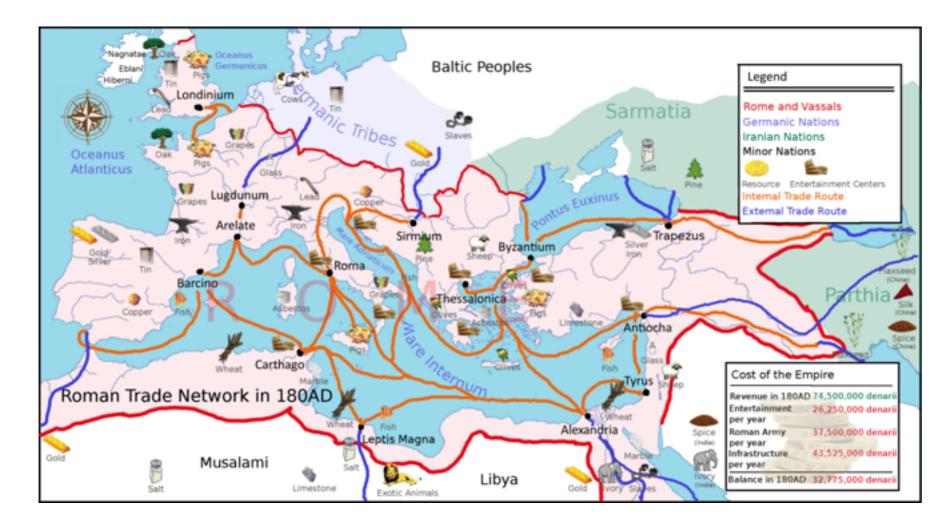
Intro to graphs Minimum Spanning Trees

Graphs

nodes/vertices and edges between vertices

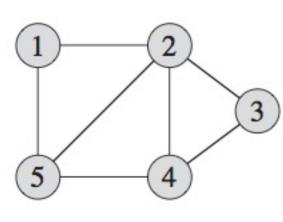
- set V for vertices, set E for edges
- we write graph G = (V,E)

example : cities on a map (nodes) and roads (edges)



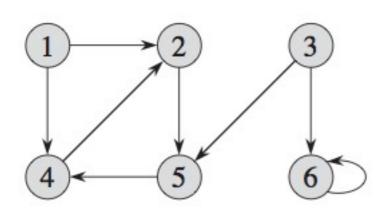
Adjacency matrix

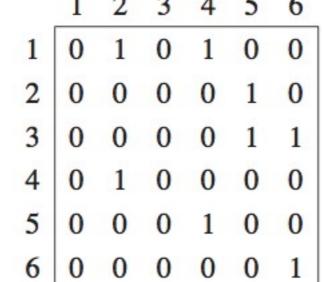
- a_{ij} =1 if there is an edge from vertex i to vertex j
- if graph is undirected, edges go both ways, and the adj. matrix is symmetric



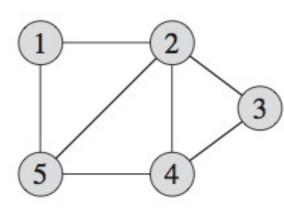
	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1 0 1 1 1	0	1	0

 if the graph is directed, the adj. matrix is not necessarily symmetric
1 2 3 4 5 6

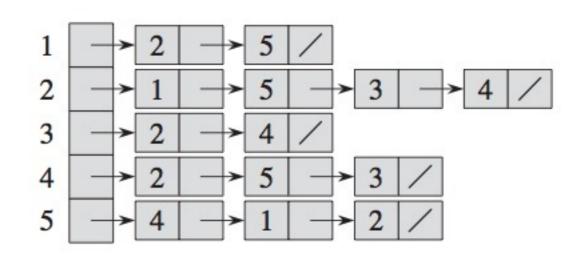




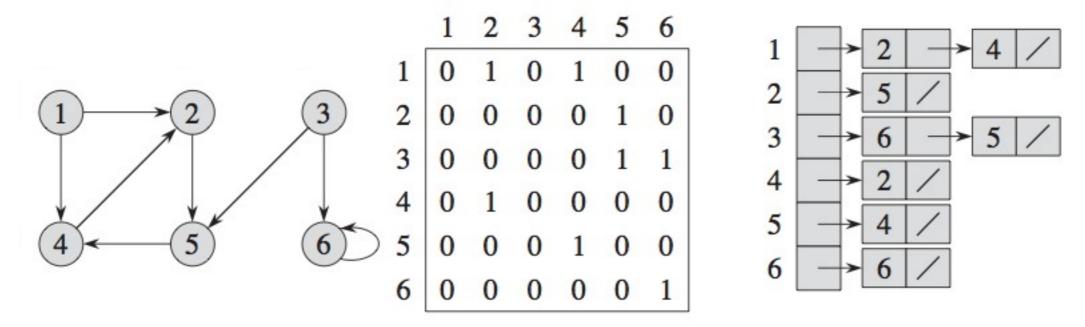
Adjacency lists



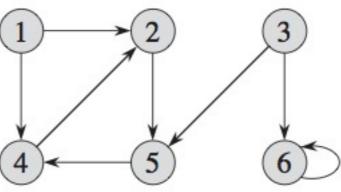




Inked list marks all edges starting off a given vertex

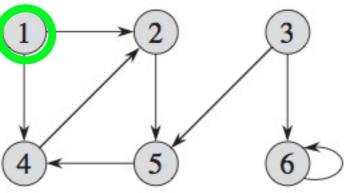


• path: a sequence of vertices (v₁, v₂, v₃,..., v_k) such that all (v_i, v_{i+1}) are edges in the graph



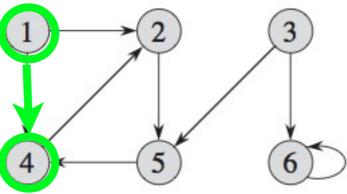
edges can form a cycle = a path that ends in the same vertex it started

• path: a sequence of vertices (v₁, v₂, v₃,..., v_k) such that all (v_i, v_{i+1}) are edges in the graph



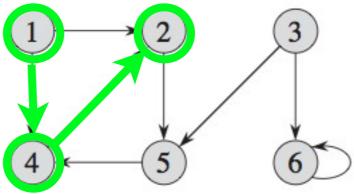
edges can form a cycle = a path that ends in the same vertex it started

• path: a sequence of vertices (v₁, v₂, v₃,..., v_k) such that all (v_i, v_{i+1}) are edges in the graph



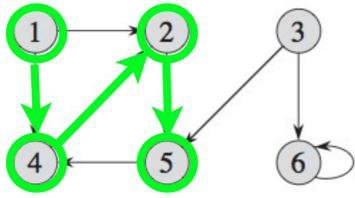
edges can form a cycle = a path that ends in the same vertex it started

• path: a sequence of vertices (v₁, v₂, v₃,..., v_k) such that all (v_i, v_{i+1}) are edges in the graph



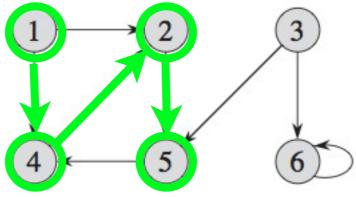
edges can form a cycle = a path that ends in the same vertex it started

• path: a sequence of vertices (v₁, v₂, v₃,..., v_k) such that all (v_i, v_{i+1}) are edges in the graph

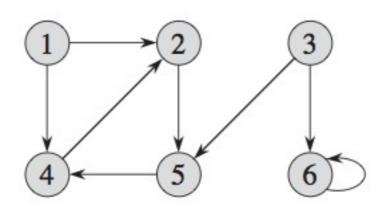


edges can form a cycle = a path that ends in the same vertex it started

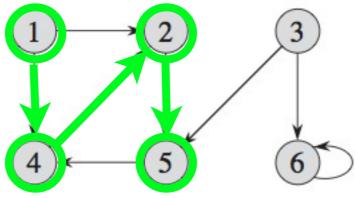
• path: a sequence of vertices (v₁, v₂, v₃,..., v_k) such that all (v_i, v_{i+1}) are edges in the graph



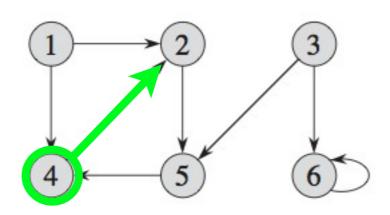
edges can form a cycle = a path that ends in the same vertex it started



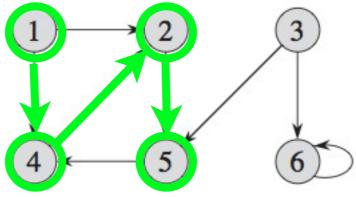
• path: a sequence of vertices (v₁, v₂, v₃,..., v_k) such that all (v_i, v_{i+1}) are edges in the graph



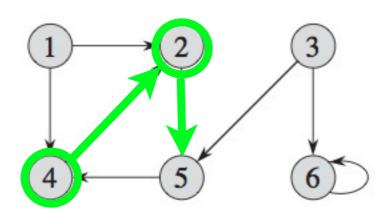
edges can form a cycle = a path that ends in the same vertex it started



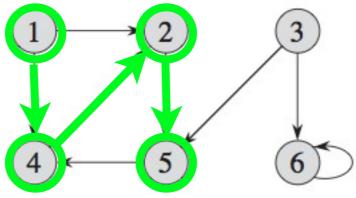
• path: a sequence of vertices (v₁, v₂, v₃,..., v_k) such that all (v_i, v_{i+1}) are edges in the graph



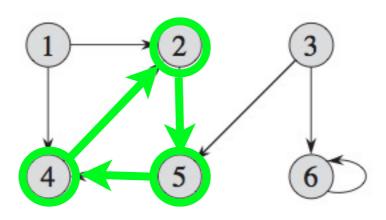
edges can form a cycle = a path that ends in the same vertex it started



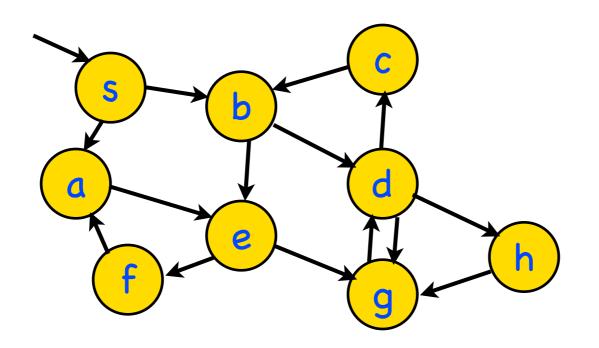
• path: a sequence of vertices (v₁, v₂, v₃,..., v_k) such that all (v_i, v_{i+1}) are edges in the graph



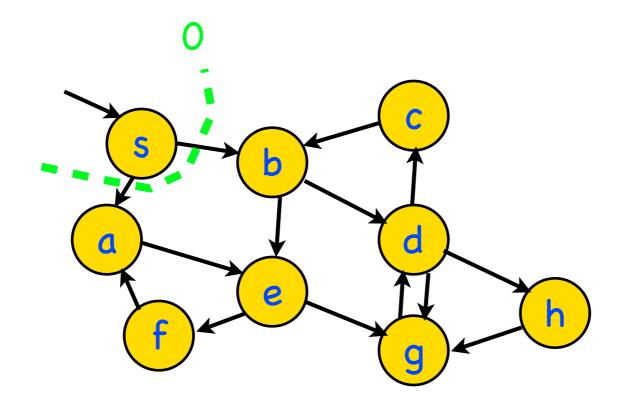
edges can form a cycle = a path that ends in the same vertex it started



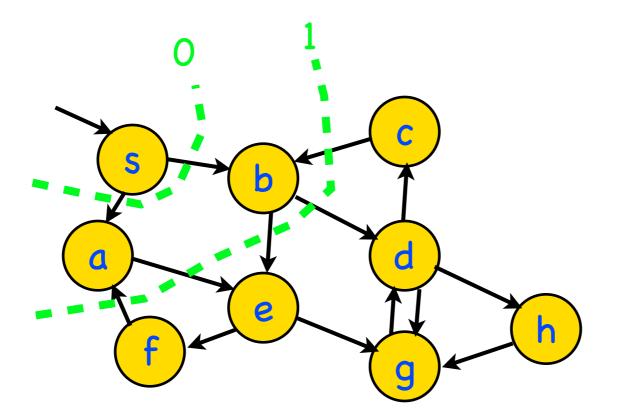
- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves
 - computes d[v] = number of edges from s to v. If v not reachable from s, we have $d[v] = \infty$.



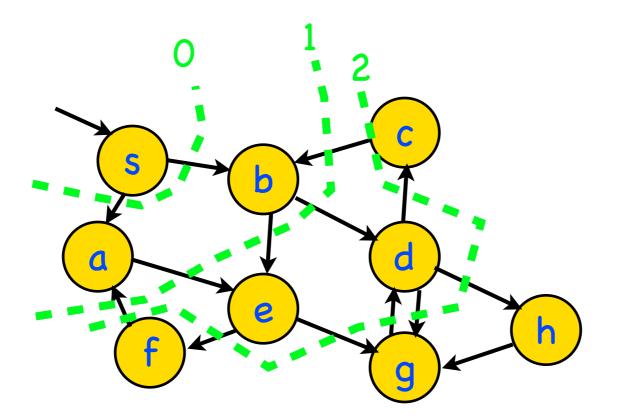
- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves
 - computes d[v] = number of edges from s to v. If v not reachable from s, we have $d[v] = \infty$.



