
Intro to graphs
Minimum Spanning Trees

Graphs
• nodes/vertices and edges between vertices
- set V for vertices, set E for edges
- we write graph G = (V,E)

• example : cities on a map (nodes) and roads (edges)

Adjacency matrix
• aij =1 if there is an edge from vertex i to vertex j
• if graph is undirected, edges go both ways, and the

adj. matrix is symmetric

• if the graph is directed, the adj. matrix is not
necessarily symmetric
of miss#☐

°

Adjacency lists

• linked list marks all edges starting off a given vertex

* -

O
-

paths and cycles
• path: a sequence of vertices (v1,v2,v3,...,vk) such that all (vi,vi+1) are edges in the graph

• edges can form a cycle = a path that ends in the
same vertex it started

• paths and cycles are defined for both directed and
undirected graphs

Ad

cycles visual
but not cycles detected

0%00¥¥

paths and cycles
• path: a sequence of vertices (v1,v2,v3,...,vk) such that all (vi,vi+1) are edges in the graph

• edges can form a cycle = a path that ends in the
same vertex it started

• paths and cycles are defined for both directed and
undirected graphs

paths and cycles
• path: a sequence of vertices (v1,v2,v3,...,vk) such that all (vi,vi+1) are edges in the graph

• edges can form a cycle = a path that ends in the
same vertex it started

• paths and cycles are defined for both directed and
undirected graphs

paths and cycles
• path: a sequence of vertices (v1,v2,v3,...,vk) such that all (vi,vi+1) are edges in the graph

• edges can form a cycle = a path that ends in the
same vertex it started

• paths and cycles are defined for both directed and
undirected graphs

paths and cycles
• path: a sequence of vertices (v1,v2,v3,...,vk) such that all (vi,vi+1) are edges in the graph

• edges can form a cycle = a path that ends in the
same vertex it started

• paths and cycles are defined for both directed and
undirected graphs

paths and cycles
• path: a sequence of vertices (v1,v2,v3,...,vk) such that all (vi,vi+1) are edges in the graph

• edges can form a cycle = a path that ends in the
same vertex it started

• paths and cycles are defined for both directed and
undirected graphs

paths and cycles
• path: a sequence of vertices (v1,v2,v3,...,vk) such that all (vi,vi+1) are edges in the graph

• edges can form a cycle = a path that ends in the
same vertex it started

• paths and cycles are defined for both directed and
undirected graphs

paths and cycles
• path: a sequence of vertices (v1,v2,v3,...,vk) such that all (vi,vi+1) are edges in the graph

• edges can form a cycle = a path that ends in the
same vertex it started

• paths and cycles are defined for both directed and
undirected graphs

paths and cycles
• path: a sequence of vertices (v1,v2,v3,...,vk) such that all (vi,vi+1) are edges in the graph

• edges can form a cycle = a path that ends in the
same vertex it started

• paths and cycles are defined for both directed and
undirected graphs

Traverse/search graphs : BFS
• BFS = breadth-first search.
• Start in a given vertex s, find all reachable vertices

from s
- proceed in waves
- computes d[v] = number of edges from s to v. If v not reachable from s, we have d[v] = ∞.

s b
a

f
e

c

d

g
h

Wave traversal

• d[☐=dekoreryM÷÷eÉ÷⇒⇐- wave Iu)) hit -- v. parent
-parental⇐ nodeu
that added - to queue

Traverse/search graphs : BFS
• BFS = breadth-first search.
• Start in a given vertex s, find all reachable vertices

from s
- proceed in waves
- computes d[v] = number of edges from s to v. If v not reachable from s, we have d[v] = ∞.

s b
a

f
e

c

d

g
h

0 Bfs tree (output
BFS- advance

0→
• t.at
← →

↳

Traverse/search graphs : BFS
• BFS = breadth-first search.
• Start in a given vertex s, find all reachable vertices

from s
- proceed in waves
- computes d[v] = number of edges from s to v. If v not reachable from s, we have d[v] = ∞.

s b
a

f
e

c

d

g
h

0 1

Traverse/search graphs : BFS
• BFS = breadth-first search.
• Start in a given vertex s, find all reachable vertices

from s
- proceed in waves
- computes d[v] = number of edges from s to v. If v not reachable from s, we have d[v] = ∞.

