if many
parameters are used and the problem is complex. Having this in mind the method
of TD with HOSVD may very well be an option to be considered.
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5.2 Summary and conclusions

In this report several classification algorithms were thoroughly analysed and tested.
Three of them are especially interesting. Namely the classification algorithm by
singular value decomposition of tensors, described in chapter 2, the tangent distance
classifier, chapter 3 and the tangent distance classifier with incorporated higher
order singular value decomposition, chapter 4. A brief summary with conclusions
is following for each one of these methods.

HOSVD–classifier: A set of orthogonal basis matrices is calculated for every
class. This is done by HOSVD of third order tensor containing the digits of the
same class from the training set. By doing this an actual data compression is also
done because the training set is reduced to the basis matrices for the different
classes. The class of the set of basis matrices that describes an unknown digit as
a linear combination in the best way is also giving the label of the unknown as an
output of the algorithm. The best linear combination is determined by solving least
squares problems, one for each class. The solution is particularly easy because of
the orthogonality of the basis matrices. This algorithm has moderate performance,
an error rate of 6 % (USPS) and 3 % (MNIST) in its best performance. It has low
memory requirements and demands rather low amount of computations.

TD–classifier: The idea of this classifier is to incorporate different kind of in-
variant transformations, for digits within the same class, into a distance measure.
Rotation, translation and scaling are examples of such transformations. These
transformations were handled with the help of the tangent vectors, who are de-
rived trough differential geometry. To get the tangent distance also here a least
squares problem was solved. The TD was used in a simple nearest neighbour clas-
sifier, which computes the distances between an unknown digit and all the digits
in the training set and takes the label of the digit that has the smallest distance
to the unknown as an output for the algorithm. This algorithm has very good
performance, error rate of 3 %, but is computationally heavy and requires large
memory usage.

TD with HOSVD: In chapter 4 the theories for TD and HOSVD are com-
bined. Several variations can be built but only one is of interest. It uses TD distance
but here between the unknown digit and the ten virtual digits. The virtual digits
are the best approximations to the unknown digit in terms of linear combinations
of the basis matrices for the different classes. I.e. HOSVD is performed to get
the basis matrices for every class. In this way only the basis matrices are needed
to be stored, instead of the whole training set. The algorithm performs better
than the HOSVD–classifier but not as good as the TD–classifier. On the other
hand the algorithm has low memory requirements and not too extensive amount
of computations.

It can be concluded that rather good and simple algorithms can be constructed
with some, not too extensive, work. Any of the algorithms above, espcially the last
one, can be considered for use in a real application.
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Appendix A

Proofs and Definitions

This section is intended to give proofs of greater importance, definitions and other
specific details that are omitted for simplicity reasons in the report.

A.1 Tensor representation

Exact relation between a tensor and the matrix representing its unfoldings is given
in the definition below.

Definition A.1 An arbitrary N th order tensor A ∈ CI1×···×IN and its unfolding

A(n) ∈ CIn×(In+1In+2...IN I1...In−1) are related in this specific way: Each element

from A with index (i1, i2, ..., iN ) is placed in A(n) with row index in and column

index

(in+1−1)In+2In+3 . . . IN I1I2 . . . In−1 +(in+2−1)In+3In+4 . . . IN I1I2 . . . In−1 + . . .
+(iN − 1)I1I2 . . . In−1 + (i1 − 1)I2I3 . . . In−1 + (i2 − 1)I3I4 . . . In−1 + · · · + in−1.

A.2 The n–mode product of a tensor

The general definition of the n–mode product is as follows.

Definition A.2 The n–mode product of a third order tensor A ∈ CI1×I2×···×IN by

a matrix F ∈ CJn×In , denoted by A×nF, is a (I1×· · ·×In−1×Jn×In+1×· · ·×IN )–
tensor. Letting B = A ×n F, the entries of B are given by folding B(n), where

B(n) = F · A(n).