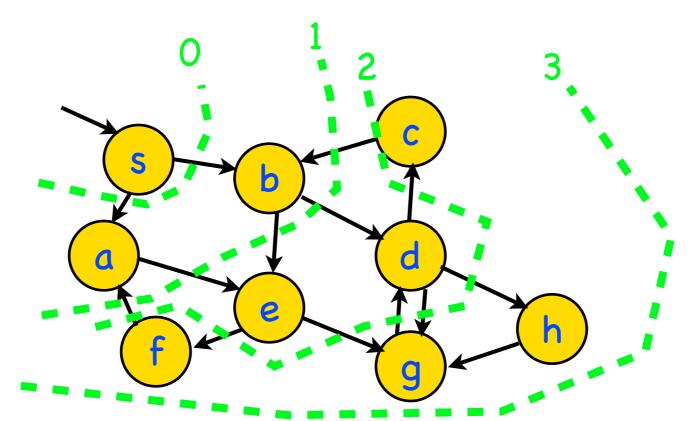
- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves
 - computes d[v] = number of edges from s to v. If v not reachable from s, we have $d[v] = \infty$.



- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves
 - computes d[v] = number of edges from s to v. If v not reachable from s, we have $d[v] = \infty$.



- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves
 - computes d[v] = number of edges from s to v. If v not reachable from s, we have $d[v] = \infty$.



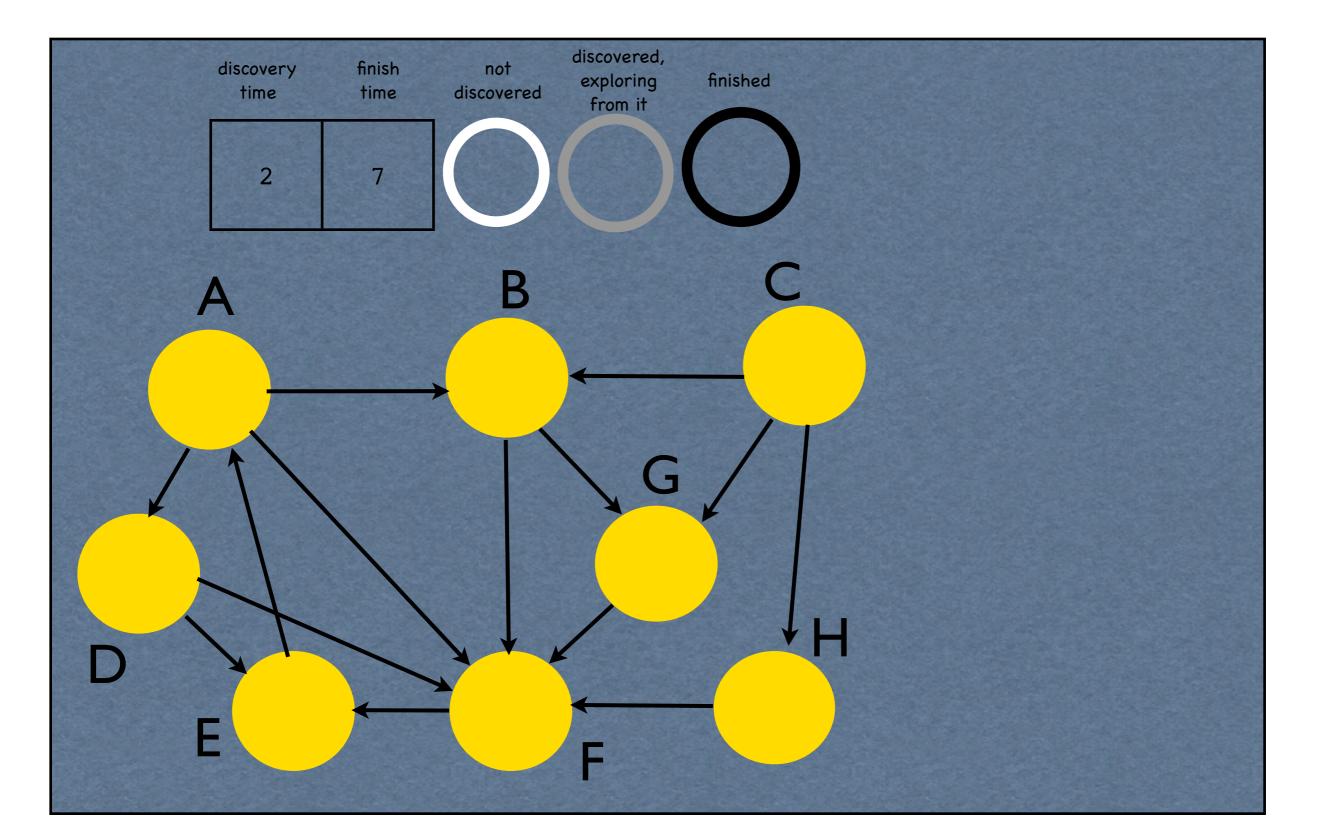
BFS

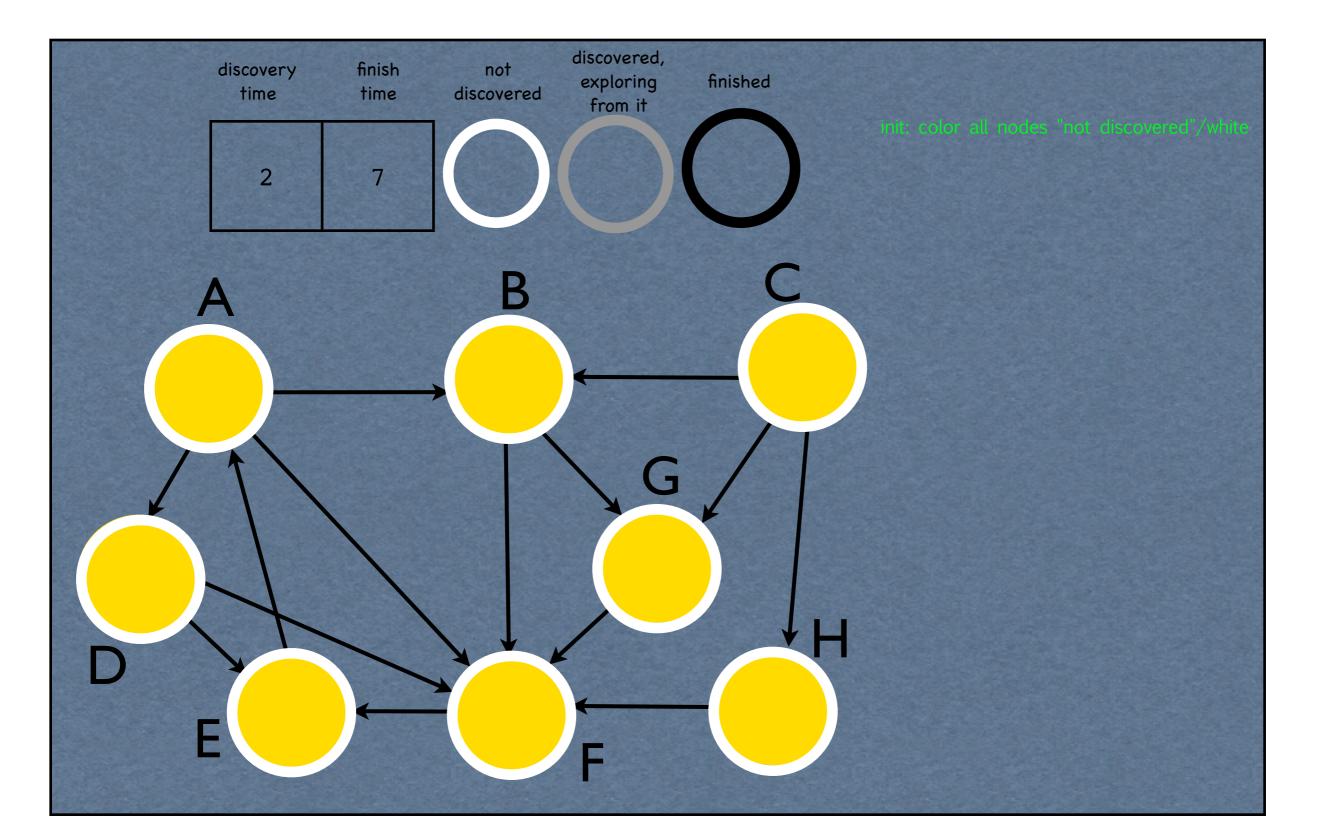
use a queue to store processed vertices

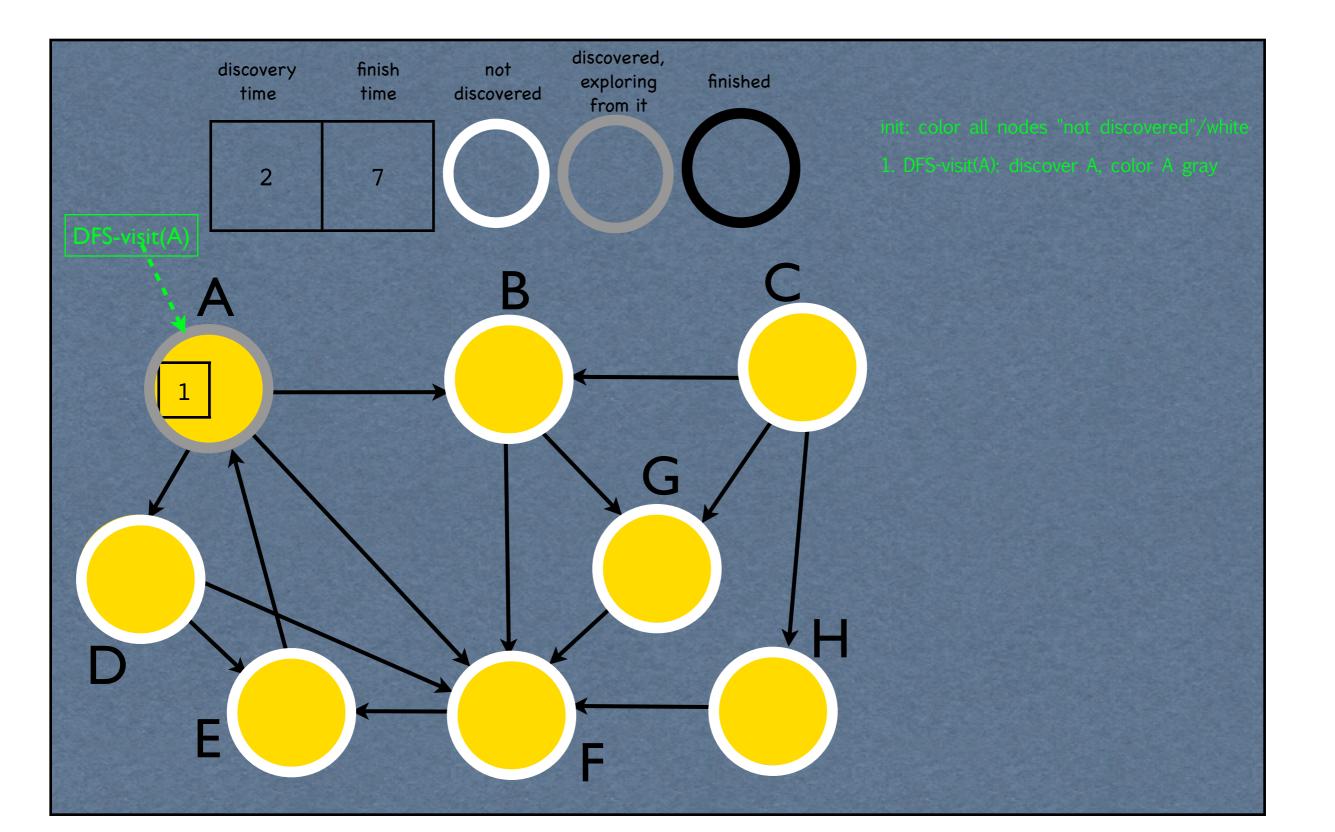
- for each vertex in the queue, follow adj matrix to get vertices of the next wave
- ▶ BFS(V,E,s)
- ▶ for each vertex $v \neq s$, set $d[v] = \infty$
- init queue Q; enqueue(Q,s) //puts s in the queue
- while Q not empty
 - u = dequeue(S) // takes the first elem available from the queue
 - for each vertex v \in Adj[u]
 - if $(d[v] ==\infty)$ then
 - ▶ d[v]=d[u]+1
 - Enqueue (Q, v)
 - end for
- end while

