
Stacks

Stacks

Stacks are first-in-last-out structures
• or last-in-first-out

Useful "auxiliary" structures
• might use several stacks to solve a problem

Stacks - abstract

stack max_size

stack current top

stack base

99

5

-3

2

10

Stack Methods

stack max_size

stack current top

stack base

99

2

-3

2

10

push(n) - puts element n
at the top of the stack
• current top is increased by

one

pop() - gets the element
at the top of the stack
• current top is decreased by

one

Stacks implemented as arrays
class stack{
• int* dataarray;
• int max_size;
• int current_top;
• void push(int);
• int pop();

}

need to be allocated properly (constructor)
• and freed properly (destructor)

write up the two methods pop() and push()
• push() might need to resize the stack

Stacks implemented as lists
class stack{
• listobject* base;
• listobject* top;
• void push(int);
• int pop();

}

allocation easier, still need a constructor
• and freed properly (destructor)

two methods pop() and push() create or delete objects as
they need
• no resizing necessary

struct listobject{
• int value;
• listobject next;
• listobject prev;

}

Stack Applications
reverse order of a list/array

function calls in a computer program

physical towering problems (see Towers of Hanoi)

rearranging railroad cars

convert decimals to binary (endian rule may force reverse
order)

evaluations of non-parenthesized expressions

memory management

Queues

Queues

Stacks are first-in-first-out structures
• or last-in-last-out

Useful "auxiliary" structures
• might use several queues to solve a problem

Queues
 consumer builder max_size

10 2 -3 2 99

Queue Methods

enqueue(n) - add/build/put_in value n to the queue
• builder advances by one

dequeue() - retrieves the next "unprocessed"/available/
take_out element
• consumer advances by one

 consumer builder max_size

10 2 -3 2 99

Queue implemented as arrays
class queue{
• int* dataarray;
• int max_size;
• int builder_index;
• int consumer_index;
• void enqueue(int n);
• int dequeue();

}

need to be allocated properly (constructor)
• and freed properly (destructor)

write up the two methods enqueue() and dequeue()
• enqueue() might need to resize the queue

Queue implemented as lists
class queue{
• listobject* consumer;
• listobject* builder;
• void enqueue(int);
• int dequeue();

}

allocation easier, still need a constructor
• and freed properly (destructor)

two methods enqueue() and dequeue() create or delete
objects as they need
• no resizing necessary

struct listobject{
• int value;
• listobject next;
• listobject prev;

}

Queue Applications

tree traversals: nodes are stored for future processing

process management

printer jobs

waiting lists
• vehicles on tolls
• phone answering systems
• luggage checking
• patients order

