Javier Béjar ©👀 🕲

LSI - FIB

Term 2012/2013

Javier Béjar ©��� (LSI - FIB)

Term 2012/2013 1 / 23

- K-nn Algorithm
- K-nn Regression
- Advantages and drawbacks
- Application

Javier Béjar ©��@ (LSI - FIB)

K-nearest neighbours

Term 2012/2013 2 / 23

1 Non Parametric Learning

K-nearest neighbours

- K-nn Algorithm
- K-nn Regression
- Advantages and drawbacks
- Application

Javier Béjar ©��@ (LSI - FIB)

K-nearest neighbours

Term 2012/2013 3 / 23

Parametric vs Non parametric Models

- In the models that we have seen, we select a hypothesis space and adjust a fixed set of parameters with the training data $(h_{\alpha}(x))$
- We assume that the parameters α summarize the training and we can forget about it
- This methods are called **parametric** models
- When we have a small amount of data it makes sense to have a small set of parameters and to constraint the complexity of the model (avoiding overfitting)

Javier Béjar © 🖲 🕲 (LSI - FIB)

K-nearest neighbours

Term 2012/2013 4 / 23

Parametric vs Non parametric Models

- When we have a large quantity of data, overfitting is less an issue
- If data shows that the hipothesis has to be complex, we can try to adjust to that complexity
- A non parametric model is one that can not be characterized by a fixed set of parameters
- A family of non parametric models is **Instance Based Learning**

K-nearest neighbours

Term 2012/2013 5 / 23

Instance Based Learning

- Instance based learning is based on the memorization of the dataset
- The number of parameters is unbounded and grows with the size of the data
- There is not a model associated to the learned concepts
- The classification is obtained by looking into the memorized examples
- The cost of the learning process is 0, all the cost is in the computation of the prediction
- This kind learning is also known as **lazy learning**

Javier Béjar © 🖲 🕲 (LSI - FIB)

K-nearest neighbours

Term 2012/2013 6 / 23

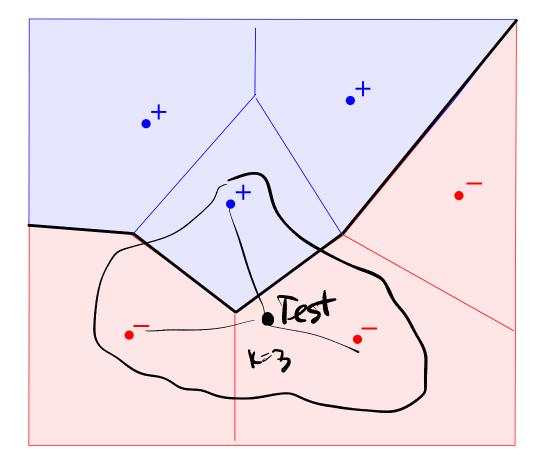
K-nearest neighbours

- K-nn Algorithm
- K-nn Regression
- Advantages and drawbacks
- Application

Javier Béjar ©�� (LSI - FIB)

K-nearest neighbours

Term 2012/2013 7 / 23


K-nearest neighbours

- K-nearest neighbours uses the local neighborhood to obtain a prediction
- The K memorized examples more similar to the one that is being classified are retrieved
- A distance function is needed to compare the examples similarity
 - Euclidean distance $(d(x_j, x_k) = \sqrt{\sum_i (x_{j,i} x_{k,i})^2})$ Mahnattan distance $(d(x_j, x_k) = \sum_i |x_{j,i} x_{k,i}|)$
- This means that if we change the distance function, we change how examples are classified

Javier Béjar @🛈 🏵 🎯 (LSI - FIB)

Term 2012/2013 8 / 23

K-nearest neighbours - hypothesis space (1 neighbour)

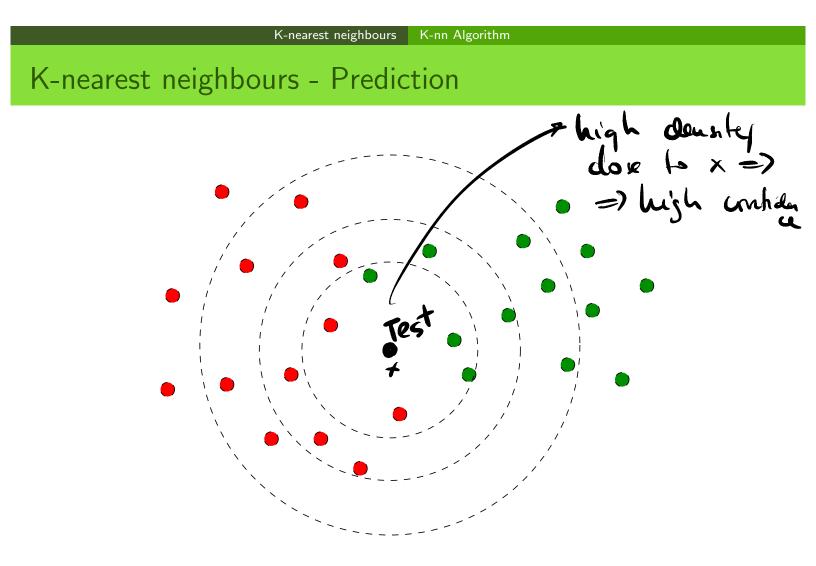
Javier Béjar ©��� (LSI - FIB)