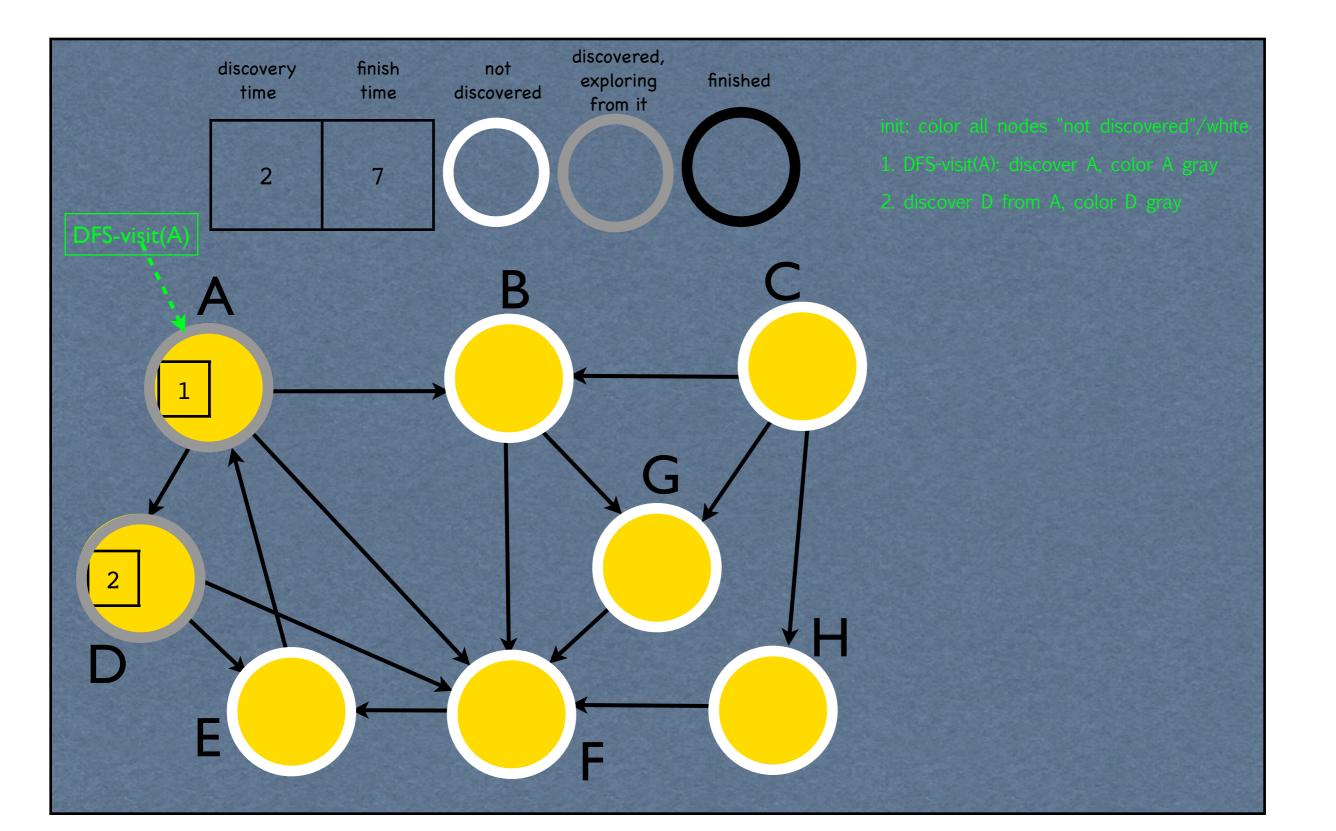
 Running time O(V+E), since each edge and vertex is considered once.

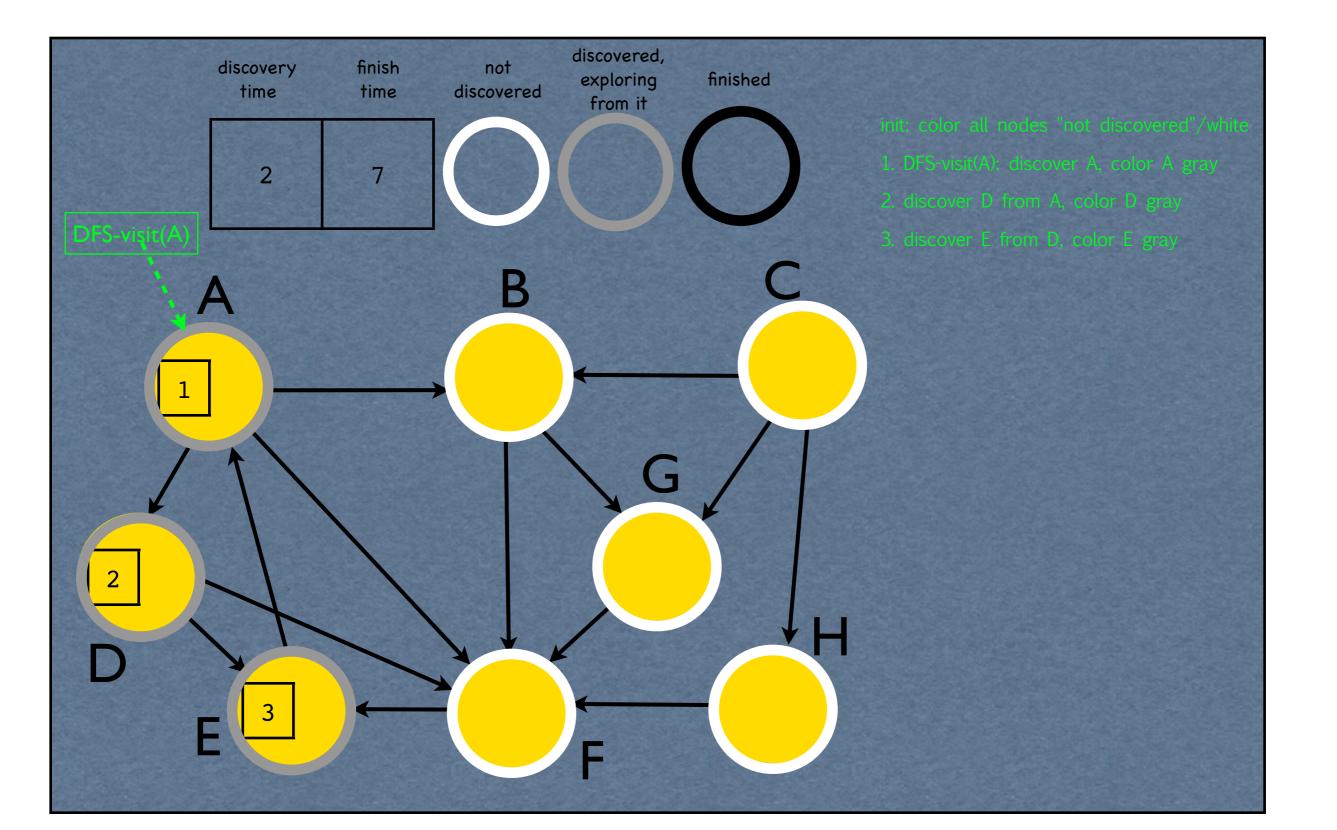
- DFS = depth-first search
 - once a vertex is discovered, proceed to its adj vertices, or "children"(depth) rather than to its "brothers" (breadth)
 - DFS-wrapper(V,E)
 - foreach vertex $u \in V$ {color[u] = white} end for //color all nodes white
 - foreach vertex u∈V
 - ▶ if (color[u]==white) then DFS-Visit(u)
 - end for
 - DFS-Visit(u) //recursive function
 - color[u] = gray; //gray means "exploring from this node"
 - time++; discover_time[u] = time;//discover time
 - for each $v \in Adj[u]$
 - ▶ if (color[v]==white) then DFS-Visit(v) //explore from u
 - end for
 - color [u] = black; finish_time[u]=time; //finish time

