assuming UG knowledge of Graphs.

Lecture: Graphs part 1 (part 2: SP)

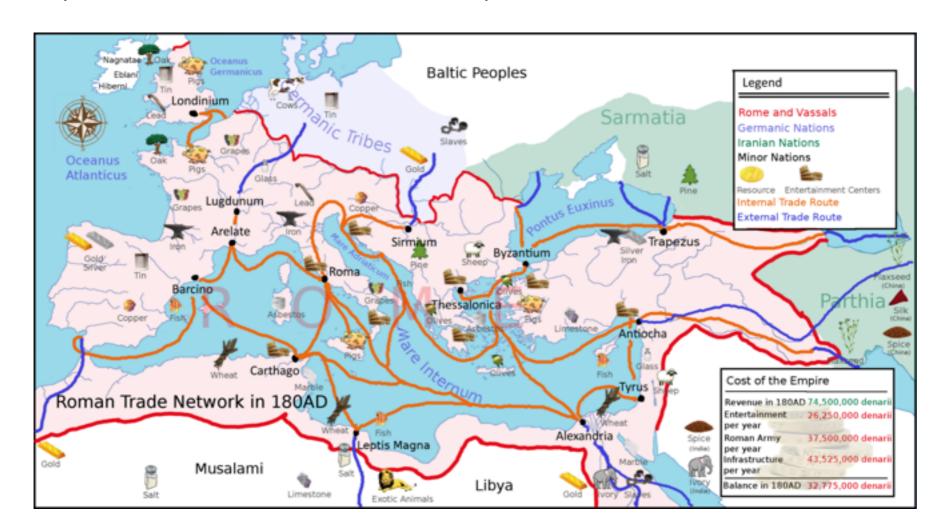
Lecture: Graphs part 1 (3: Not Flow)

Intro to graphs Minimum Spanning Trees

- Intro to graphs: cycler, paths, edges, representation (prevery)
- · BFS + DFS (Prereg)
- · DES (MS-level) details
- DFS => Strongly connected components
- · Min Span Tree (bruskal, Prim, Cut Theseur)

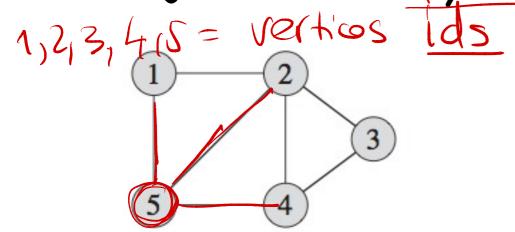
Graphs

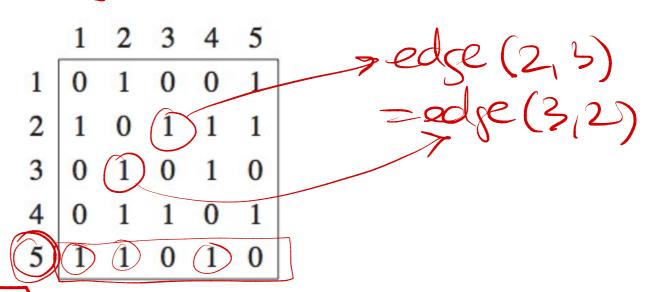
- nodes/vertices and edges between vertices
 - set V for vertices, set E for edges
 - we write graph G = (V,E)
- example : cities on a map (nodes) and roads (edges)



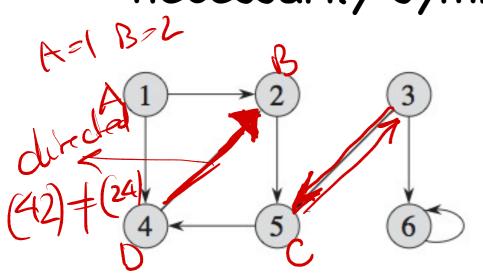
Adjacency matrix

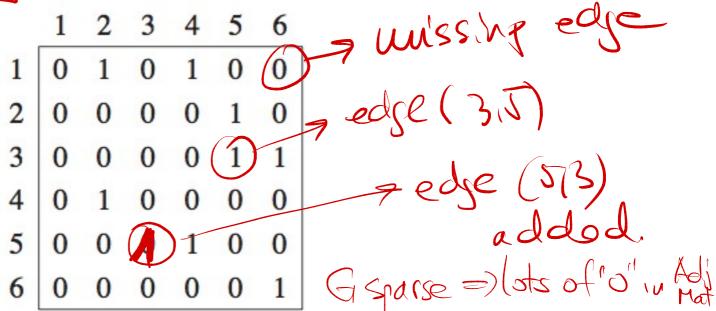
- aij =1 if there is an edge from vertex i to vertex j
- if graph is undirected, edges go both ways, and the adj. matrix is symmetric



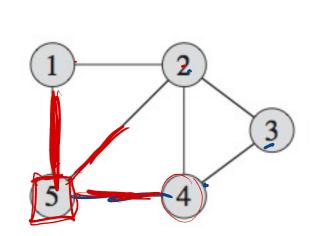


• if the graph is <u>directed</u>, the adj. matrix is not necessarily symmetric 1 2 3 4 5 6

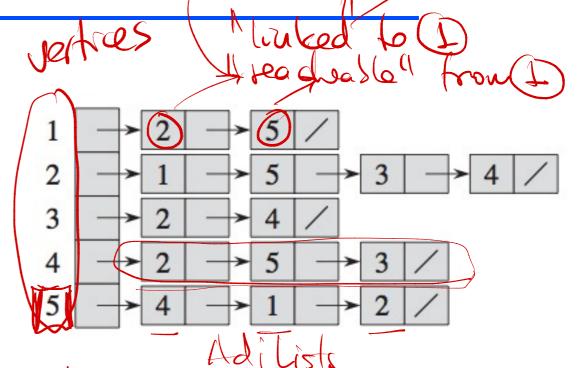




each jundred Adjacency lists

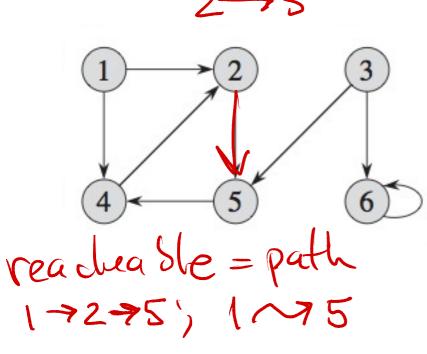


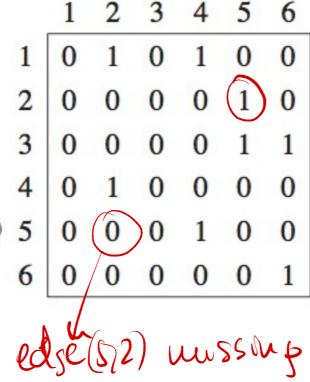
	(.	ldj	Matrix		
	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1 0 1 1	0	1	0