A.3 Proof of Theorem 2.2 – HOSVD

Proof of the HOSVD–theorem presented here is for third order tensors only. The
more general proof is in complete analogy with this one.
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72 Proofs and Definitions

First of all we make the following observation: Theorem 2.2 can be represented
with matrices by using the unfolding of A and S along any mode. Thus equation
(2.9) is equivalent to the matrix equation

A(n) = U(n) ·S(n) · (U
(n+1) ⊗U(n+2) ⊗ · · ·⊗U(N) ⊗U(1) ⊗ · · ·⊗U(n−1))T . (A.1)

The ⊗ symbol denotes the Kronecker product of two matrices wich is defined in
this way.

Definition A.3 For arbitrary two matrices

A =




a11 a12 . . . a1n

...
...

...

am1 am2 . . . amn


 and B =




b11 b12 . . . b1q

...
...

...

bp1 bp2 . . . bpq


 ,

the Kronecker product is given by

A ⊗ B =




a11B a12B . . . a1nB
...

...
...

am1B am2B . . . amnB


 .

Proof HOSVD–theorem The aim of this proof is to show that for every third
order tensor A ∈ CI1×I2×I3 there are unitary matrices U(i) and a tensor S with the
relation and properties as stated in the theorem. Matrix SVD on the unfoldings
A(i) gives

A(i) = U(i) · Σ(i) ·V(i)T

for i = 1, 2, 3. (A.2)

Define now the n–mode product

S = A×1 U(1)H

×2 U(2)H

×3 U(3)H

, (A.3)

and examine S. Unfolding S along the first mode we get

S(1) = U(1)H

· A(1) · (U
(2) ⊗ U(3)) =

= U(1)H

· U(1) · Σ(1) ·V(1)H

· (U(2) ⊗ U(3)) =

= Σ(1) · V(1)H

· (U(2) ⊗ U(3)),

and
S(1) · S

H
(1) =

= Σ(1) · V(1)H

· (U(2) ⊗ U(3)) · (U(2) ⊗ U(3))H · V(1) · Σ(1)H

=

= Σ(1) ·V(1)H

·V(1) · Σ(1)H

= Σ(1) · Σ(1)H

=

= diag((σ
(1)
1 )2, (σ

(1)
2 )2, . . . , (σ

(1)
I1

)2).
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The same computations along the other modes give us similar diagonal matrices

S(2) · S
H
(2) = diag((σ

(2)
1 )2, (σ

(2)
2 )2, . . . , (σ

(2)
I2

)2),

S(3) · S
H
(3) = diag((σ

(3)
1 )2, (σ

(3)
2 )2, . . . , (σ

(3)
I3

)2).

It is clear that the raw vectors and the columns of S(i) are orthogonal. This means
that the subtensors of S along every mode (i = 1, 2 and 3) are orthogonal giving
all–orthogonality. The squared norms of the subtensors are given by the diagonal

entries i.e. σ
(i)
j (j = 1 . . . Ii, i = 1, 2 and 3) are the norms of the subtensors and

we know from matrix SVD that they decrease with index. This gives the ordering
property of S and completes the proof. 2

A.4 Least squares problem

Proof General solution of least squares problem (2.21) Reshaping X and
Ai to vectors allows us to rewrite equation (2.21) in a standard form for least
square problems. Let x and ai be the column forms of X and Ai respectively.
Then

min
αi

‖X −
k∑

i=1

αiAi‖F
= min

α

‖x− Aα‖2, (A.4)

in which A =
(

a1 a2 . . . ak

)
end α =

(
α1 α2 . . . αk

)T
. The problem

is overdetermined because A has more rows than columns. It is well–known that
the solution of (A.4) is given by the normal equations,

AT Aα = ATx. (A.5)

Because of the orthogonality of the columns of A, AT A is a diagonal matrix with
the diagonal values aT

i a. Finally we get the elements of α to be

αi =
aT

i x

aT
i ai

.

Reshaping x and ai back into matrices and using the scalar product notation we
can write

αi =
〈X,Ai〉

〈Ai,Ai〉
.
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