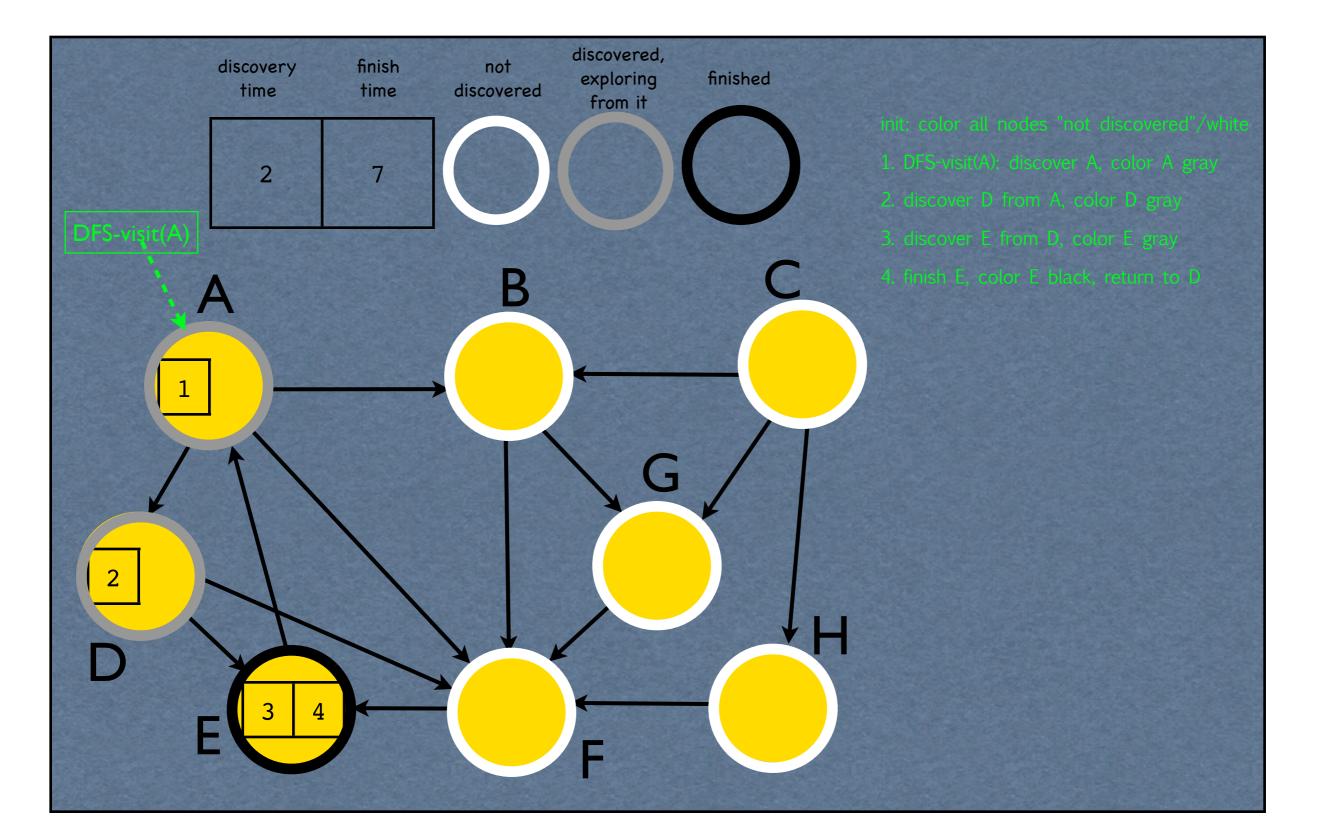


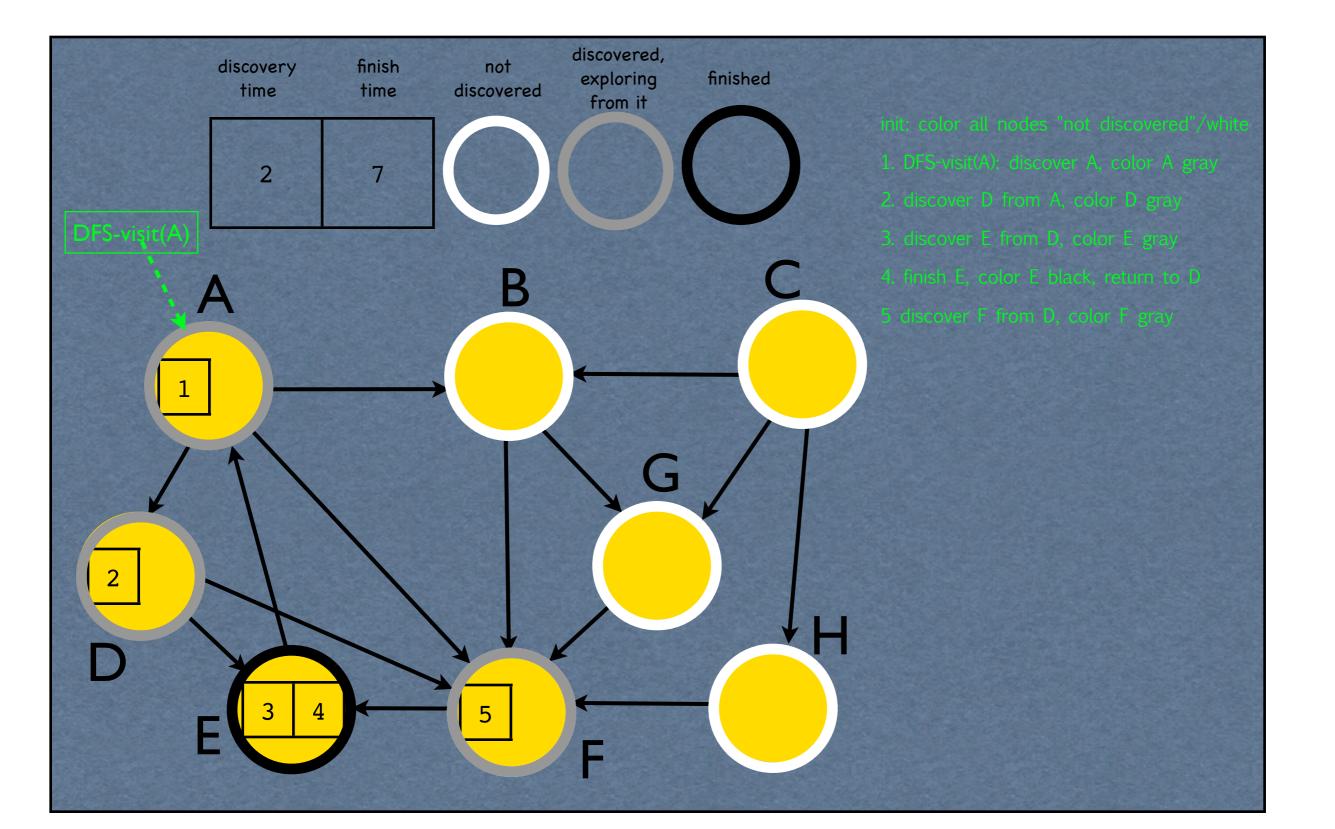


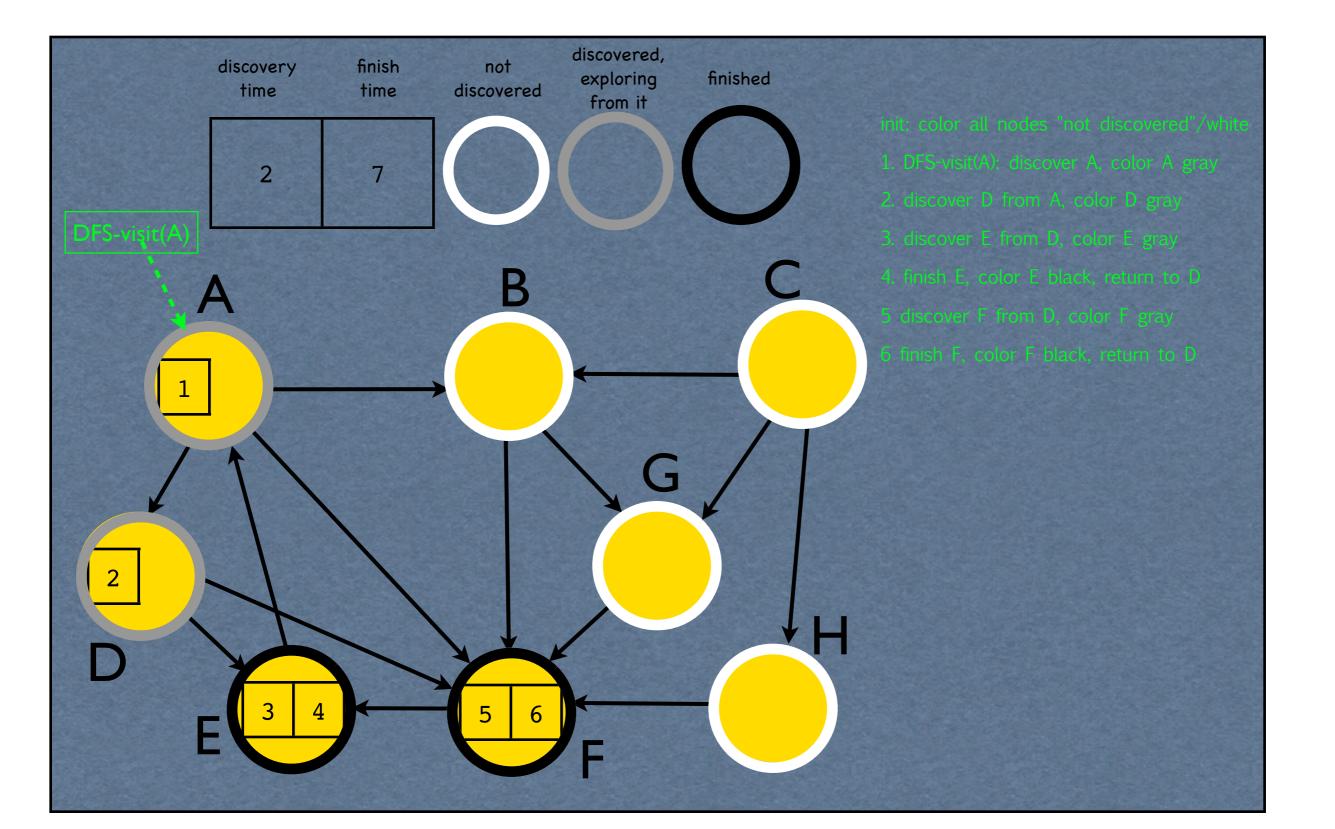


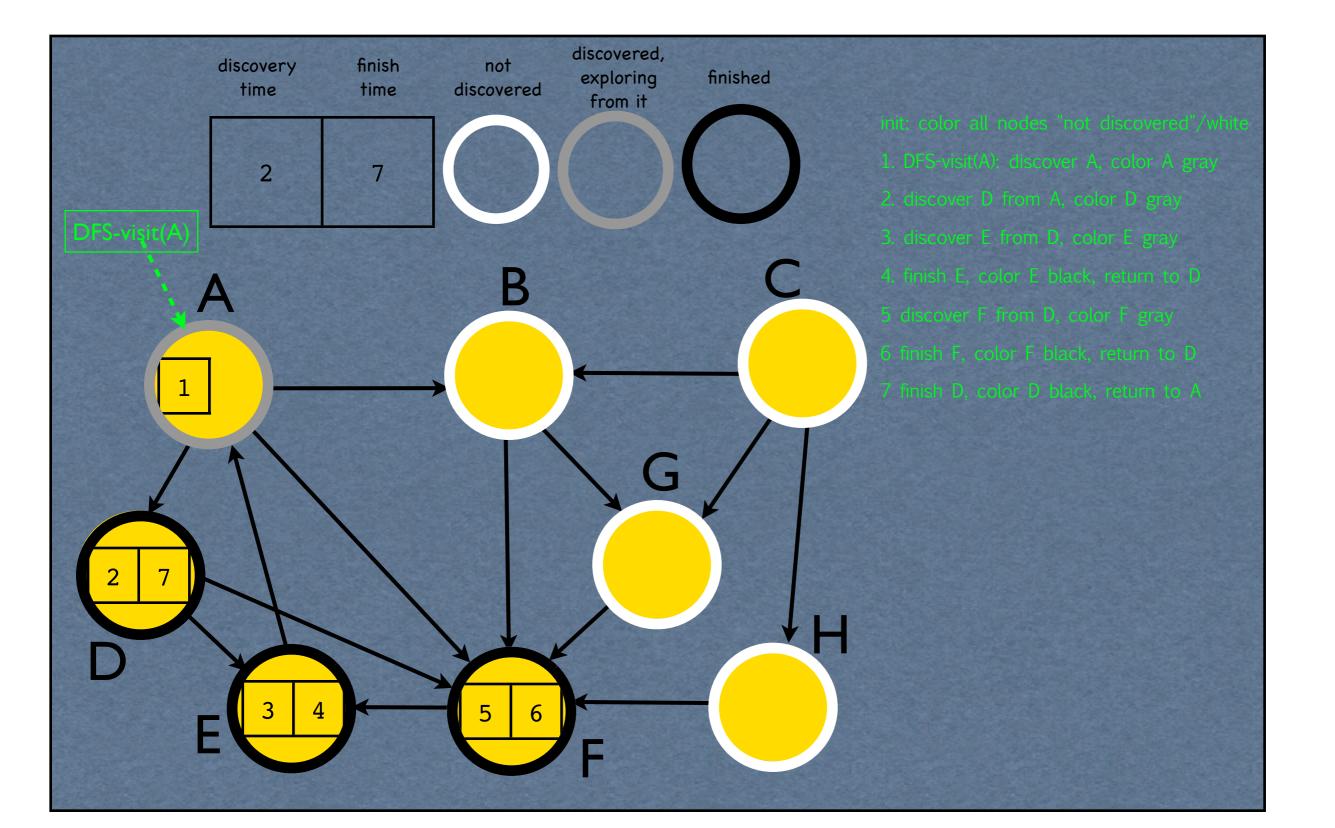


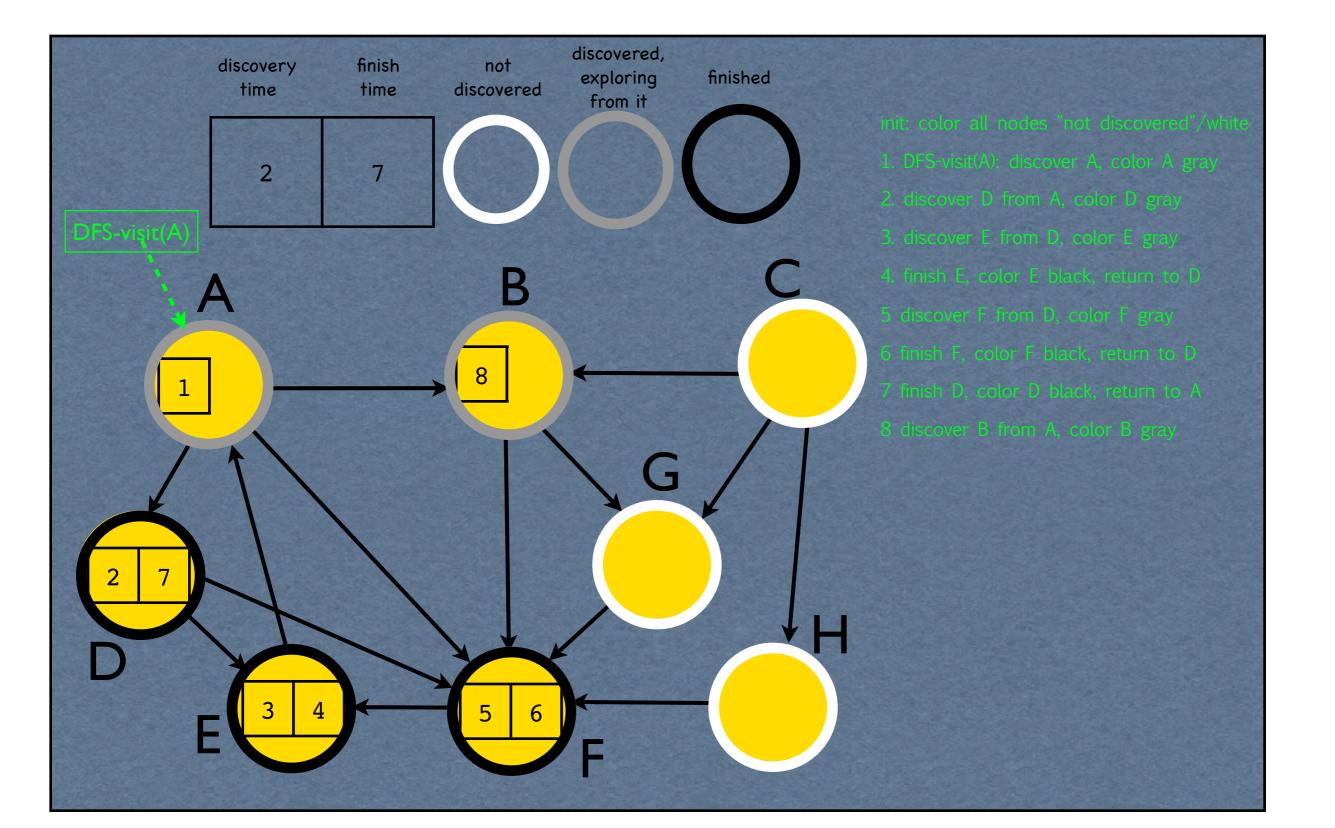


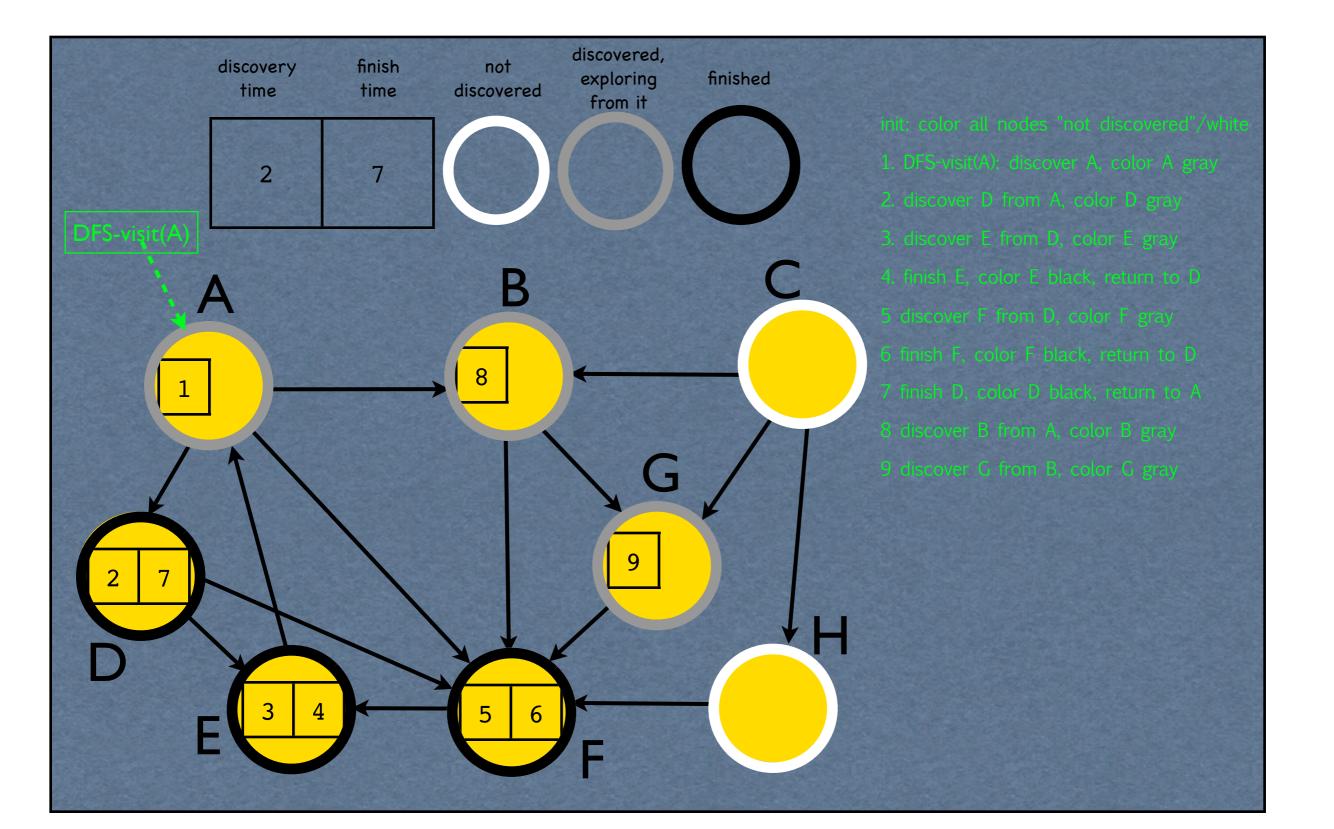


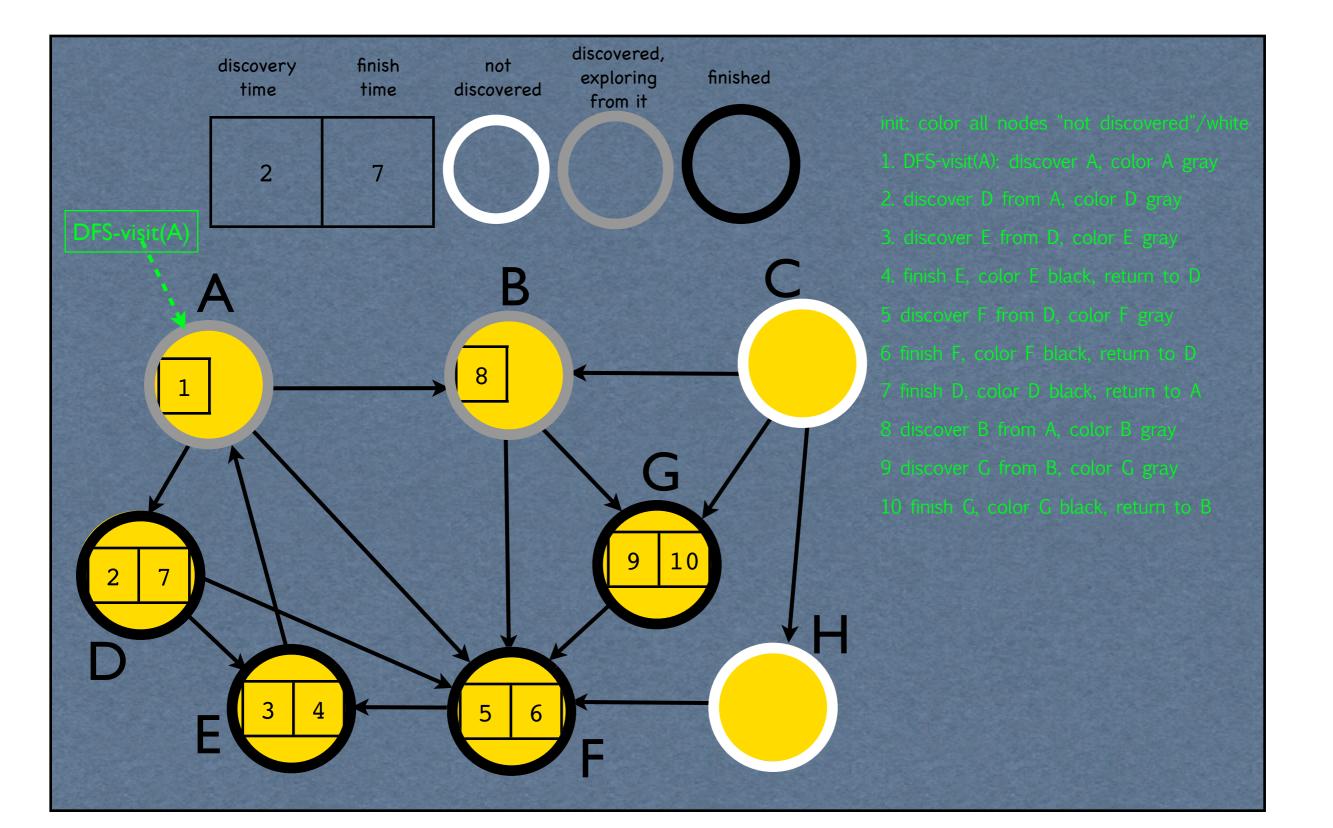


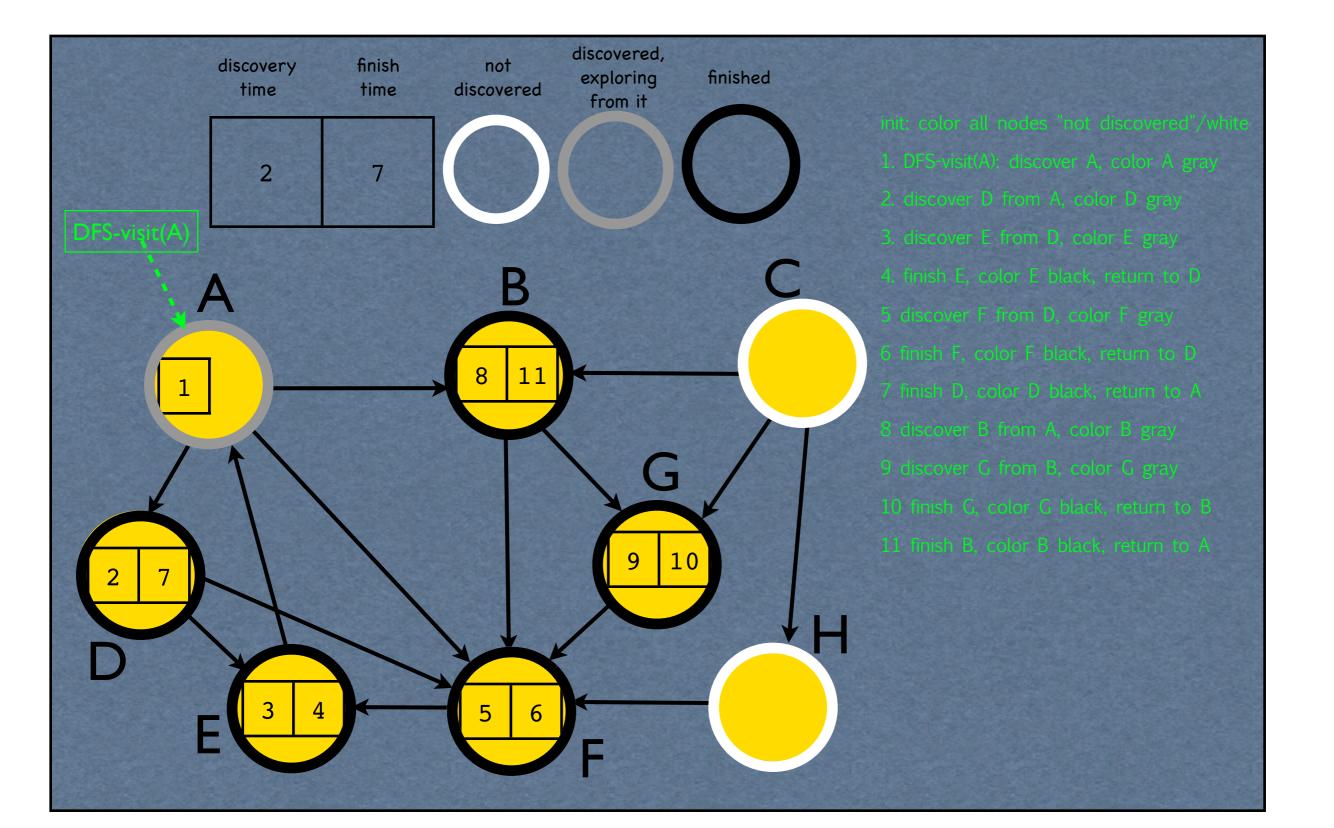


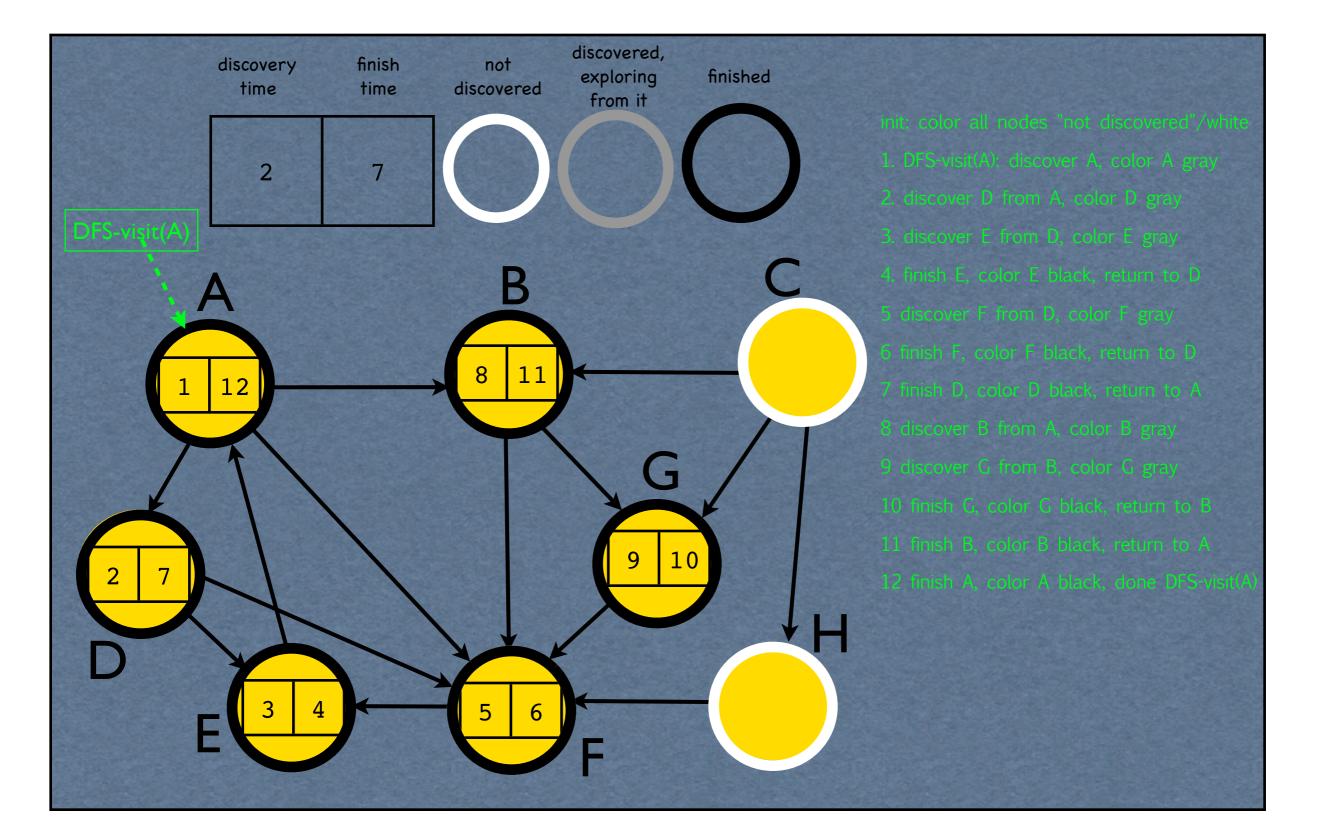


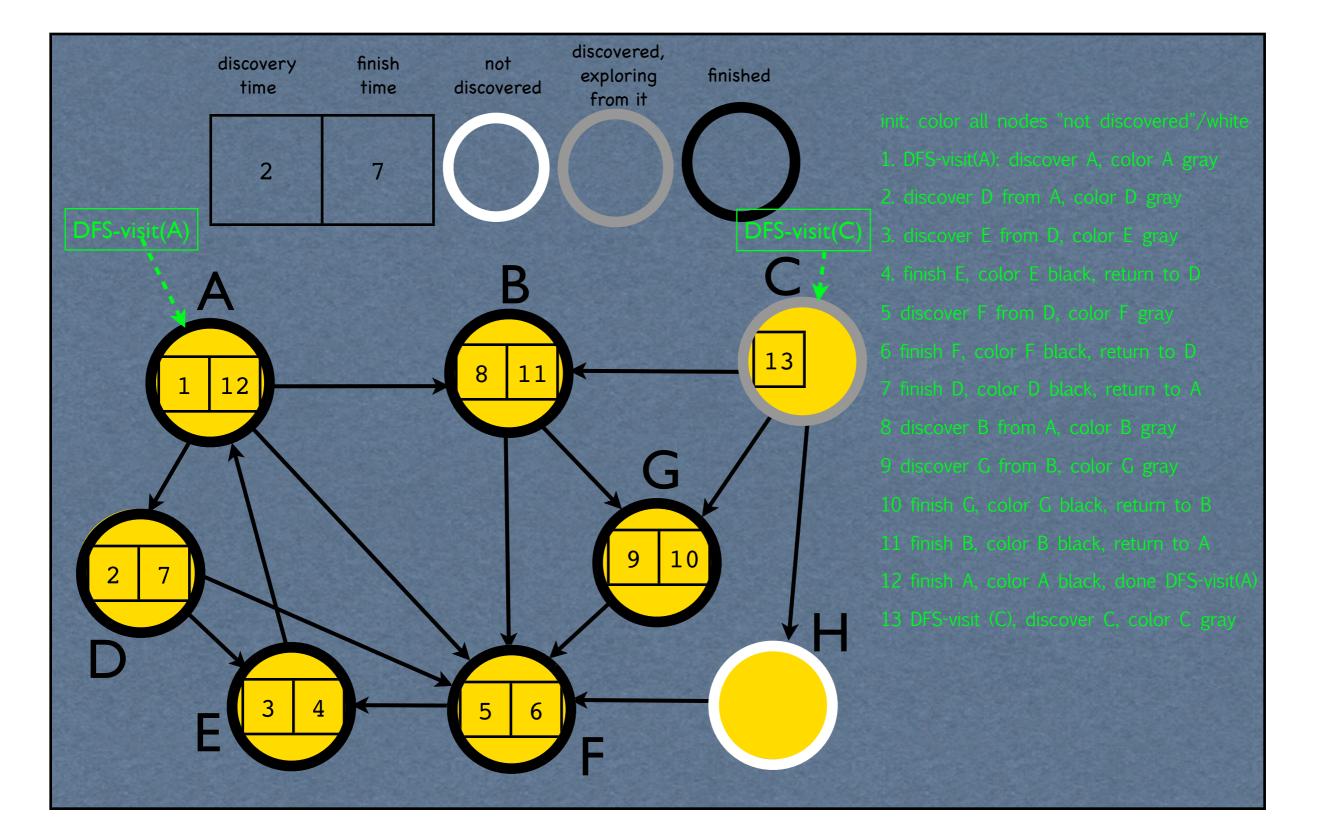