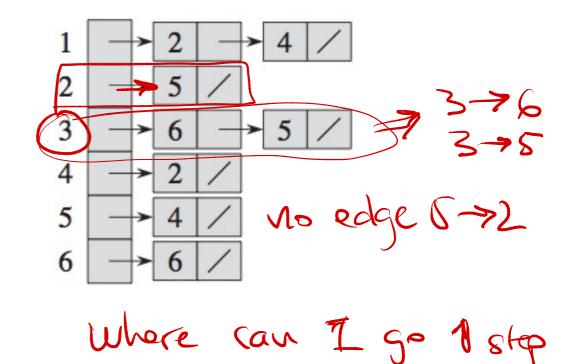


7 Path, direction

• linked list marks all edges starting off a given vertex

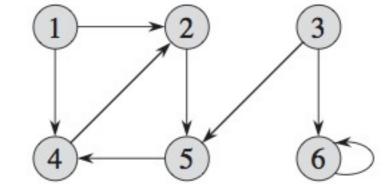






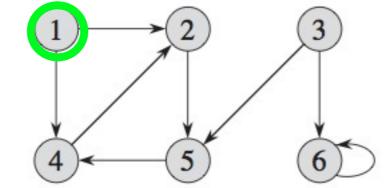
backworde adj list uhere can I come tron 1: 1/2: Mills : 1 1 1 1 2 1 4 31 | mall 1 1 5/23 nul 60 1 3 1 6 1 mall

• path: a sequence of vertices $(v_1, v_2, v_3, ..., v_k)$ such that all (v_i, v_{i+1}) are edges in the graph



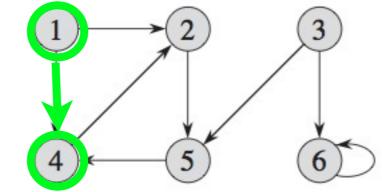
 edges can form a cycle = a path that ends in the same vertex it started

• path: a sequence of vertices $(v_1, v_2, v_3, ..., v_k)$ such that all (v_i, v_{i+1}) are edges in the graph



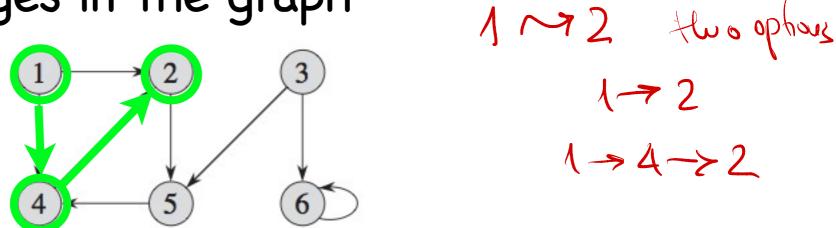
 edges can form a cycle = a path that ends in the same vertex it started

• path: a sequence of vertices $(v_1, v_2, v_3, ..., v_k)$ such that all (v_i, v_{i+1}) are edges in the graph



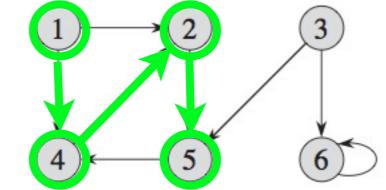
 edges can form a cycle = a path that ends in the same vertex it started

• path: a sequence of vertices $(v_1,v_2,v_3,...,v_k)$ such that all (v_i,v_{i+1}) are edges in the graph



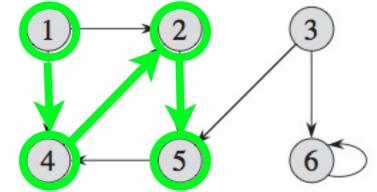
 edges can form a cycle = a path that ends in the same vertex it started

• path: a sequence of vertices $(v_1, v_2, v_3, ..., v_k)$ such that all (v_i, v_{i+1}) are edges in the graph

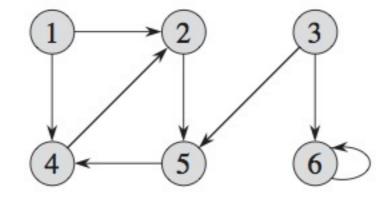


 edges can form a cycle = a path that ends in the same vertex it started

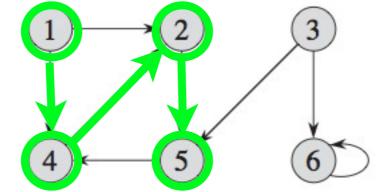
ullet path: a sequence of vertices $(v_1, v_2, v_3, ..., v_k)$ such that all (v_i, v_{i+1}) are edges in the graph



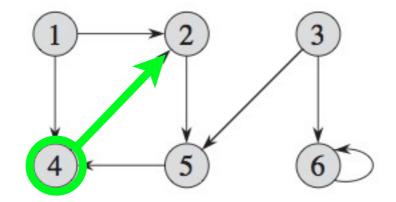
 edges can form a cycle = a path that ends in the same vertex it started



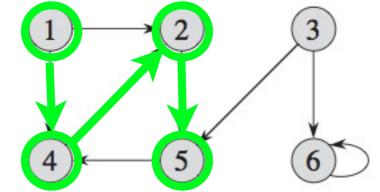
ullet path: a sequence of vertices $(v_1, v_2, v_3, ..., v_k)$ such that all (v_i, v_{i+1}) are edges in the graph



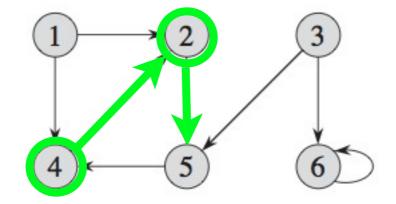
 edges can form a cycle = a path that ends in the same vertex it started



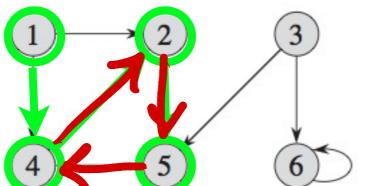
ullet path: a sequence of vertices $(v_1, v_2, v_3, ..., v_k)$ such that all (v_i, v_{i+1}) are edges in the graph



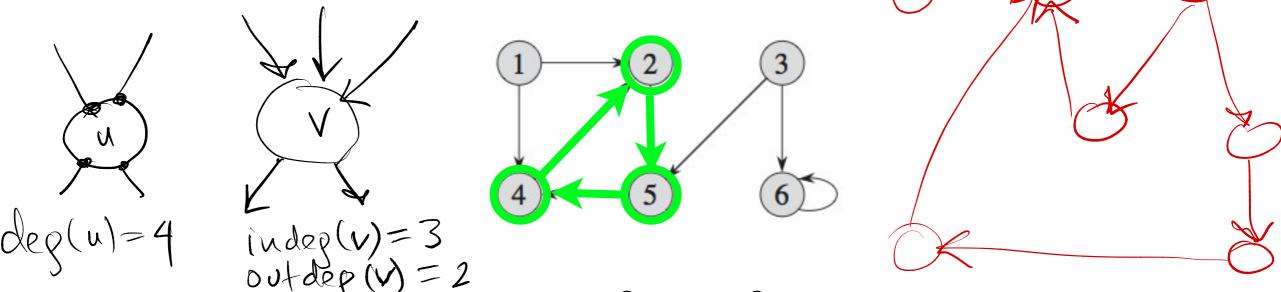
 edges can form a cycle = a path that ends in the same vertex it started



• path: a sequence of vertices $(v_1, v_2, v_3, ..., v_k)$ such that all (v_i, v_{i+1}) are edges in the graph (4,2,5)