K-nearest neighbours

Term 2012/2013 9 / 23

	2			
				•
				٠
				•
Barris a Barris				
· · · · · · · · · · · · · · · · · · ·				•
· · · · · <u>· · · · · · · · · · · · · · </u>	· · · · · · · · · · · · · · · · · · ·			•
		· · · · · · · · ·	· · · · · · · · · ·	•
		· · · · · · · · · ·		•
Bsid			. .	•
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
				•
	· · · · · · · · · · · ·			•
				•
	· · · · · · · · · · · ·			· · ·
. .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
· ·	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · ·		• • • • • • • • • •
. .	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			• • • • • • • • • •
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

K-nearest neighbours K-nn Algorithm


K-nearest neighbours - Algorithm

- Training: Store all the examples
- <u>Prediction</u>: $h(x_{new})$
 - Let be x_1, \ldots, x_k the k more similar examples to x_{new}
 - $h(x_{new}) = \text{combine}_{\text{predictions}}(x_1, \ldots, x_k)$
- The parameters of the algorithm are the number k of neighbours and the procedure for combining the predictions of the k examples
- The value of k has to be adjusted (crossvalidation)
 - We can overfit (k too low)
 - We can underfit (k too high)

Javier Béjar © 🖲 🕲 (LSI - FIB)

K-nearest neighbours

Term 2012/2013 10 / 23

Javier Béjar ©€®⊚ (LSI - FIB)	K-nearest neighbours	Term 2012/2013	11 / 23

K-nearest neighbours K-nn Algorithm

Looking for neighbours

- Looking for the K-nearest examples for a new example can be expensive
- The straightforward algorithm has a cost O(n log(k)), not good if the dataset is large
- We can use indexing with k-d trees (multidimensional binary search trees)
 - They are good only if we have around 2^{dim} examples, so not good for high dimensionality
- We can use *locality sensitive hashing* (approximate k-nn)
 - Examples are inserted in multiple hash tables that use hash functions that with high probability put together examples that are close
 - We retrieve from all the hash tables the examples that are in the bin of the query example
 - We compute the k-nn only with these examples

Javier Béjar 🐵 🖲 🕲 (LSI - FIB)

K-nearest neighbours

Term 2012/2013 12 / 23

K-nearest neighbours K-nn Algorithm

K-nearest neighbours - Variants

- There are different possibilities for computing the class from the k nearest neighbours
 - Majority vote
 - Distance weighted vote
 - Inverse of the distance
 - Inverse of the square of the distance
 - Kernel functions (gaussian kernel, tricube kernel, ...)
- Once we use weights for the prediction we can relax the constraint of using only k neighbours
 - We can use k examples (local model)
 - We can use all examples (global model)

Javier Béjar © 🖲 🕲 (LSI - FIB)

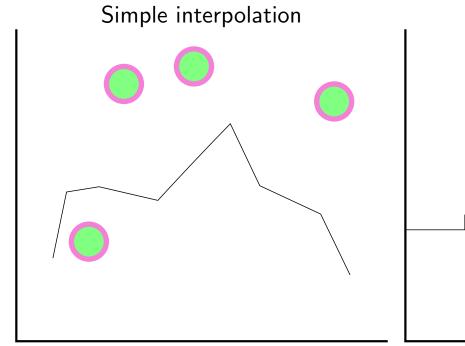
K-nearest neighbours

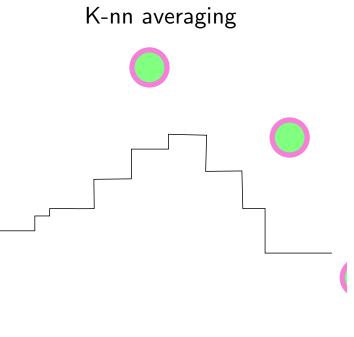
Term 2012/2013 13 / 23

T Z Z = neishboy hood = t is may closest K=hico 17 くのく and A F ア Lowpe アノス telran しいさ Yam?(É

7004 preduct (F) weigh fed GS X > test $\{(k,t)\}$ ali 11 Similar 14 point POINT -Sim 5 M average brown set ملاح FZ $\bigvee (+,)$ 5 harvel Sim (X) ti leightor hoor Joge Joy darkty

K-nearest neighbours - Regression

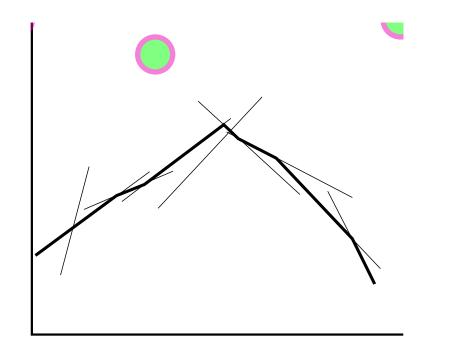

- We can extend this method from classification to regression
- Instead of combining the discrete predictions of k-neighbours we have to combine continuous predictions
- This predictions can be obtained in different ways:
 - Simple interpolation
 - Averaging
 - Local linear regression
 - Local weighted regression
- The time complexity of the prediction will depend on the method