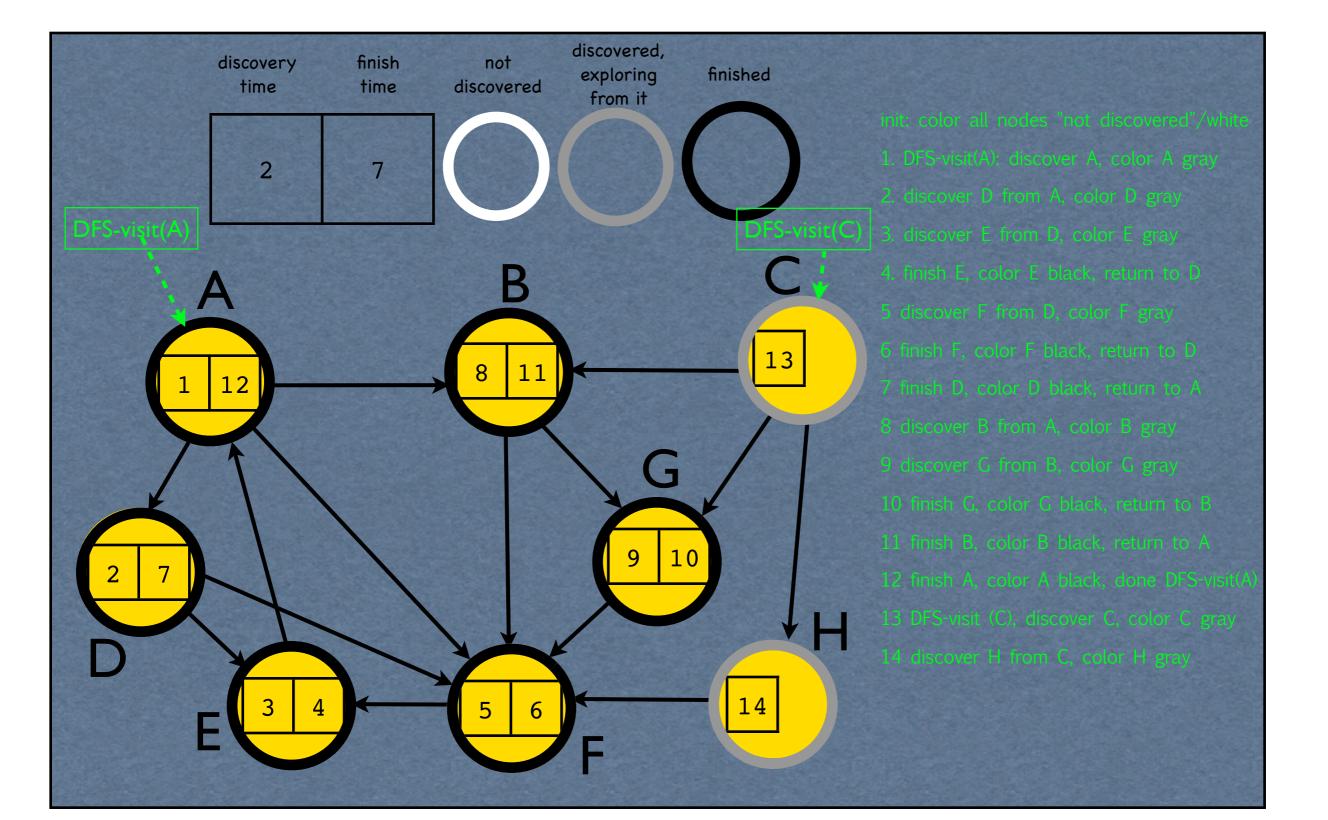




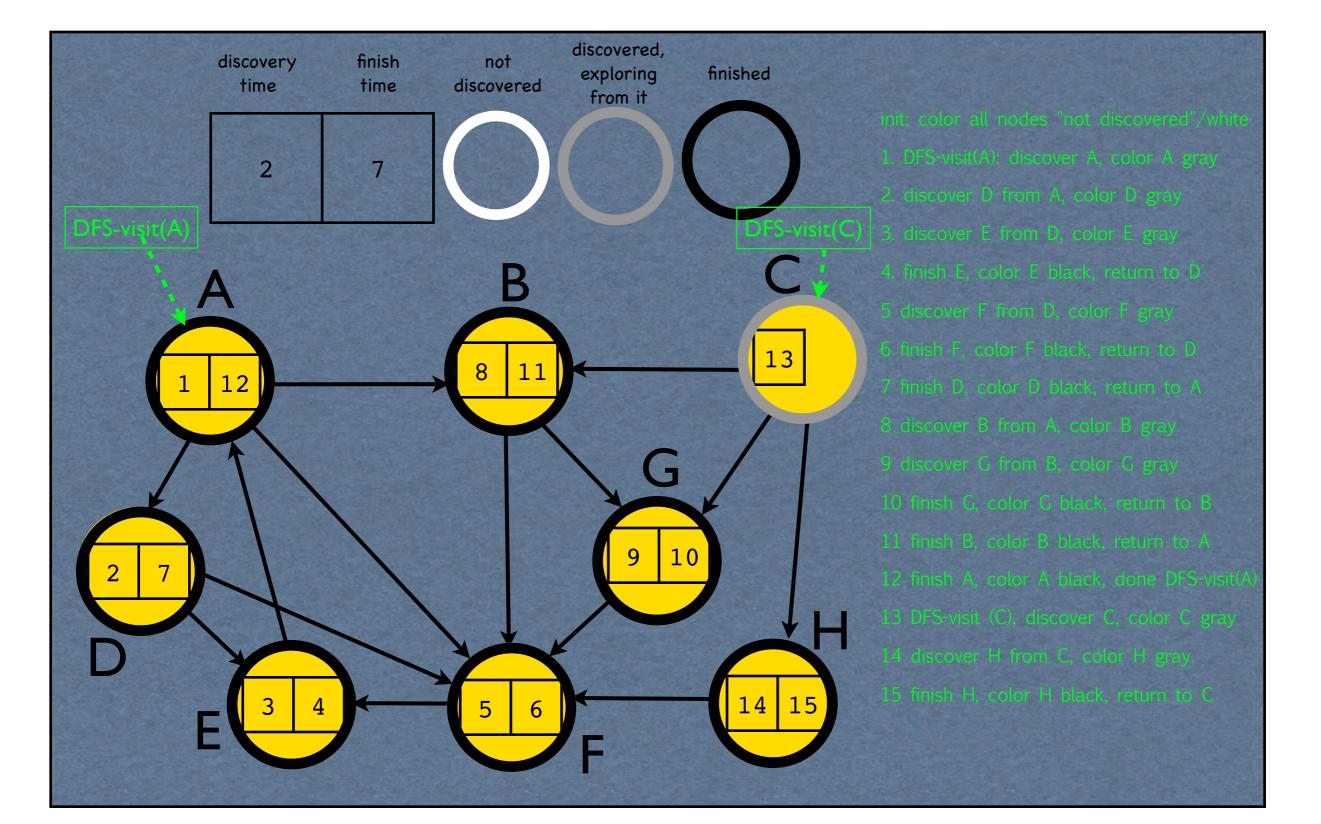




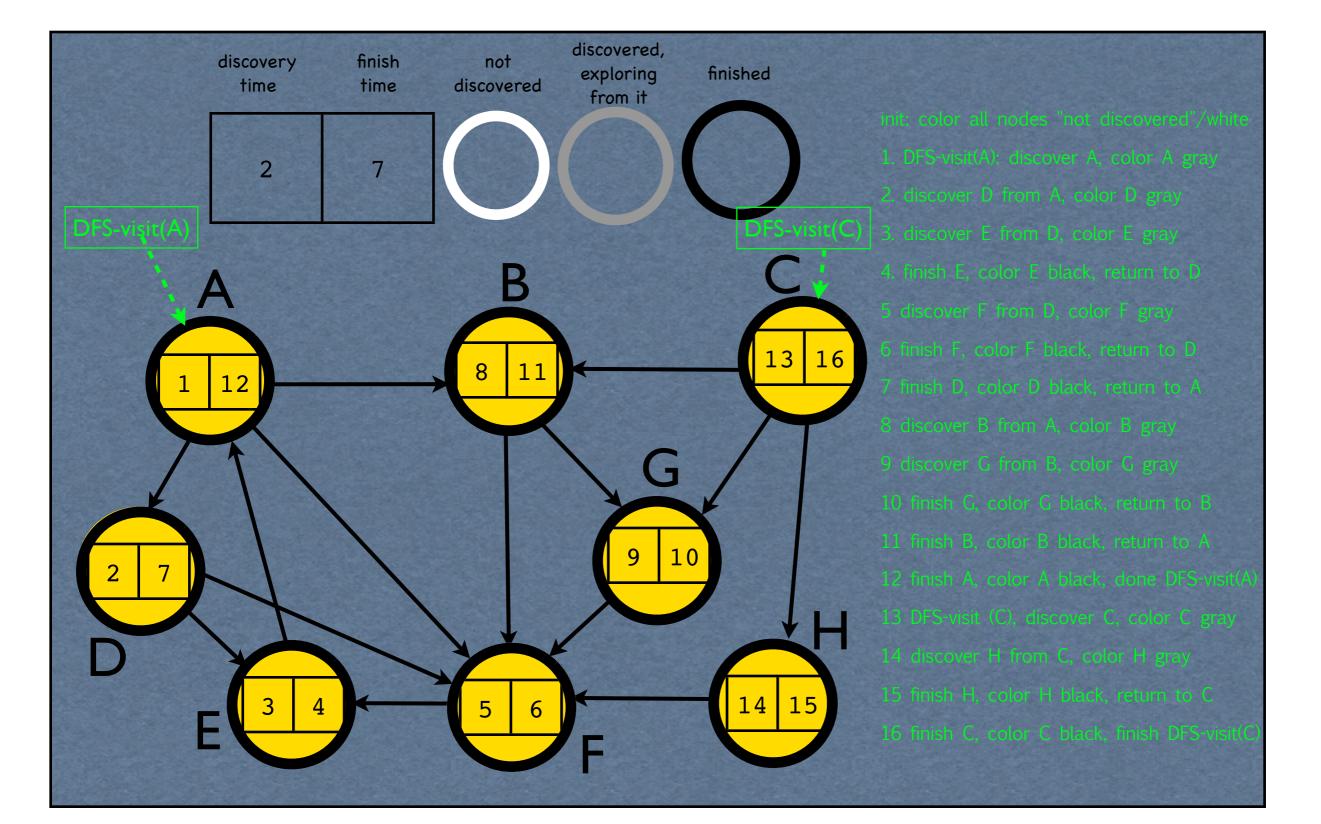




DFS



DFS

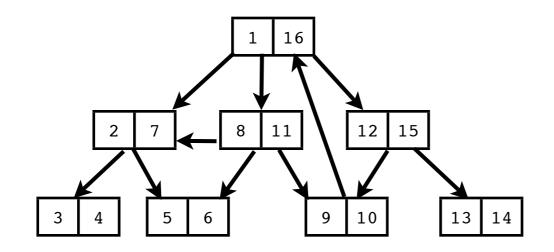


DFS edge classification

- "tree" edge : from vertices gray to white
 - a tree edge advances the graph exploration/traversal
- "back" edge : from vertices gray to gray
 - a back edge points to a cycle within the current exploration nodes
- "forward" edge : from vertices a(gray) to b(black), if a discovered first
 - discovery_time[a] < discovery_time[b]</pre>
 - points to a different part of the tree, already explored from a
- "cross" edge : from vertices a(gray) to b(black), if b discovered first
 - discovery_time[a] > discovery_time[b]
 - points to a different part of the tree, explored before discovering a