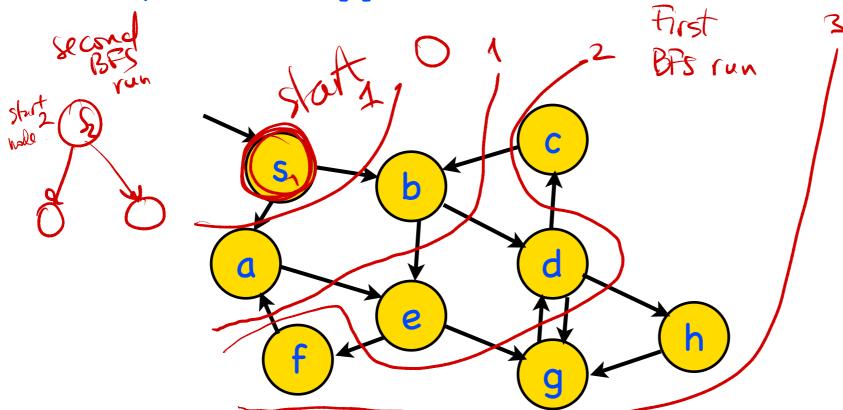
 edges can form a cycle = a path that ends in the same vertex it started



V= vertex set Craph Theory examples = $\log(V)$ 2 Hedges U = Vertices Zdeg(u) - 2/El G-complement Same V, opposite edges TN Ct or G us connected

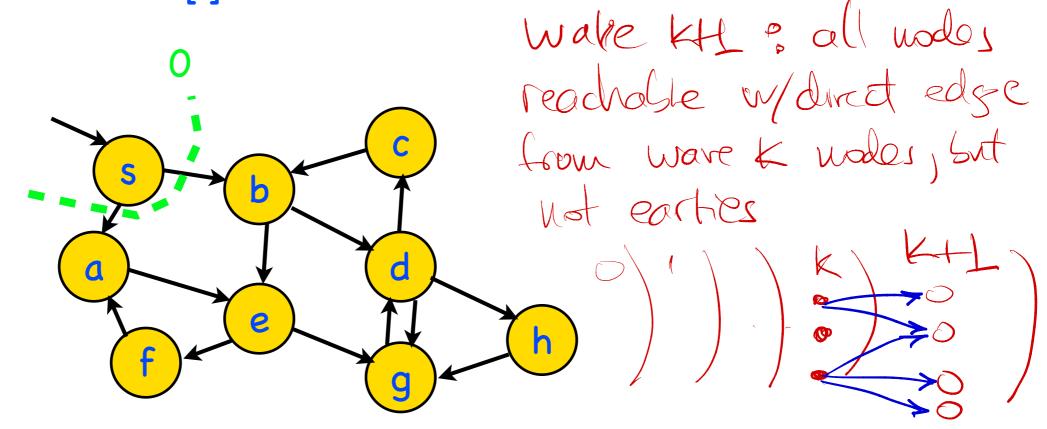
Ex Disconvected Emph: 3 components

- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves partition of wodes reachable
 - computes $d[v] = number of edges from s to v. If v not reachable from s, we have <math>d[v] = \infty$.

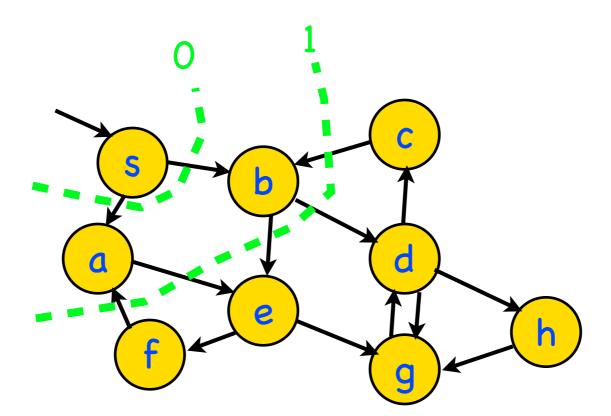


- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves

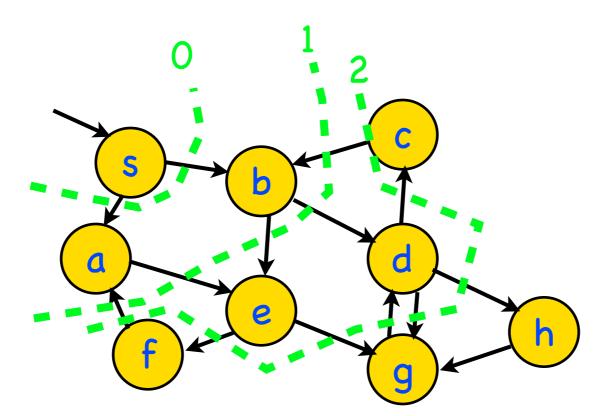
- computes $d[v] = number of edges from s to v. If v not reachable from s, we have <math>d[v] = \infty$.



- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves
 - computes $d[v] = number of edges from s to v. If v not reachable from s, we have <math>d[v] = \infty$.

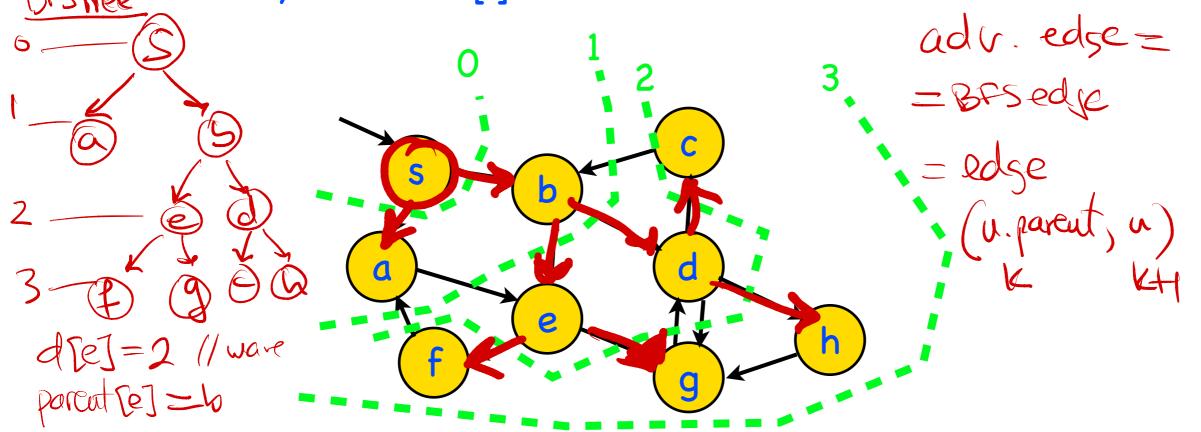


- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves
 - computes $d[v] = number of edges from s to v. If v not reachable from s, we have <math>d[v] = \infty$.



- BFS = breadth-first search.
- Start in a given vertex s, find all reachable vertices from s
 - proceed in waves

- computes $d[v] = number of edges from s to v. If v not reachable from s, we have <math>d[v] = \infty$.