s b
a

f
e

c

d

g
h

0 1 2

Traverse/search graphs : BFS
• BFS = breadth-first search.
• Start in a given vertex s, find all reachable vertices

from s
- proceed in waves
- computes d[v] = number of edges from s to v. If v not reachable from s, we have d[v] = ∞.

s b
a

f
e

c

d

g
h

0 1 2 3

BFS
• use a queue to store processed vertices
- for each vertex in the queue, follow adj matrix to get vertices of the next wave

‣ BFS(V,E,s)
‣ for each vertex v≠s, set d[v]=∞
‣ init queue Q; enqueue(Q,s) //puts s in the queue
‣ while Q not empty
‣ u = dequeue(S) // takes the first elem available from the queue
‣ for each vertex v ∈ Adj[u]
‣ if (d[v]==∞) then
‣ d[v]=d[u]+1
‣ Enqueue(Q,v)

‣ end if
‣ end for

‣ end while

• Running time O(V+E), since each edge and vertex is
considered once.

IT wave #

Traverse/search graphs : DFS
• DFS = depth-first search
- once a vertex is discovered, proceed to its adj vertices, or “children”(depth) rather than to its “brothers” (breadth)

‣ DFS-wrapper(V,E)
‣ foreach vertex u∈V {color[u] = white} end for //color all nodes white
‣ foreach vertex u∈V
‣ if (color[u]==white) then DFS-Visit(u)

‣ end for

‣ DFS-Visit(u) //recursive function
‣ color[u] = gray; //gray means “exploring from this node”

‣ time++; discover_time[u] = time;//discover time

‣ for each v ∈ Adj[u]
‣ if (color[v]==white) then DFS-Visit(v)//explore from u

‣ end for
‣ color [u] = black; finish_time[u]=time; //finish time

• discovery (a) • DFS-tree

diffk) o ie . parent

•edge classification

-

=

DFS

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

A B C

D
E F

G

H

DFS

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

A B C

D
E F

G

H

DFS

1 12

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

A B C

D
E F

G

H

DFS-visit(A)

&

DFS

1 12

2 7

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

A B C

D
E F

G

H

DFS-visit(A)

:

DFS

1 12

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

A B C

D
E F

G

H

DFS-visit(A)

:
do

DFS

1 12

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to DA B C

D
E F

G

H

DFS-visit(A)

d

d

d f
black=done

DFS

1 12

5 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F grayA B C

D
E F

G

H

DFS-visit(A)

rootYrun'

☒→⑧ ☐rooty
☒ ↳

•f• q f
""

⑨ 1

DFS

1 12

5 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F gray

6 finish F, color F black, return to D

A B C

D
E F

G

H

DFS-visit(A)

DFS

1 12

5 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F gray

6 finish F, color F black, return to D

7 finish D, color D black, return to A

A B C

D
E F

G

H

DFS-visit(A)

DFS

8 111 12

5 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F gray

6 finish F, color F black, return to D

7 finish D, color D black, return to A

8 discover B from A, color B gray

A B C

D
E F

G

H

DFS-visit(A)

DFS

8 111 12

9 10

5 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F gray

6 finish F, color F black, return to D

7 finish D, color D black, return to A

8 discover B from A, color B gray

9 discover G from B, color G gray

A B C

D
E F

G

H

DFS-visit(A)

DFS

8 111 12

9 10

5 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F gray

6 finish F, color F black, return to D

7 finish D, color D black, return to A

8 discover B from A, color B gray

9 discover G from B, color G gray

10 finish G, color G black, return to B

A B C

D
E F

G

H

DFS-visit(A)

DFS

8 111 12

9 10

5 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F gray

6 finish F, color F black, return to D

7 finish D, color D black, return to A

8 discover B from A, color B gray

9 discover G from B, color G gray

10 finish G, color G black, return to B

11 finish B, color B black, return to A

A B C

D
E F

G

H

DFS-visit(A)

DFS

8 111 12

9 10

5 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F gray

6 finish F, color F black, return to D

7 finish D, color D black, return to A

8 discover B from A, color B gray

9 discover G from B, color G gray

10 finish G, color G black, return to B

11 finish B, color B black, return to A

12 finish A, color A black, done DFS-visit(A)