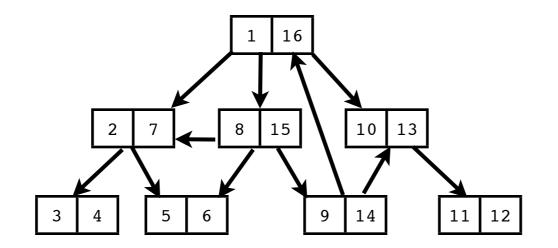
Checkpoint

- on the animated example, label each edge as "tree", "back", "cross", or "forward"
- do the same on the following example (DFS discovery and finish times marked for each node)



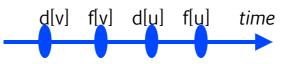
Checkpoint

almost same example, with a small modification: one edge was reversed

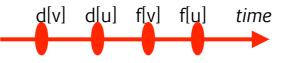


DFS observations

- Running time O(V+E), same as BFS
- vertex v is gray between times discover[v] and finish[v]
- gray time intervals (discover[v], finish[v]) are inclusive of each other
 - (d[v], f[v]) can include (d[u], f[u]) : d[v] < d[u] < f[u] < f[v]d[v] d[u] f[u] f[v] time
 - (d[v], f[v]) can separate from (d[u], f[u]) : d[v] < f[v] < d[u] < f[u]



- (d[v], f[v]) cannot intersect (d[u], f[u]) : d(v) < d(u) < f[v] < f[u]



graph G=(V,E) is acyclic (does not have cycles) if DFS does not find any "back" edge

Undirected graphs cycles

- graph G=(V,E) is acyclic (does not have cycles) if DFS does not find any "back" edge
- since G is undirected, no cycles implies $|E| \le |V| 1$
- running DFS, if we find more than |V|-1 edges, there must be a cycle
- Undirected graphs: find-cycles algorithm takes O(V)

Directed graphs cycles

- graph G=(V,E) is acyclic (does not have cycles) if DFS does not find any "back" edge
- for directed graphs, even without cycles they can have more edges, |E| > |V|-1
- algorithm to determine cycles: run DFS, look for back edges – O(V+E) time
- DAG = directed acyclic graph

Topological sort

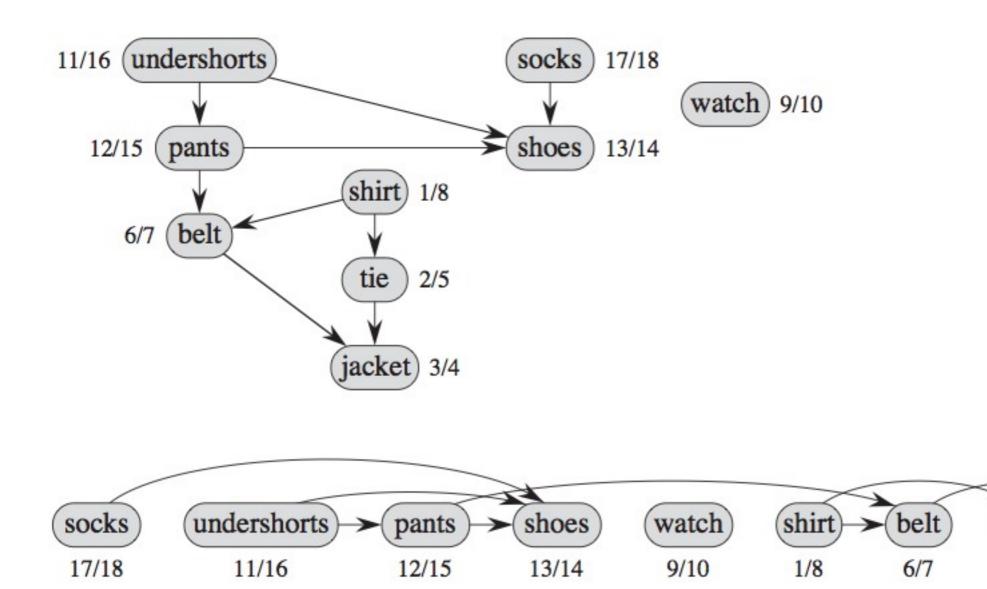
- DAG admits topological sort: all vertices "sorted" on a line, such that all edges point from left to right-no cycles – 2 graphs below are the same-
- to do this: algorithm: run DFS, time O(V+E). Output vertices in reverse order given by finishing time

tie

2/5

jacket

3/4

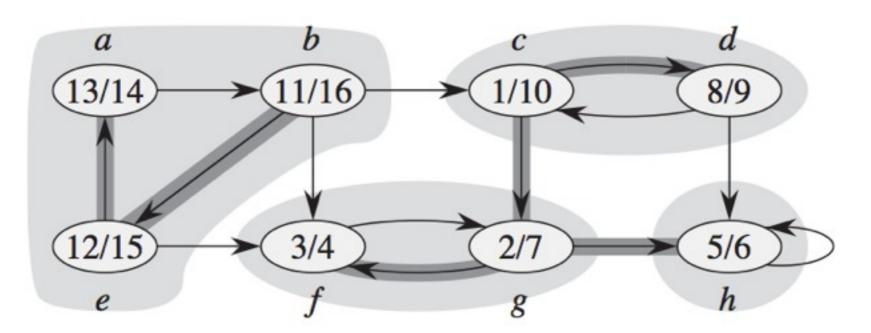


Check Point

- how can we use DFS to determine if there is a path from u to v ?
- prove that by sorting vertices in the reverse order of finishing times, we obtained a topological sort
 - assuming no cycles
 - in other words, all edges point in the same direction

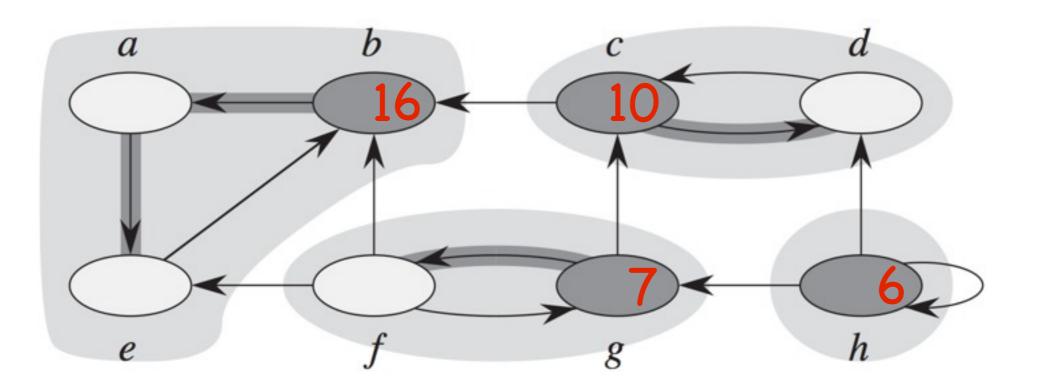
Strongly connected components

- SCC = a set of vertices $S \subset V$, such that for any two (u,v) $\in S$, graph G contains a path u \sim v and a path v \sim u
- trivial for undirected graphs
 - all connected vertices are in fact strongly connected
- tricky for directed graphs
- graph below has the DFS discover/finish times and marked 4 strongly connected components; "tree" edges highlighted
- between two SCC, A and B, there cannot exists paths both ways $(A \ni u_{\rightarrow}v \in B \text{ and } B \ni v'_{\rightarrow}u' \in A)$
 - paths both ways would make A and B a single SCC



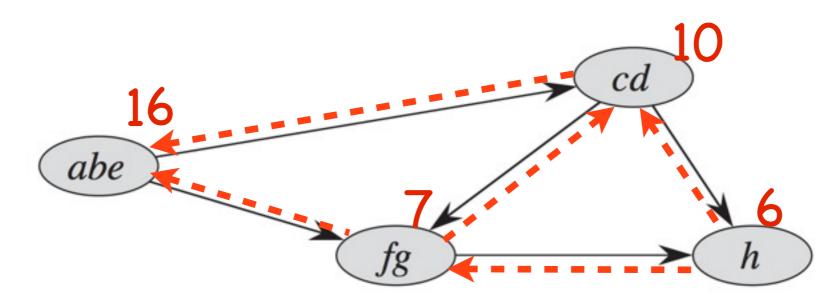
Strongly connected components

- run 1st DFS on G to get finishing times f[u]
- run 2nd DFS on G-reversed (all edges reversed -see picture), each DFS-visit in reverse order of f[u]
 - finishing times marked in red for the DFS-visit root vertices
- output each tree (vertices reached) obtained by 2nd DFS as an SCC



Strongly connected components

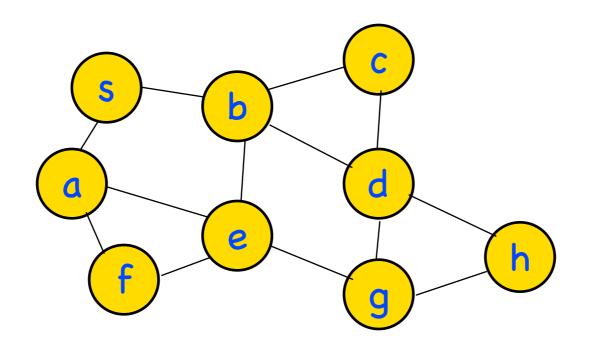
- why 2nd DFS produces precisely the SCC -s?
- SCC-graph of G: collapse all SCC into one SCC-vertex, keep edges between the SCC-vertices
- SCC graph is a DAG;
 - contradiction argument: a cycle on the SCC-graph would immediately collapse the cycle's SCC-s into one SCC
- reversed edges (shown in red); reversed-SCC-graph also a DAG
- second DFS runs on reversed-edges (red); once it starts at a high-finish-time (like 16) it can only go through vertices in the same SCC (like abe)



Minimum Spanning Trees Lesson 2

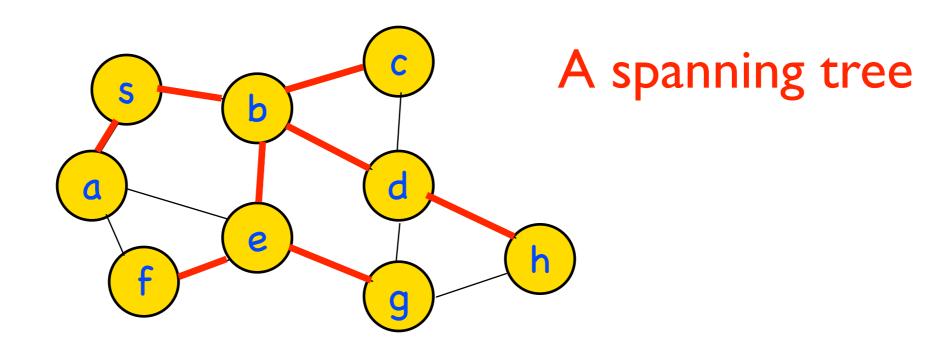
Spanning Trees

- context : undirected graphs
- a set of edges A that "span" or "touch" all vertices, and forms no cycles
 - necessary this set of edges A has size = |V|-1
- spanning tree: the tree formed by the set of spanning edges together with vertex set T = (V,F)



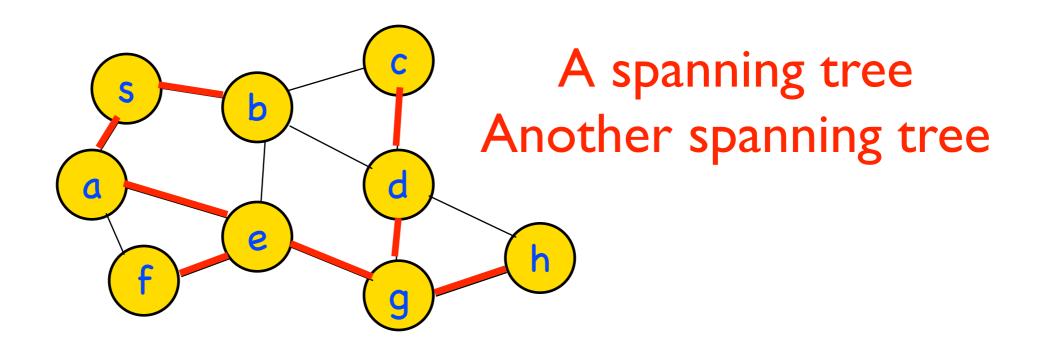
Spanning Trees

- context : undirected graphs
- a set of edges A that "span" or "touch" all vertices, and forms no cycles
 - necessary this set of edges A has size = |V|-1
- spanning tree: the tree formed by the set of spanning edges together with vertex set T = (V,F)



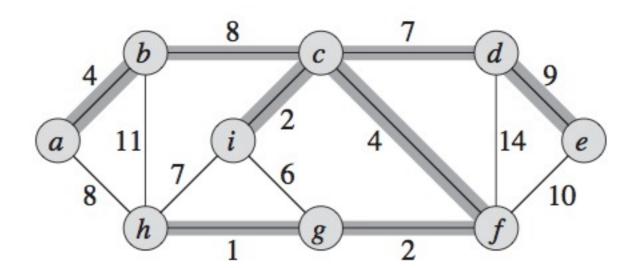
Spanning Trees

- context : undirected graphs
- a set of edges A that "span" or "touch" all vertices, and forms no cycles
 - necessary this set of edges A has size = |V|-1
- spanning tree: the tree formed by the set of spanning edges together with vertex set T = (V,F)



Minimum Spanning Tree (MST)

- context : undirected graph, edges have weights
 - edge (u,v)∈E has weight w(u,v)
- MST is a spanning tree of minimum total weight (of its edges)
 - must span all vertices
 - exactly |V|-1 edges
 - sum of edges weight be minimum among spanning trees