BFS

- use a queue to store processed vertices
 - for each vertex in the queue, follow adj matrix to get vertices of the next wave

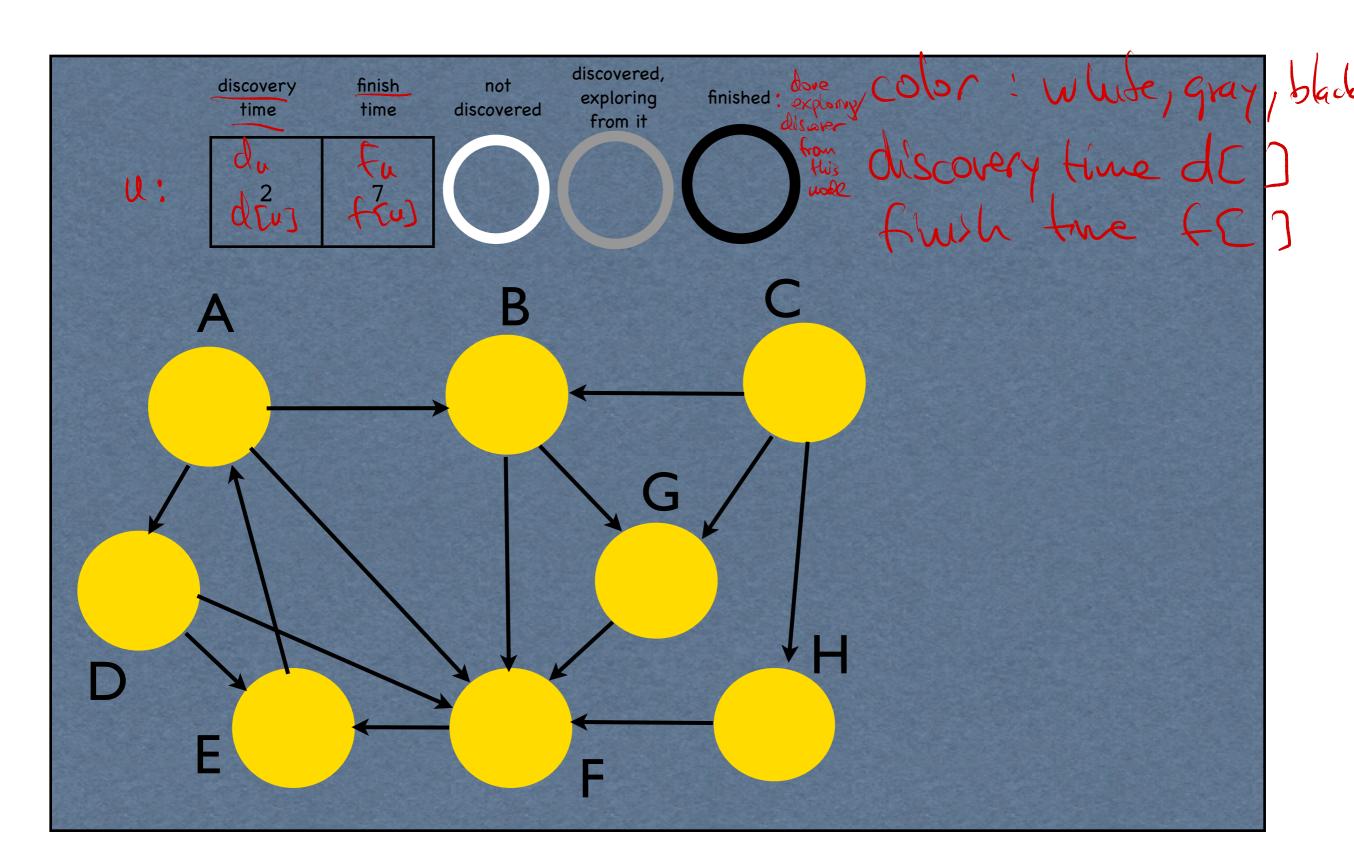
```
BFS (V, E, s)
for each vertex v \neq s, set d[v] = \infty
init queue Q; enqueue (Q,s) //puts s in the queue
while Q not empty
   u = dequeue(S) // takes the first elem available from the queue
   for each vertex v \in Adj[u]
                                 d[v] = wave(v)
         Enqueue (Q, v
                Eugle 18th 18th 18th 18th 18 18 18 18 18 Degueve
end while
```

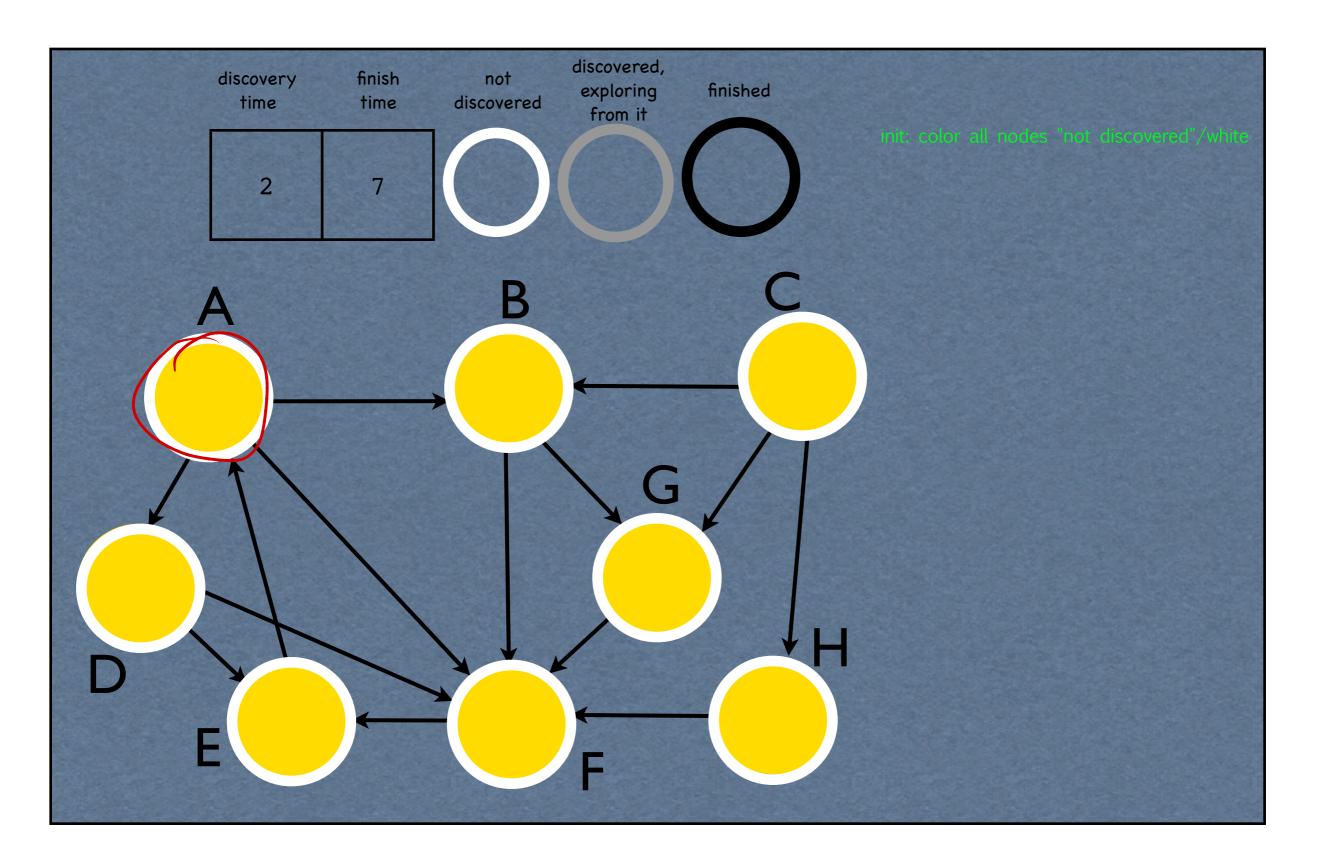
 Running time O(V+E), since each edge and vertex is considered once.