A B C

D
E F

G

H

DFS-visit(A)

DFS

13 168 111 12

9 10

5 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F gray

6 finish F, color F black, return to D

7 finish D, color D black, return to A

8 discover B from A, color B gray

9 discover G from B, color G gray

10 finish G, color G black, return to B

11 finish B, color B black, return to A

12 finish A, color A black, done DFS-visit(A)

13 DFS-visit (C), discover C, color C gray

A B C

D
E F

G

H

DFS-visit(A) DFS-visit(C)

DFS

13 168 111 12

9 10

14 155 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F gray

6 finish F, color F black, return to D

7 finish D, color D black, return to A

8 discover B from A, color B gray

9 discover G from B, color G gray

10 finish G, color G black, return to B

11 finish B, color B black, return to A

12 finish A, color A black, done DFS-visit(A)

13 DFS-visit (C), discover C, color C gray

14 discover H from C, color H gray

A B C

D
E F

G

H

DFS-visit(A) DFS-visit(C)

DFS

13 168 111 12

9 10

14 155 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F gray

6 finish F, color F black, return to D

7 finish D, color D black, return to A

8 discover B from A, color B gray

9 discover G from B, color G gray

10 finish G, color G black, return to B

11 finish B, color B black, return to A

12 finish A, color A black, done DFS-visit(A)

13 DFS-visit (C), discover C, color C gray

14 discover H from C, color H gray

15 finish H, color H black, return to C

A B C

D
E F

G

H

DFS-visit(A) DFS-visit(C)

DFS

13 168 111 12

9 10

14 155 6

2 7

3 4

2 7

discovery
time

finish
time

not
discovered

discovered,
exploring
from it

finished

init: color all nodes "not discovered"/white

1. DFS-visit(A): discover A, color A gray

2. discover D from A, color D gray

3. discover E from D, color E gray

4. finish E, color E black, return to D

5 discover F from D, color F gray

6 finish F, color F black, return to D

7 finish D, color D black, return to A

8 discover B from A, color B gray

9 discover G from B, color G gray

10 finish G, color G black, return to B

11 finish B, color B black, return to A

12 finish A, color A black, done DFS-visit(A)

13 DFS-visit (C), discover C, color C gray

14 discover H from C, color H gray

15 finish H, color H black, return to C

16 finish C, color C black, finish DFS-visit(C)

A B C

D
E F

G

H

DFS-visit(A) DFS-visit(C)

DFS edge classification
• “tree” edge : from vertices gray to white
- a tree edge advances the graph exploration/traversal

• “back” edge : from vertices gray to gray
- a back edge points to a cycle within the current exploration nodes

• “forward” edge : from vertices a(gray) to b(black), if
a discovered first
- discovery_time[a] < discovery_time[b]
- points to a different part of the tree, already explored from a

• “cross” edge : from vertices a(gray) to b(black), if b
discovered first
- discovery_time[a] > discovery_time[b]
- points to a different part of the tree, explored before discovering a

EE 0

Forwwarrddedge Cross
true 6 : ☒
edges ⑧t¥¥

⑥ gray → black

($1B 33

µ.gg#,disc9ratKdis-4biac4 ¥☒319gray→ black

discfgray)> disc /Slack)
6 3

gray
- ancestor /black

gray - ancestor /black) @ It C'4)
in DFS tree

Runtime BFS O(E) formed
OCETV)

DFS ⑤ (E) 04--1-4
Minear in edges

"

IDEs -rec
↳nrec , use stack

Checkpoint
• on the animated example, label each edge as

"tree","back", "cross", or "forward"
• do the same on the following example (DFS discovery

and finish times marked for each node)

1 16

2 7 8 11 12 15

3 4 5 6 9 10 13 14

Checkpoint

• almost same example, with a small modification: one
edge was reversed

1 16

2 7 8 15 10 13

3 4 5 6 9 14 11 12

DFS observations
• Running time O(V+E), same as BFS
• vertex v is gray between times discover[v] and finish[v]
• gray time intervals (discover[v], finish[v]) are inclusive of

each other
- (d[v], f[v]) can include (d[u], f[u]) : d[v] < d[u] < f[u] <f[v]

