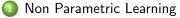


#### Outline



- K-nn Algorithm
- K-nn Regression
- Advantages and drawbacks
- Application

#### Non Parametric Learning

- 2 K-nearest neighbours
  - K-nn Algorithm
  - K-nn Regression
  - Advantages and drawbacks
  - Application

## Parametric vs Non parametric Models

- In the models that we have seen, we select a hypothesis space and adjust a fixed set of parameters with the training data  $(h_{\alpha}(x))$
- We assume that the parameters  $\alpha$  summarize the training and we can forget about it
- This methods are called **parametric** models
- When we have a small amount of data it makes sense to have a small set of parameters and to constraint the complexity of the model (avoiding overfitting)

## Parametric vs Non parametric Models

- When we have a large quantity of data, overfitting is less an issue
- If data shows that the hipothesis has to be complex, we can try to adjust to that complexity
- A **non parametric** model is one that can not be characterized by a fixed set of parameters
- A family of non parametric models is Instance Based Learning

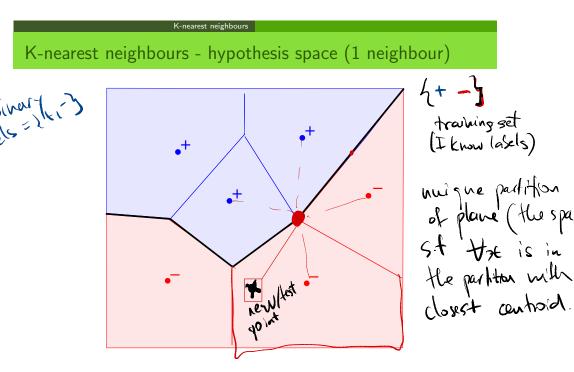
#### Instance Based Learning

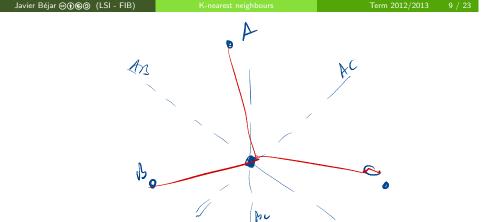
- Instance based learning is based on the memorization of the dataset
- The number of parameters is unbounded and grows with the size of the data
- There is not a model associated to the learned concepts
- The classification is obtained by looking into the memorized examples
- The cost of the learning process is 0, all the cost is in the computation of the prediction
- This kind learning is also known as lazy learning



- K-nn Algorithm
- K-nn Regression
- Advantages and drawbacks
- Application

- K-nearest neighbours uses the local neighborhood to obtain a prediction
- The *K* memorized examples more similar to the one that is being classified are retrieved
- A distance function is needed to compare the examples similarity
  - Euclidean distance  $(d(x_j, x_k) = \sqrt{\sum_i (x_{j,i} x_{k,i})^2})$
  - Mahnattan distance  $(d(x_j, x_k) = \sum_i |x_{j,i} x_{k,i}|)$
- This means that if we change the distance function, we change how examples are classified





# K-nearest neighbours - Algorithm

- Training: Store all the examples
- <u>Prediction</u>:  $h(x_{new})$ 
  - Let be x<sub>1</sub>, ..., x<sub>k</sub> the k more similar examples to x<sub>new</sub>
     h(x<sub>new</sub>) = combine\_predictions(x<sub>1</sub>, ..., x<sub>k</sub>)

K-nearest neighbours

- The parameters of the algorithm are the number k of neighbours and the procedure for combining the predictions of the k examples

K-nn Algorithm

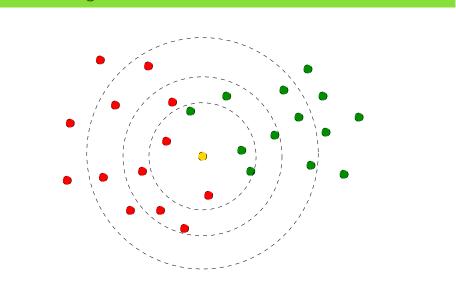
Neighbourhood-k N(Xnew)= ) fle dosort K points i

- The value of k has to be adjusted (crossvalidation)
  - We can overfit (k too low)
  - We can underfit (k too high)

| K=3                                          |                                                                                                                                  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Javier Béjar ©@©© (LSI - FIB)<br>Good - CLOS | K-nearest neighbours<br>France Far away                                                                                          |
| *                                            | <ul> <li>data density</li> <li>(not uniform)</li> <li>- easy to hid</li> <li>close neighbors</li> <li>(den neighbors)</li> </ul> |
|                                              | -hand to find<br>doce verytheors<br>(sparse / avolualy)                                                                          |

Weighted version  
• 
$$\Upsilon(x_7 z) = similarity(x_7 z)$$
  
• use all paints  
preduct(x, L) = and  $L(\overline{x}_1) \cdot \Upsilon(x_7 z_1)$   
test label over label over for point  
set  $\overline{x_1}$ 