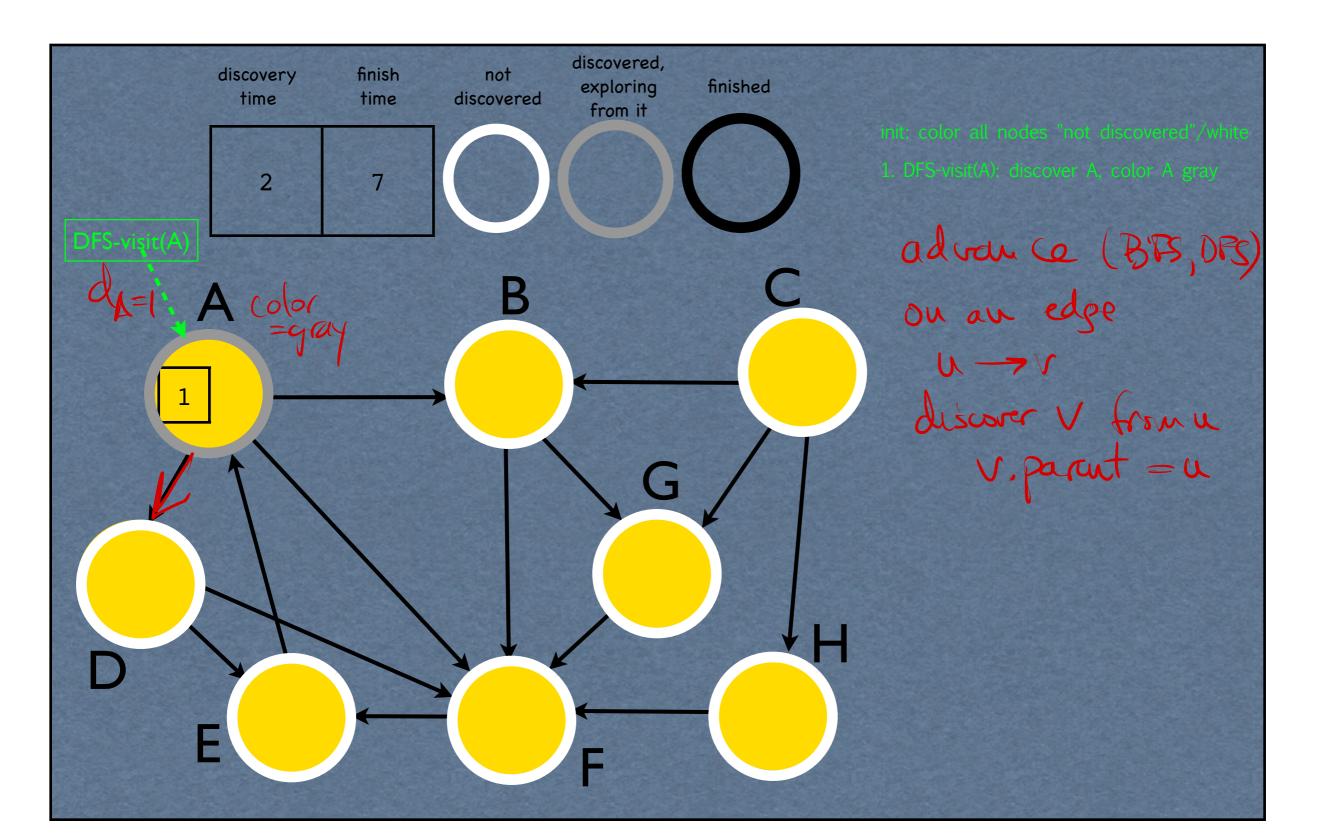
- DFS = depth-first search : 90 95 for as possible some direction beautiful once a vertex is discovered, proceed to its adj vertices, or "children" (depth) rather than to its "brothers" (breadth)

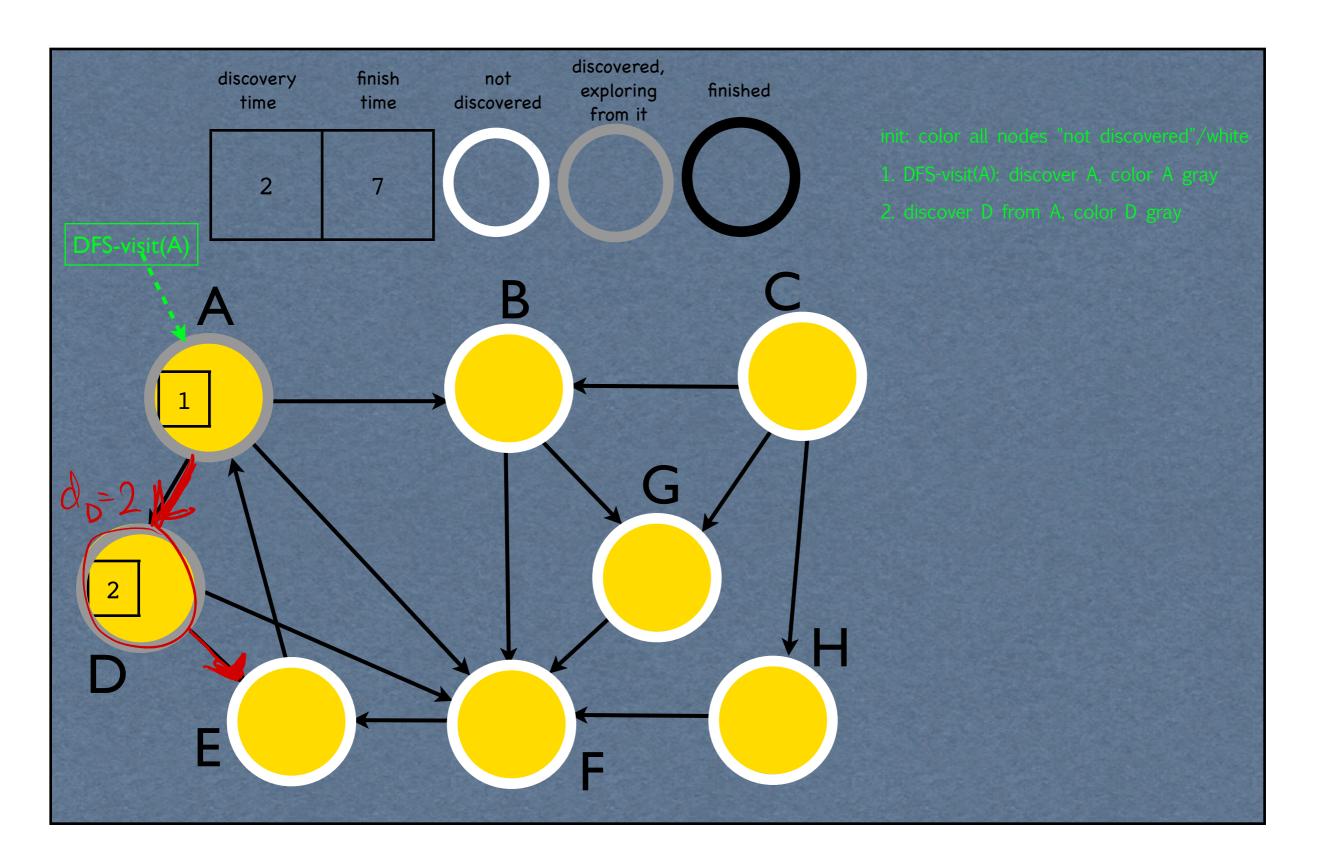
```
DFS-wrapper(V,E)
  foreach vertex u∈V {color[u] = white} end for //color all nodes white
   foreach vertex u∈V
     if (color[u] == white) then DFS-Visit(u)
   end for
```