- (d[v], f[v]) can separate from (d[u], f[u]) : d[v] < f[v] < d[u] <f[u]

- (d[v], f[v]) cannot intersect (d[u], f[u]) : d(v) < d(u) < f[v] <f[u]

• graph G=(V,E) is acyclic (does not have cycles) if DFS
does not find any “back” edge

d[v] d[u] f[u] f[v] time

d[v] f[v] d[u] f[u] time

d[v] d[u] f[v] f[u] time

discos '→dis4µ
,DFS close (a) ☒¥fdoselv)

Dfs

£1 }
discal diktat

close (a)
a-while

IMPOSSIBLE discus
(a)Jebsen

but u still
open

Undirected graphs cycles

• graph G=(V,E) is acyclic (does not have cycles) if DFS
does not find any “back” edge

• since G is undirected, no cycles implies |E|⩽|V|-1
• running DFS, if we find more than |V|-1 edges, there

must be a cycle
• Undirected graphs: find-cycles algorithm takes O(V)

Directed graphs cycles

• graph G=(V,E) is acyclic (does not have cycles) if DFS
does not find any “back” edge

• for directed graphs, even without cycles they can
have more edges, |E| > |V|-1

• algorithm to determine cycles: run DFS, look for back
edges - O(V+E) time

• DAG = directed acyclic graph

Topological sort
• DAG admits topological sort: all vertices “sorted” on a line, such that all edges point

from left to right-no cycles - 2 graphs below are the same-

• to do this: algorithm: run DFS, time O(V+E). Output vertices in reverse order given by
finishing time

DAG -- directed acyclic

0 O
o

①
④ DAG _= topological sort

→ graph sits a line
Heine graph

")

wedges left→right

0 O O O O O O O O

Check Point

• how can we use DFS to determine if there is a path
from u to v ?

• prove that by sorting vertices in the reverse order
of finishing times, we obtained a topological sort
- assuming no cycles
- in other words, all edges point in the same direction

proof .idea : -reverse- order Hfcs } ⇒ cycle
-edge
R→L contradiction !

BCC : strongly connected components
corrupt comp2 comps

j÷→of→→. .9
i000k¥:& ↳
→

•

l'STRONG
"
: iaaae

en-nwmpoaeut
there is a path from any ②→ any②

No CYCLES between costly

7¥!
←•
⇐
↳
→
of

0 DFS -7 Dfs tree 61

§Jo • deal

{↳ to gtlofcai
to °

to
a

6
0

Eccl

Strongly connected components
• SCC = a set of vertices S⊂V, such that for any two (u,v)∈S, graph G

contains a path u⤳v and a path v⤳u
• trivial for undirected graphs

- all connected vertices are in fact strongly connected

• tricky for directed graphs
• graph below has the DFS discover/finish times and marked 4 strongly connected components; “tree” edges highlighted
• between two SCC, A and B, there cannot exists paths both ways (A∋u⤳v∈B and B∋v’⤳u’∈A)

- paths both ways would make A and B a single SCC

Scc meta graph = DAG

→

Lsb
→

0 O→•

f.✓ to
←

sod

topological sort (meta-scc graph)

c⑨→⑧→→
Ee

① left host a④ scan = last funk true
(16

Cho edges in)

④ r⑧se all edges in 6
-

-start 2nd please traversal in a④↳↳ ⑨e becomes "most right h
ko edges out

Example SCC-graph . The first (Left 2cop
had no inanity edges⇒ DRS [first stage) last

finish time is in one of them

SCC- graph with reversed edges

0€°•¥.