Growing Minimum Spanning Trees

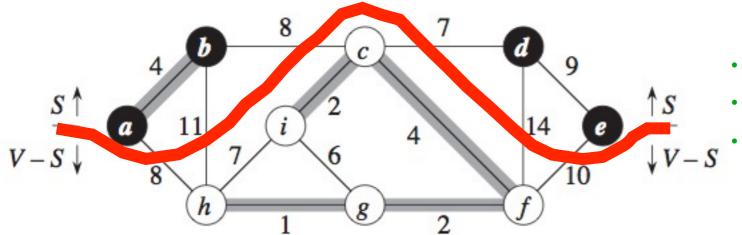
- "safe edge" (u,v) for a given set of edges A: there is a MST that uses A and (u,v)
 - that MST may not be unique

```
• GENERIC-MST (G)
```

- A = set of tree edges, initially empty
- while A does not form a spanning tree // meaning while |A| < |V|-1
 - find edge (u, v) that is safe for A
 - add (u, v) to A
 - end while
- how to find a safe edge to a given set of edges A?
 - Prim algorithm
 - Kruskal algorithm

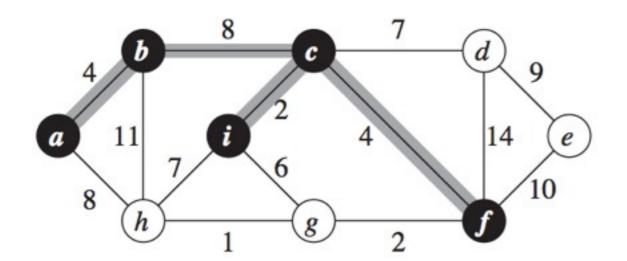
Cuts in the graph

- "cut" is a partition of vertices in two sets : V=S \cup V-S
- an edge (u,v) crosses the cut (S,V-S) if u and v are on different partitions (one in S the other in V-S)
- cut (S, V–S) respects set of edges A if A has no cross edge
- "min weight cross edge" is a cross edge for the cut, having minimum weight across all cross edges
- Cut Theorem : if A is a set of edges part of some MST, and (S,V-S)a cut respecting A , then a min-weight cross edge is "safe" for A (can be added to A towards an MST)

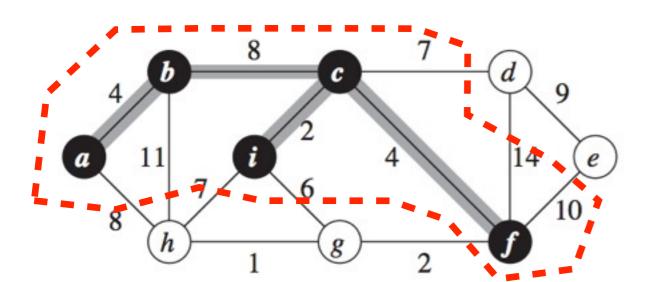


- A={ab, ic, cf, hg, fg}
 - cut : S={a,b,d,e} V-S={h,i,c,g,f} respects A
 - safe crossing edge : cd, weight(cd)=7

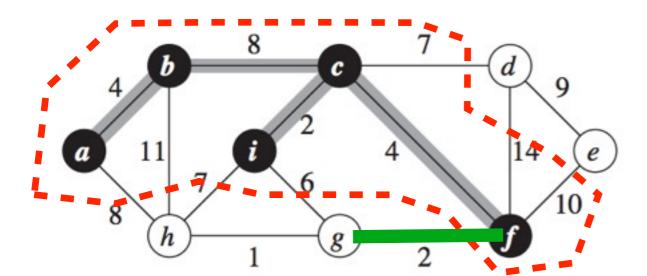
- as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
 - connecting one more node to the current tree



- as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
 - connecting one more node to the current tree
- define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A



- as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
 - connecting one more node to the current tree
- define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
 - edge gf in the picture is added to A, vertex g added to the tree

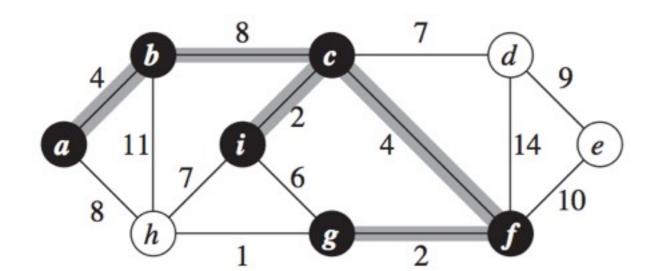


- as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
 - connecting one more node to the current tree
- define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
 - edge gf in the picture is added to A, vertex g added to the tree



add another(next) safe edge

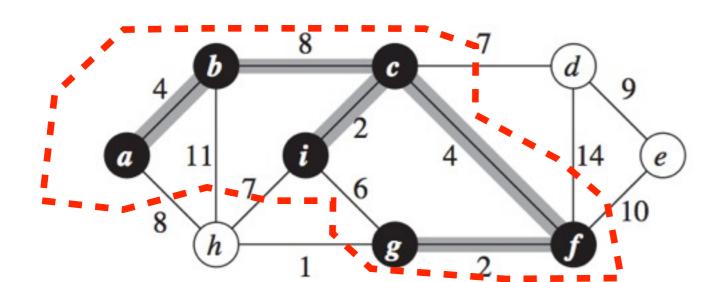
- connecting one more node to the current tree



add another(next) safe edge

- connecting one more node to the current tree

 define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A

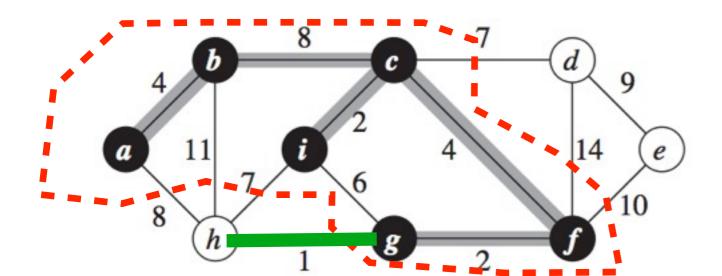


add another(next) safe edge

- connecting one more node to the current tree

 define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A

- edge hg in the picture is added to A, vertex h added to the tree

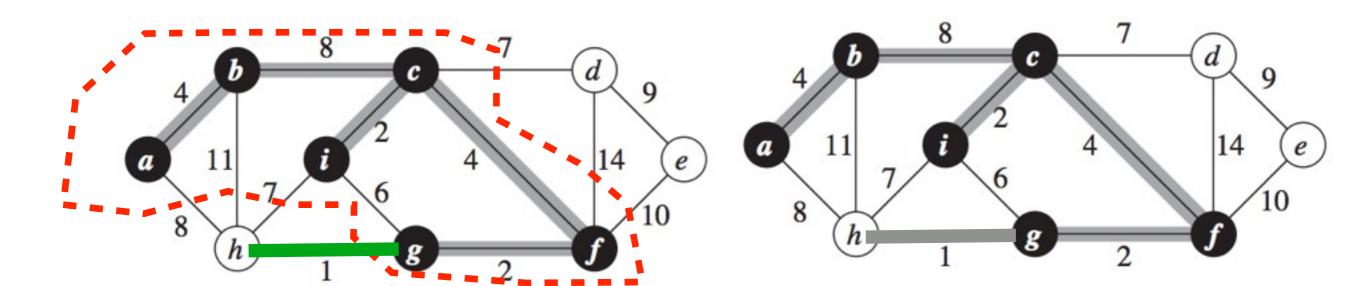


add another(next) safe edge

connecting one more node to the current tree

 define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A

- edge hg in the picture is added to A, vertex h added to the tree



Prim MST algorithm

• Prim simple

- but implementation a bit tricky

- Running Time depends on implementation of Extract-Min from the Queue
 - best theoretical implementation uses Fibonacci Heaps
 - also the most complicated
 - only makes a practical difference for very large graphs

MST-PRIM(G, w, r)

- 1 for each $u \in G.V$
- 2 $u.key = \infty$
- 3 $u.\pi = NIL$
- $4 \quad r.key = 0$
- 5 Q = G.V

8

9

10

11

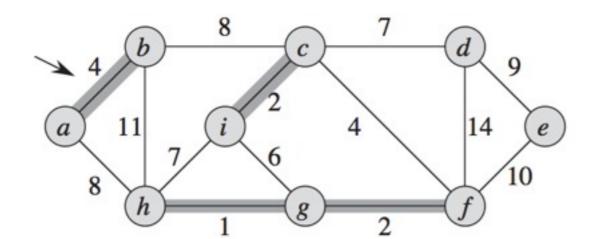
- 6 while $Q \neq \emptyset$ 7 u = EXTRA
 - u = EXTRACT-MIN(Q)
 - for each $v \in G.Adj[u]$

```
if v \in Q and w(u, v) < v. key
```

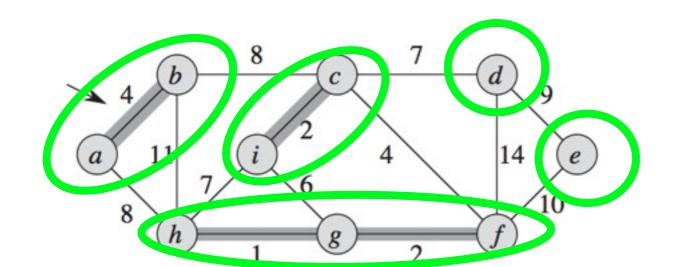
```
\nu.\pi = u
```

```
v.key = w(u, v)
```

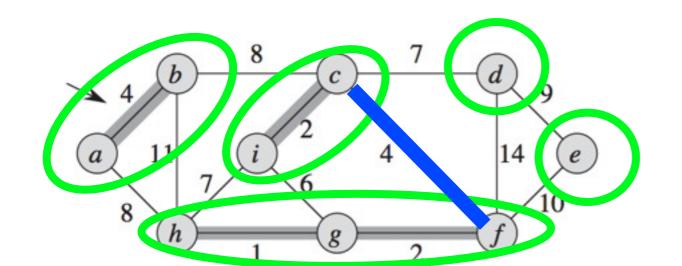
- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty



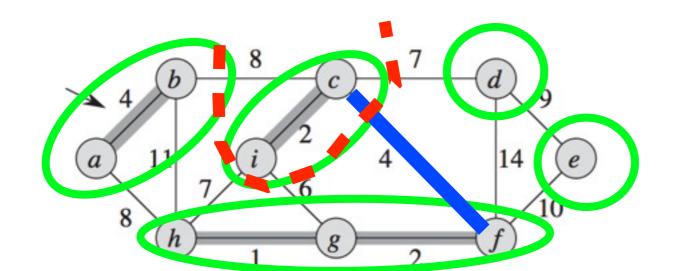
- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)



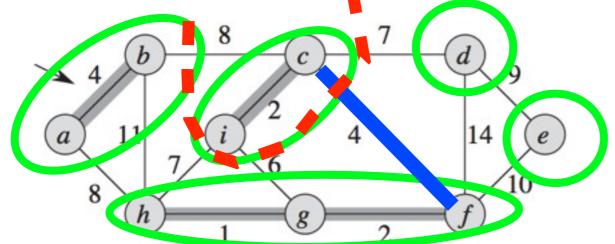
- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)
 - find the minimum weight edge (u,v) across two components, say connecting trees T1>v and T2>u (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)

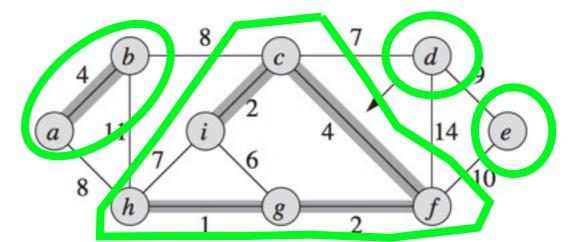


- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)
 - find the minimum weight edge (u,v) across two components, say connecting trees T1∋v and T2∋u (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)
 - define cut (S,V-S); S = vertices of T1 (in red). This cut respects set A



- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)
 - find the minimum weight edge (u,v) across two components, say connecting trees T1>v and T2>u (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)
 - define cut (S,V-S); S = vertices of T1 (in red). This cut respects set A
 - edge (u,v) is the minimum cross edge, thus a safe edge to add to A. T1 and T2 are connected now into one tree





Kruskal algorithm

MST-KRUSKAL(G, w)

- 1 $A = \emptyset$
- 2 for each vertex $\nu \in G.V$

```
3 MAKE-SET(\nu)
```

- 4 sort the edges of G.E into nondecreasing order by weight w
- 5 for each edge $(u, v) \in G.E$, taken in nondecreasing order by weight

```
if FIND-SET(u) \neq FIND-SET(v)
```

```
A = A \cup \{(u, v)\}
```

```
UNION(u, v)
```

```
9 return A
```

6

7

8

Kruskal is simple

- implementation and running time depend on FIND-SET and UNION operations on the disjoint-set forest.
 - chapter 21 in the book, optional material for this course
- running time O(E logV)

MST algorithm comparison

• if you know graph density (edges to vertices)

	Kruskal	Prim with array implement.	Prim w/ binomial heap	Prim w/ Fibonacci heap	in practice
sparse graph E=O(V)	O(VlogV)	O(V ²)	O(VlogV)	O(VlogV)	Kruskal, or Prim+binom heap
dense graph E=Θ(V²)	O(V ² logV)	O(V ²)	O(V ² logV)	O(V ²)	Prim with array
avg density E=⊖(VlogV)	O(Vlog ² V)	O(V ²)	O(Vlog ² V)	O(VlogV)	Prim with Fib heap, if graph is large