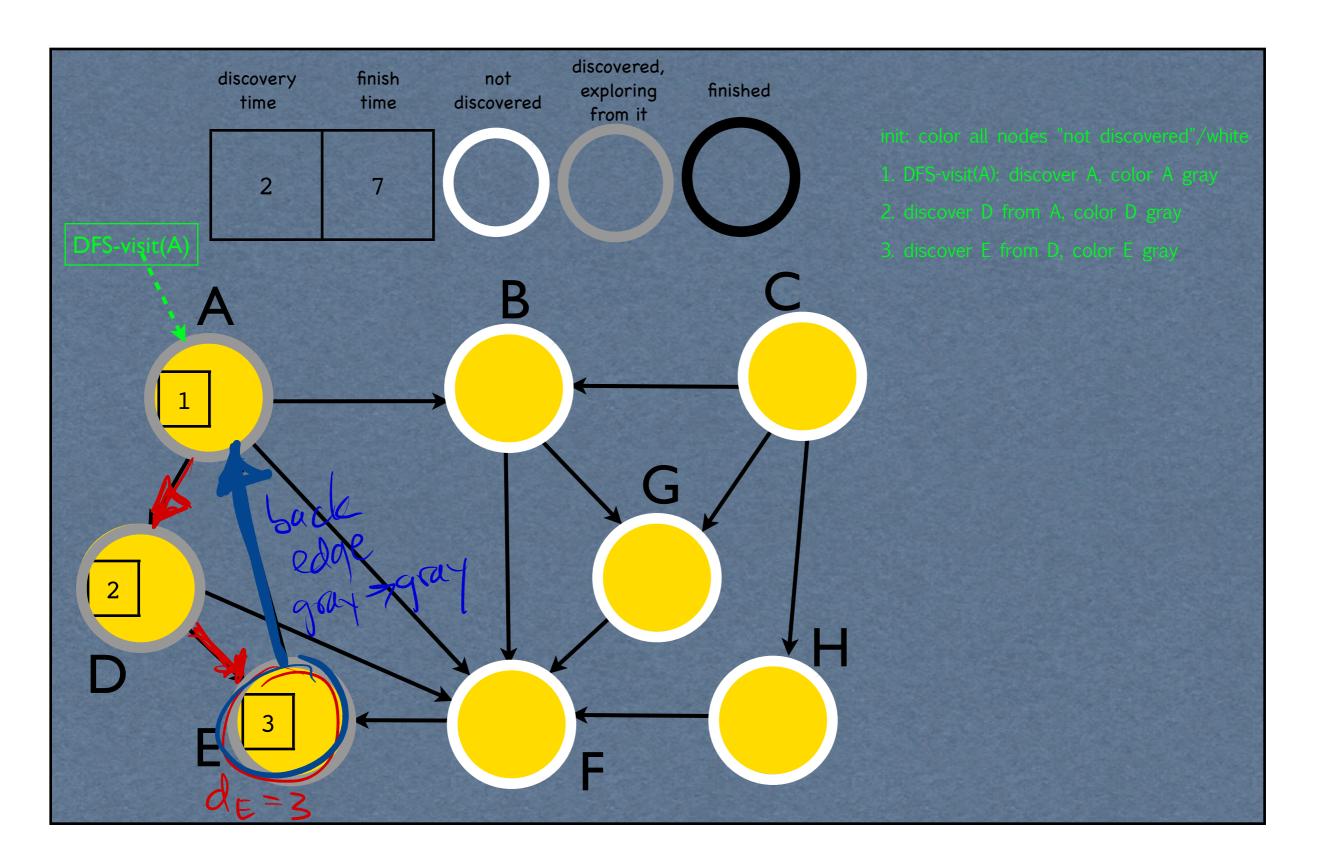
```
DFS-Visit (u) //recursive function
  color[u] = gray; //gray means "exploring from this node"
   time++; discover time[u] = time; //discover time
                                                        v= digovered from
   for each v \in Adj[u]
  • if (color[v] == white) then \sqrt{DFS-Visit(v)} \frac{\chi}{explore\ from\ u}
   end for
   color [u] = black; finish time[u]=time;
```