Strongly connected components
• run 1st DFS on G to get finishing times f[u]
• run 2nd DFS on G-reversed (all edges reversed -see

picture), each DFS-visit in reverse order of f[u]
- finishing times marked in red for the DFS-visit root vertices

• output each tree (vertices reached) obtained by 2nd
DFS as an SCC

16 10

7 6-0*8

Strongly connected components
• why 2nd DFS produces precisely the SCC -s?
• SCC-graph of G: collapse all SCC into one SCC-vertex, keep

edges between the SCC-vertices
• - SCC graph is a DAG;

- contradiction argument: a cycle on the SCC-graph would immediately collapse
the cycle’s SCC-s into one SCC

• reversed edges (shown in red); reversed-SCC-graph also a DAG
• second DFS runs on reversed-edges (red); once it starts at a

high-finish-time (like 16) it can only go through vertices in the
same SCC (like abe)

16
10

7 6

Minimum Spanning Trees
Lesson 2

Undetected
" pipes

"

④É%%

Spanning Trees
• context : undirected graphs
• a set of edges A that “span” or “touch” all vertices,

and forms no cycles
- necessary this set of edges A has size = |V|-1

• spanning tree: the tree formed by the set of
spanning edges together with vertex set T = (V,F)

s b
a

f
e

c

d

g
h

Spanning Trees
• context : undirected graphs
• a set of edges A that “span” or “touch” all vertices,

and forms no cycles
- necessary this set of edges A has size = |V|-1

• spanning tree: the tree formed by the set of
spanning edges together with vertex set T = (V,F)

s b
a

f
e

c

d

g
h

A spanning tree

Spanning Trees
• context : undirected graphs
• a set of edges A that “span” or “touch” all vertices,

and forms no cycles
- necessary this set of edges A has size = |V|-1

• spanning tree: the tree formed by the set of
spanning edges together with vertex set T = (V,F)

s b
a

f
e

c

d

g
h

A spanning tree
Another spanning tree

Minimum Spanning Tree (MST)
• context : undirected graph, edges have weights
- edge (u,v)∈E has weight w(u,v)

• MST is a spanning tree of minimum total weight (of
its edges)
- must span all vertices
- exactly |V|-1 edges
- sum of edges weight be minimum among spanning trees

D

1) Charad- optsir

weft-¥
OPTMstcrijht)

④
"

① tree 4

⑨tree 5

Growing Minimum Spanning Trees
• “safe edge” (u,v) for a given set of edges A: there is a MST that uses A and (u,v)- that MST may not be unique

• GENERIC-MST (G)
• A = set of tree edges, initially empty
• while A does not form a spanning tree // meaning while |A| < |V|-1
- find edge (u,v) that is safe for A
- add (u,v) to A

• end while

• how to find a safe edge to a given set of edges A?- Prim algorithm- Kruskal algorithm

Cuts in the graph
• “cut” is a partition of vertices in two sets : V=S ∪ V�S
• an edge (u,v) crosses the cut (S,V-S) if u and v are on

different partitions (one in S the other in V-S)
• cut (S, V-S) respects set of edges A if A has no cross edge
• “min weight cross edge” is a cross edge for the cut, having

minimum weight across all cross edges
• Cut Theorem : if A is a set of edges part of some MST, and

(S,V-S)a cut respecting A , then a min-weight cross edge is “safe” for A (can be added to A towards an MST)

• A={ab, ic, cf, hg, fg}

• cut : S={a,b,d,e} V-S={h,i,c,g,f} respects A

• safe crossing edge : cd, weight(cd)=7

valid uxt
= selected edges dont cross

µ
solar

Kruskal ¥

go o④ •¥
. ¥041 •

4-1-to

•
huh out of the edge rein
• not causing cycle

Prim algorithm
• grows a single tree A, S = set of vertices in the tree
- as opposed to a forest of smaller disconnected trees

• add a safe edge at a time
- connecting one more node to the current tree

Selected edges y⇒ win edge across cut can be
chosen
(greedily)valid alt GREEDY CHOICE

Prim algorithm
• grows a single tree A, S = set of vertices in the tree
- as opposed to a forest of smaller disconnected trees

• add a safe edge at a time
- connecting one more node to the current tree

• define cut (S,V-S), which respects A. Using the cut
theorem, the min-weight edge across the cut is the
next edge added to A

Prim algorithm
• grows a single tree A, S = set of vertices in the tree
- as opposed to a forest of smaller disconnected trees

• add a safe edge at a time
- connecting one more node to the current tree

• define cut (S,V-S), which respects A. Using the cut
theorem, the min-weight edge across the cut is the
next edge added to A
- edge gf in the picture is added to A, vertex g added to the tree