Javier Béjar © 🛞 🕲 (LSI - FIB)

K-nearest neighbours

Term 2012/2013 14 / 23

Javier Béjar ©��� (LSI - FIB)


K-nearest neighbours

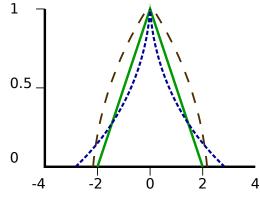
Term 2012/2013 15 / 23

K-nearest neighbours K-nn Regression

K-nearest neighbours - Regression (linear)

- K-nn linear regression fits the best line between the neighbors
- A linear regression problem has to be solved for each query (least squares regression)

Javier Béjar ��� (LSI - FIB)


K-nearest neighbours

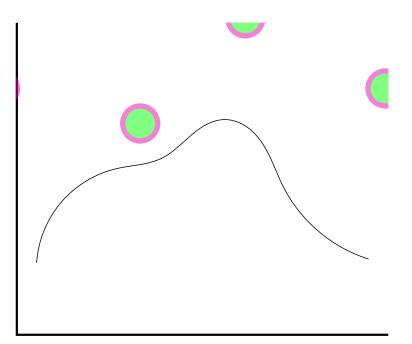
Term 2012/2013 16 / 23

K-nearest neighbours K-nn Regression

K-nearest neighbours - Regression (LWR)

 Local weighted regression uses a function to weight the contribution of the neighbours depending on the distance, this is done using a kernel function

- Kernel functions have a width parameter that determines the decay of the weight (it has to be adjusted)
 - Too narrow \Longrightarrow overfitting
 - Too wide \implies underfitting
- A weighted linear regression problem has to be solved for each query (gradient descent search)


Javier Béjar © 🛞 🕲 (LSI - FIB)

K-nearest neighbours

Term 2012/2013 17 / 22

K-nearest neighbours - Regression (LWR)

Javier Béjar ©��� (LSI - FIB)

Term 2012/2013 18 / 23

K-nearest neighbours Advantages and drawbacks

K-nearest neighbours - Advantages

- The cost of the learning process is zero
- No assumptions about the characteristics of the concepts to learn have to be done
- Complex concepts can be learned by local approximation using simple procedures

Javier Béjar ©⊕®⊚ (LSI - FIB)

K-nearest neighbours

Term 2012/2013 19 / 23

K-nearest neighbours Advantages and drawbacks

K-nearest neighbours - Drawbacks

- The model can not be interpreted (there is no description of the learned concepts)
- It is computationally expensive to find the k nearest neighbours when the dataset is very large
- Performance depends on the number of dimensions that we have (curse of dimensionality) => Attribute Selection

Javier Béjar ©⊕®⊚ (LSI - FIB)

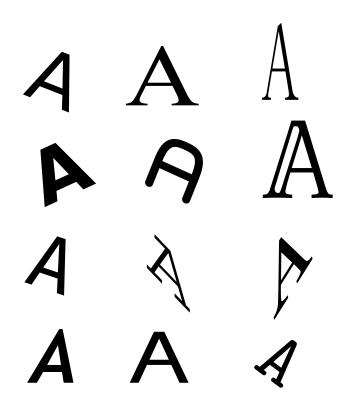
K-nearest neighbours

Term 2012/2013 20 / 23

K-nearest neighbours Advantages and drawbacks

The Curse of dimensionality

- The more dimensions we have, the more examples we need to approximate a hypothesis
- The number of examples that we have in a volume of space decreases exponentially with the number of dimensions
- This is specially bad for k-nearest neighbors
 - If the number of dimensions is very high the nearest neighbours can be very far away


Javier Béjar ☺��� (LSI - FIB)

K-nearest neighbours

Term 2012/2013 21 / 23

K-nearest neighbours Application

Optical Character Recognition

- OCR capital letters
- 14 Attributes (All continuous)
- Attributes: horizontal position of box, vertical position of box, width of box, height of box, total num on pixels, mean x of on pixels in box, ...
- 20000 instances
- 26 classes (A-Z)
- Validation: 10 fold cross validation

Javier Béjar © 🛞 🎯 (LSI - FIB)

K-nearest neighbours

Term 2012/2013 22 / 23

K-nearest neighbours	Application
----------------------	-------------

Optical Character Recognition: Models

- K-nn 1 (Euclidean distance, weighted): accuracy 96.0%
- K-nn 5 (Manhattan distance, weighted): accuracy 95.9%
- K-nn 1 (Correlation distance, weighted): accuracy 95.1%

Javier Béjar ©⊕®⊚ (LSI - FIB)

K-nearest neighbours

Term 2012/2013 23 / 23