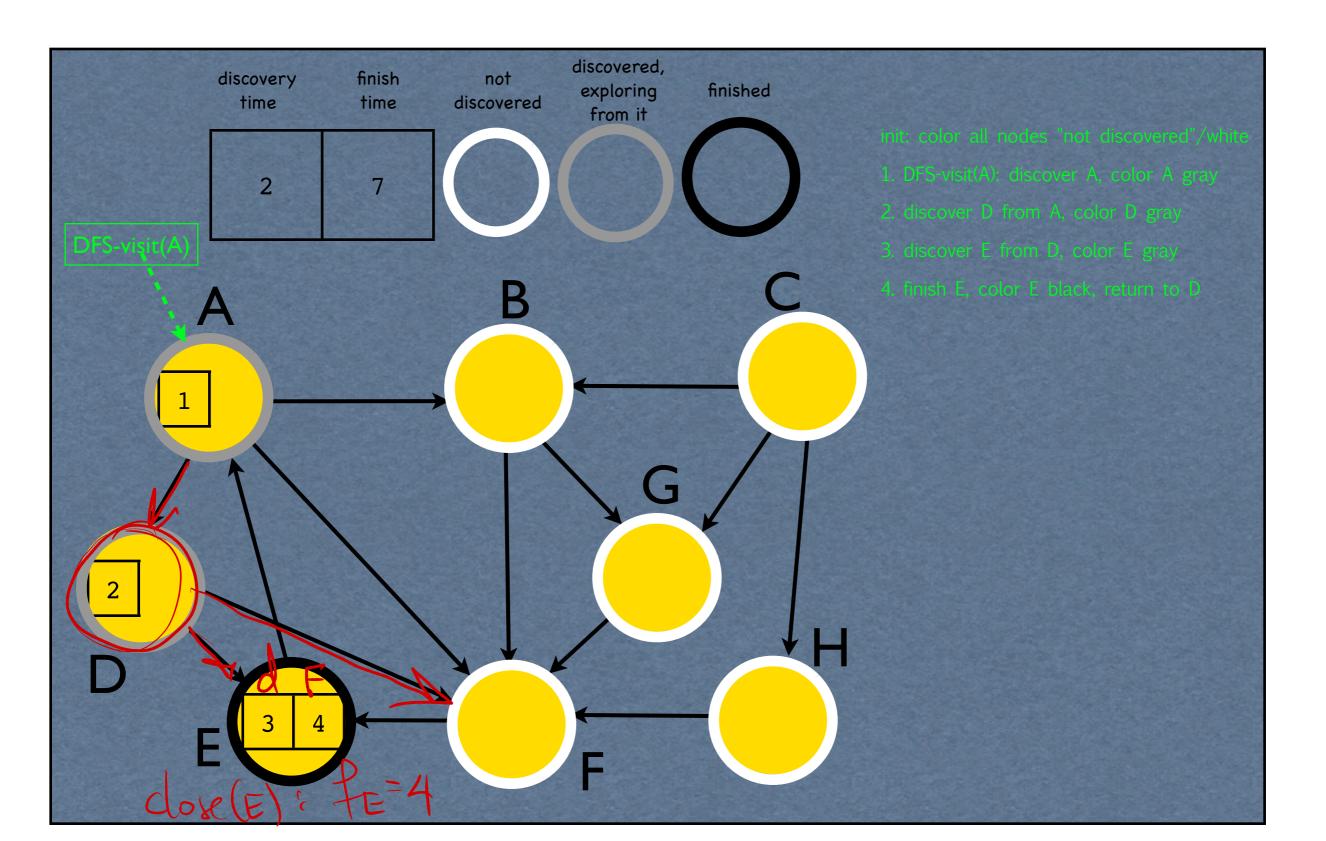


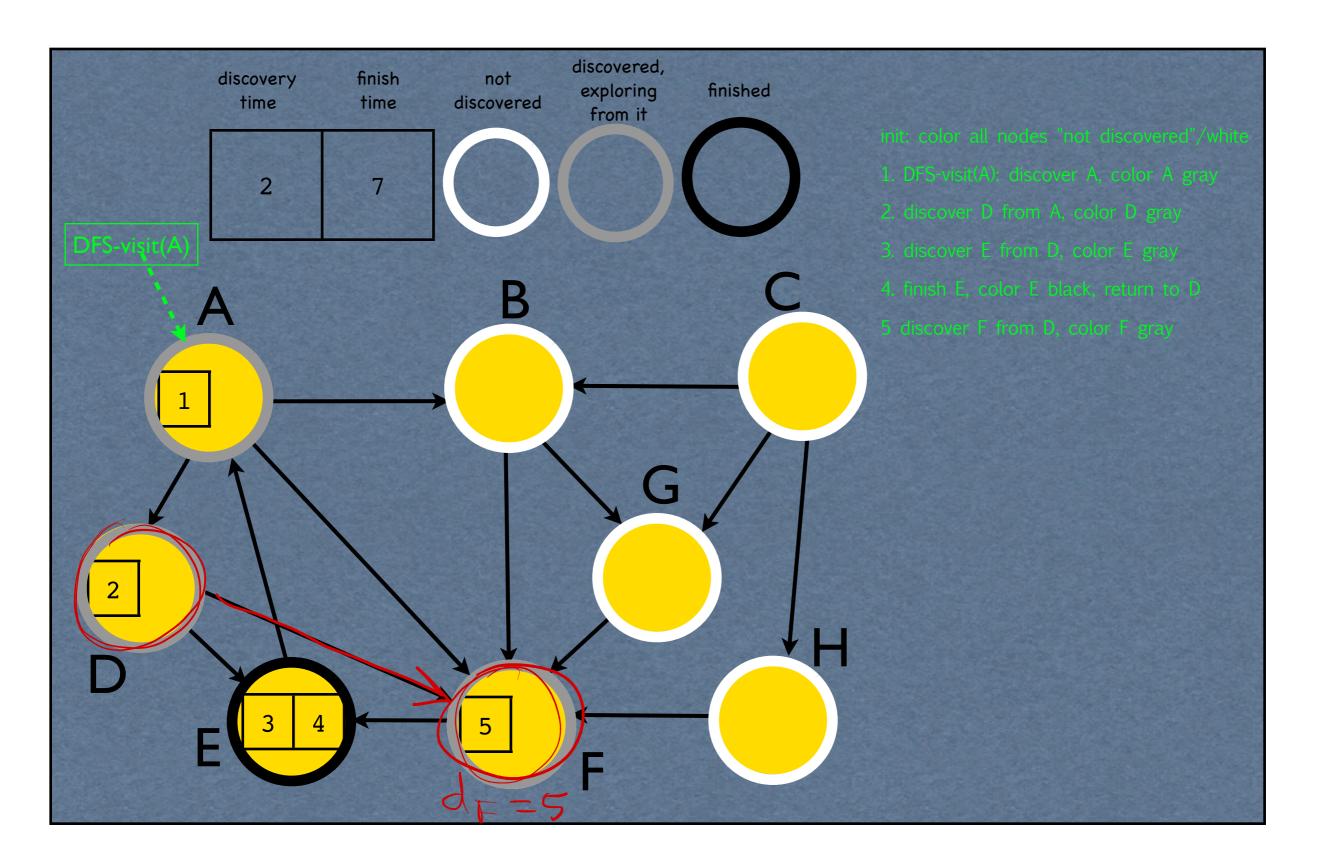


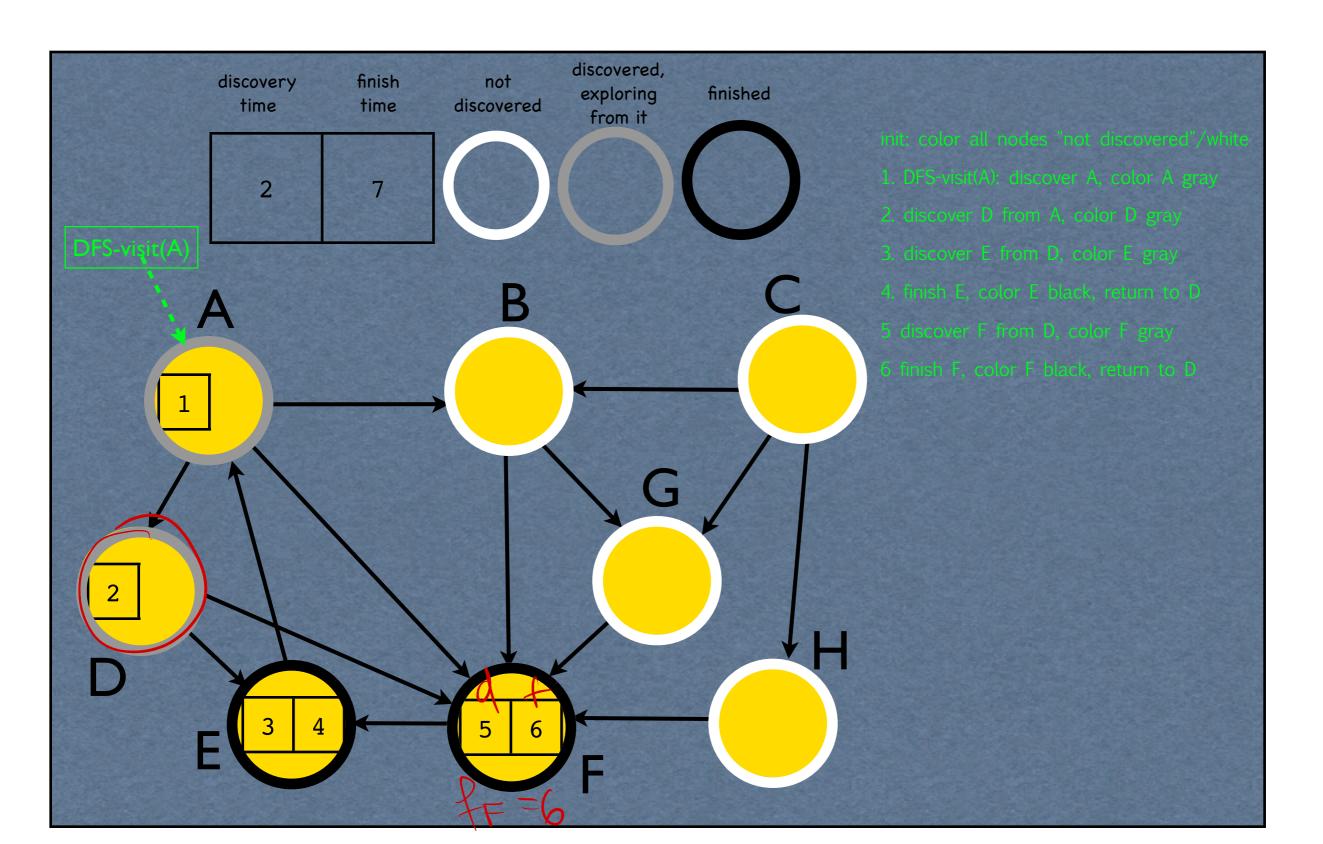