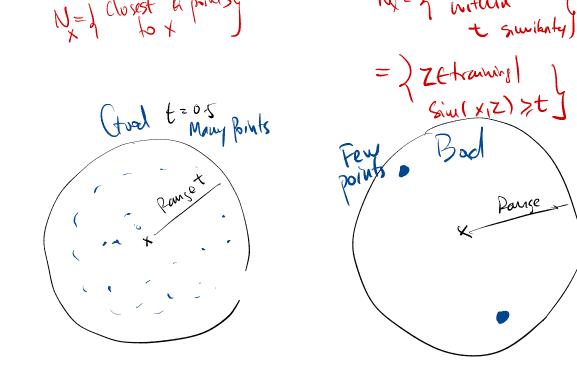
11 / 23



# K-nearest neighbours - Prediction

Javier Béjar @@@@

K-nearest neighbours K-nn Algorithm



#### Looking for neighbours

- Looking for the K-nearest examples for a new example can be expensive
- The straightforward algorithm has a cost  $O(n \log(k))$ , not good if the dataset is large
- We can use indexing with *k-d trees* (multidimensional binary search trees)
  - They are good only if we have around 2<sup>dim</sup> examples, so not good for high dimensionality
- We can use *locality sensitive hashing* (approximate k-nn)
  - Examples are inserted in multiple hash tables that use hash functions that with high probability put together examples that are close
  - We retrieve from all the hash tables the examples that are in the bin of the query example
  - We compute the k-nn only with these examples

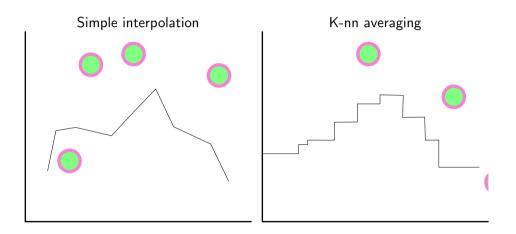
#### K-nearest neighbours - Variants

- There are different possibilities for computing the class from the k nearest neighbours
  - Majority vote
  - Distance weighted vote
    - Inverse of the distance
    - Inverse of the square of the distance
    - Kernel functions (gaussian kernel, tricube kernel, ...)
- Once we use weights for the prediction we can relax the constraint of using only *k* neighbours
  - We can use k examples (local model)
  - We can use all examples (global model)

#### K-nearest neighbours - Regression

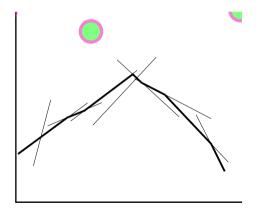
- We can extend this method from classification to regression
- Instead of combining the discrete predictions of k-neighbours we have to combine continuous predictions
- This predictions can be obtained in different ways:
  - Simple interpolation
  - Averaging
  - Local linear regression
  - Local weighted regression
- The time complexity of the prediction will depend on the method

#### K-nearest neighbours - Regression



### K-nearest neighbours - Regression (linear)

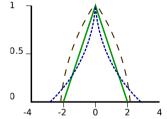
- K-nn linear regression fits the best line between the neighbors
- A linear regression problem has to be solved for each query (least squares regression)



Javier Béjar @��@ (L<mark>SI - FIB</mark>)

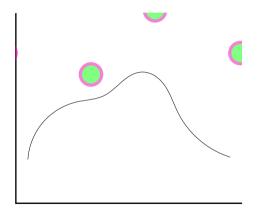
#### K-nearest neighbours - Regression (LWR)

• Local weighted regression uses a function to weight the contribution of the neighbours depending on the distance, this is done using a **kernel function** 



- Kernel functions have a width parameter that determines the decay of the weight (it has to be adjusted)
  - Too narrow  $\Longrightarrow$  overfitting
  - Too wide  $\implies$  underfitting
- A weighted linear regression problem has to be solved for each query (gradient descent search)

# K-nearest neighbours - Regression (LWR)



Javier Béjar @��@ (LSI - FIB)

#### K-nearest neighbours - Advantages

- The cost of the learning process is zero
- No assumptions about the characteristics of the concepts to learn have to be done
- Complex concepts can be learned by local approximation using simple procedures

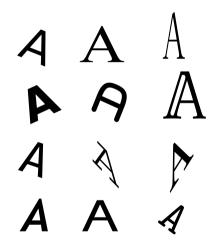
#### K-nearest neighbours - Drawbacks

- The model can not be interpreted (there is no description of the learned concepts)
- It is computationally expensive to find the *k* nearest neighbours when the dataset is very large
- Performance depends on the number of dimensions that we have (curse of dimensionality) => Attribute Selection

#### The Curse of dimensionality

- The more dimensions we have, the more examples we need to approximate a hypothesis
- The number of examples that we have in a volume of space decreases exponentially with the number of dimensions
- This is specially bad for k-nearest neighbors
  - If the number of dimensions is very high the nearest neighbours can be very far away

#### **Optical Character Recognition**



- OCR capital letters
- 14 Attributes (All continuous)
- Attributes: horizontal position of box, vertical position of box, width of box, height of box, total num on pixels, mean x of on pixels in box, ...
- 20000 instances
- 26 classes (A-Z)
- Validation: 10 fold cross validation

## **Optical Character Recognition: Models**

- K-nn 1 (Euclidean distance, weighted): accuracy 96.0%
- K-nn 5 (Manhattan distance, weighted): accuracy 95.9%
- K-nn 1 (Correlation distance, weighted): accuracy 95.1%