Prim algorithm
• grows a single tree A, S = set of vertices in the tree
- as opposed to a forest of smaller disconnected trees

• add a safe edge at a time
- connecting one more node to the current tree

• define cut (S,V-S), which respects A. Using the cut
theorem, the min-weight edge across the cut is the
next edge added to A
- edge gf in the picture is added to A, vertex g added to the tree

Prim algorithm

• add another(next) safe edge
- connecting one more node to the current tree

Prim algorithm

• add another(next) safe edge
- connecting one more node to the current tree

• define cut (S,V-S), which respects A. Using the cut
theorem, the min-weight edge across the cut is the
next edge added to A

Prim algorithm

• add another(next) safe edge
- connecting one more node to the current tree

• define cut (S,V-S), which respects A. Using the cut
theorem, the min-weight edge across the cut is the
next edge added to A
- edge hg in the picture is added to A, vertex h added to the tree

Prim algorithm

• add another(next) safe edge
- connecting one more node to the current tree

• define cut (S,V-S), which respects A. Using the cut
theorem, the min-weight edge across the cut is the
next edge added to A
- edge hg in the picture is added to A, vertex h added to the tree

•
- add win edge↳
§

connects a new node

to the eouztmp
Prim- tree

.

"

@

*

Thin out of edges connectingto tree

Prim MST algorithm

• Prim simple
- but implementation a bit tricky

• Running Time depends on
implementation of Extract-
Min from the Queue
- best theoretical implementation uses Fibonacci Heaps
- also the most complicated
- only makes a practical difference for very large graphs

Kruskal MST algorithm
• Grows a forest of trees Forrest = (V,A)
- eventually all connected into a MST
- initially each vertex is a tree with no edges, and A is empty

Kruskal MST algorithm
• Grows a forest of trees Forrest = (V,A)
- eventually all connected into a MST
- initially each vertex is a tree with no edges, and A is empty

• each edge added connects two trees (or components)

Kruskal MST algorithm
• Grows a forest of trees Forrest = (V,A)
- eventually all connected into a MST
- initially each vertex is a tree with no edges, and A is empty

• each edge added connects two trees (or components)
- find the minimum weight edge (u,v) across two components, say connecting trees T1∋v and T2∋u (edges between nodes of the same

trees are no good because they form cycles) (blue in the picture)

Kruskal MST algorithm
• Grows a forest of trees Forrest = (V,A)
- eventually all connected into a MST
- initially each vertex is a tree with no edges, and A is empty

• each edge added connects two trees (or components)
- find the minimum weight edge (u,v) across two components, say connecting trees T1∋v and T2∋u (edges between nodes of the same

trees are no good because they form cycles) (blue in the picture)
- define cut (S,V-S); S = vertices of T1 (in red). This cut respects set A

Kruskal MST algorithm
• Grows a forest of trees Forrest = (V,A)
- eventually all connected into a MST
- initially each vertex is a tree with no edges, and A is empty

• each edge added connects two trees (or components)
- find the minimum weight edge (u,v) across two components, say connecting trees T1∋v and T2∋u (edges between nodes of the same

trees are no good because they form cycles) (blue in the picture)
- define cut (S,V-S); S = vertices of T1 (in red). This cut respects set A
- edge (u,v) is the minimum cross edge, thus a safe edge to add to A. T1 and T2 are connected now into one tree

Kruskal algorithm

• Kruskal is simple
• implementation and running time depend on FIND-

SET and UNION operations on the disjoint-set forest.
- chapter 21 in the book, optional material for this course

• running time O(E logV)

MST algorithm comparison
• if you know graph density (edges to vertices)

Kruskal
Prim

with array
implement.

Prim w/
binomial

heap

Prim w/
Fibonacci

heap
in practice

sparse graph
E=O(V)

O(VlogV) O(V2) O(VlogV) O(VlogV)
Kruskal, or

Prim+binom
heap

dense graph
E=Θ(V2)

O(V2logV) O(V2) O(V2logV) O(V2)
Prim with

array

avg density
E=Θ(VlogV)

O(Vlog2V) O(V2) O(Vlog2V) O(VlogV)
Prim with
Fib heap, if

graph is large