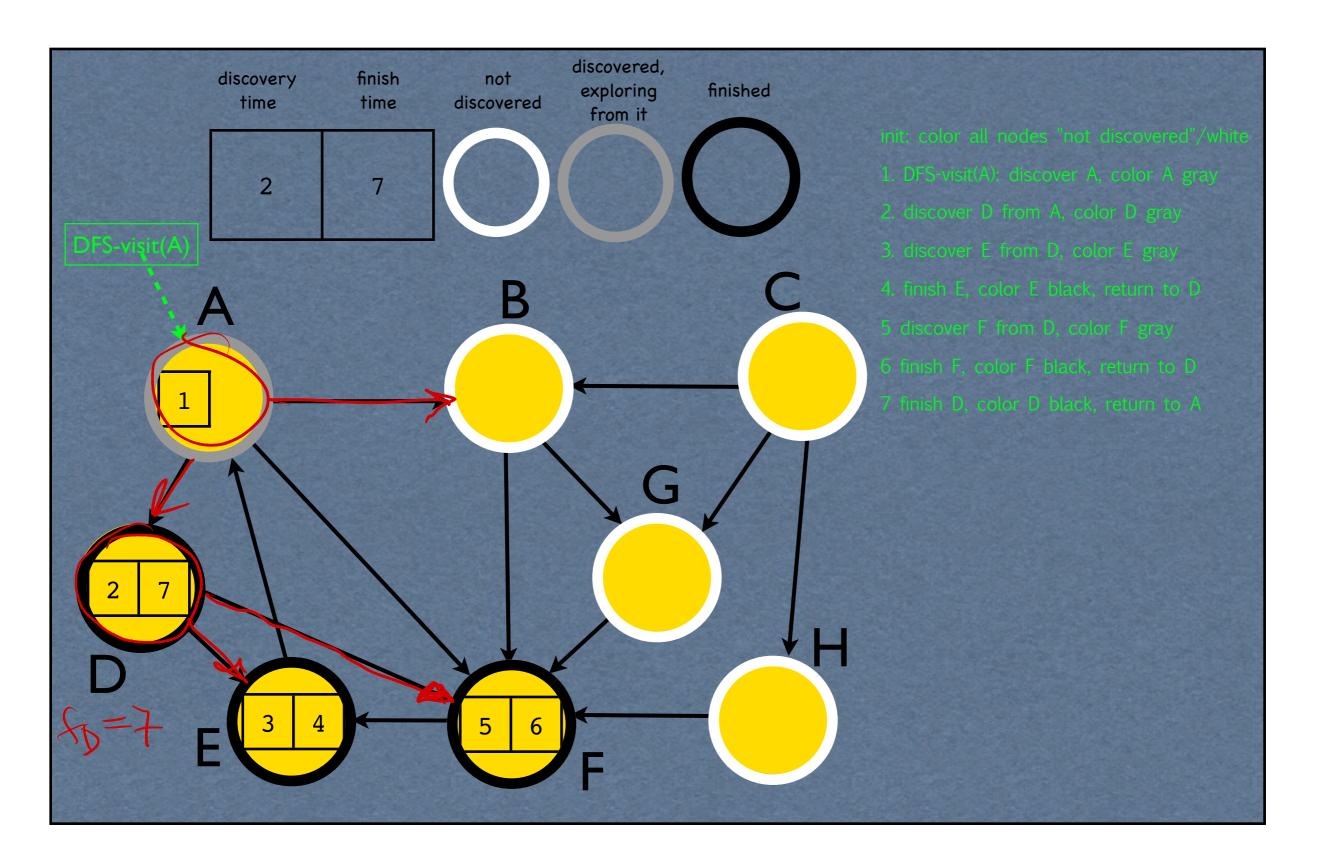


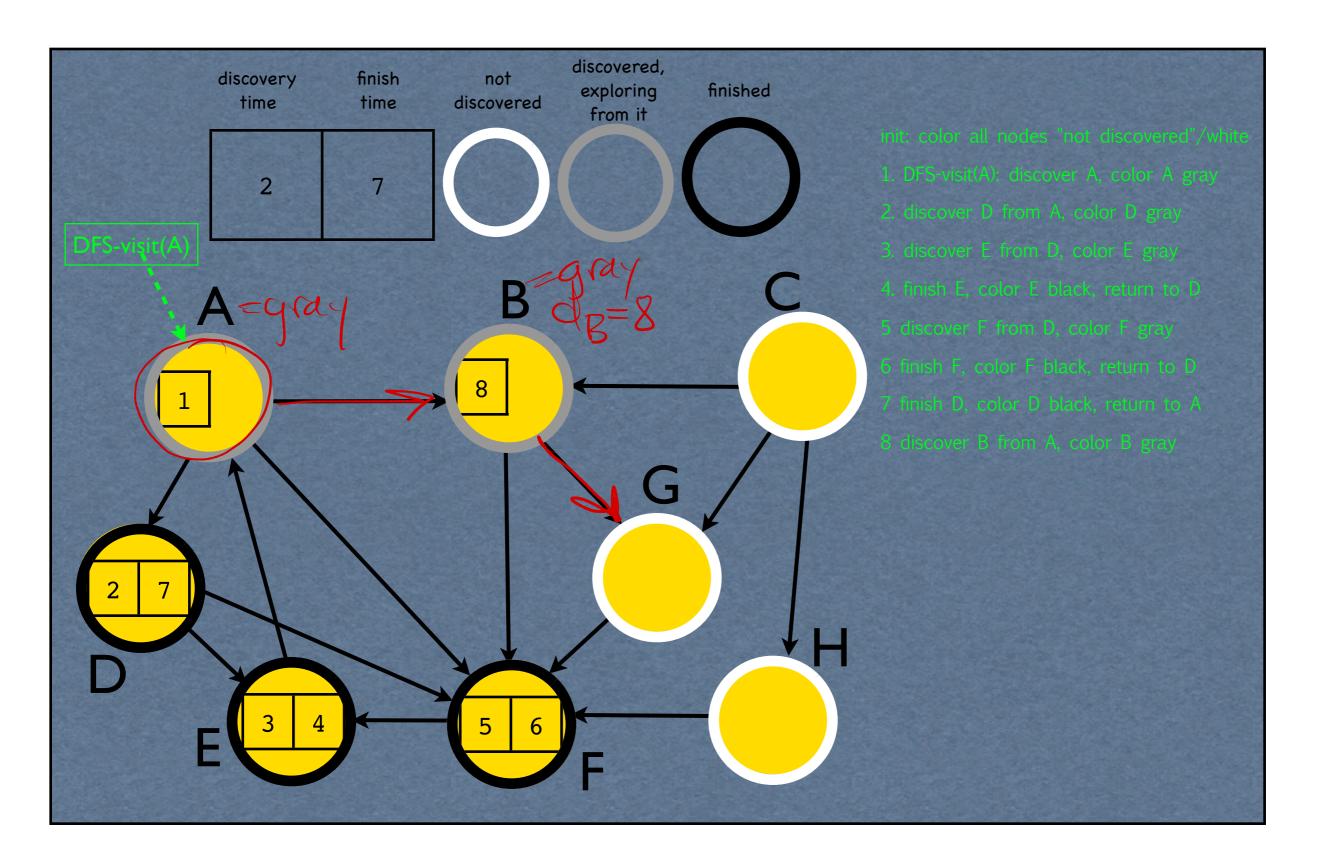


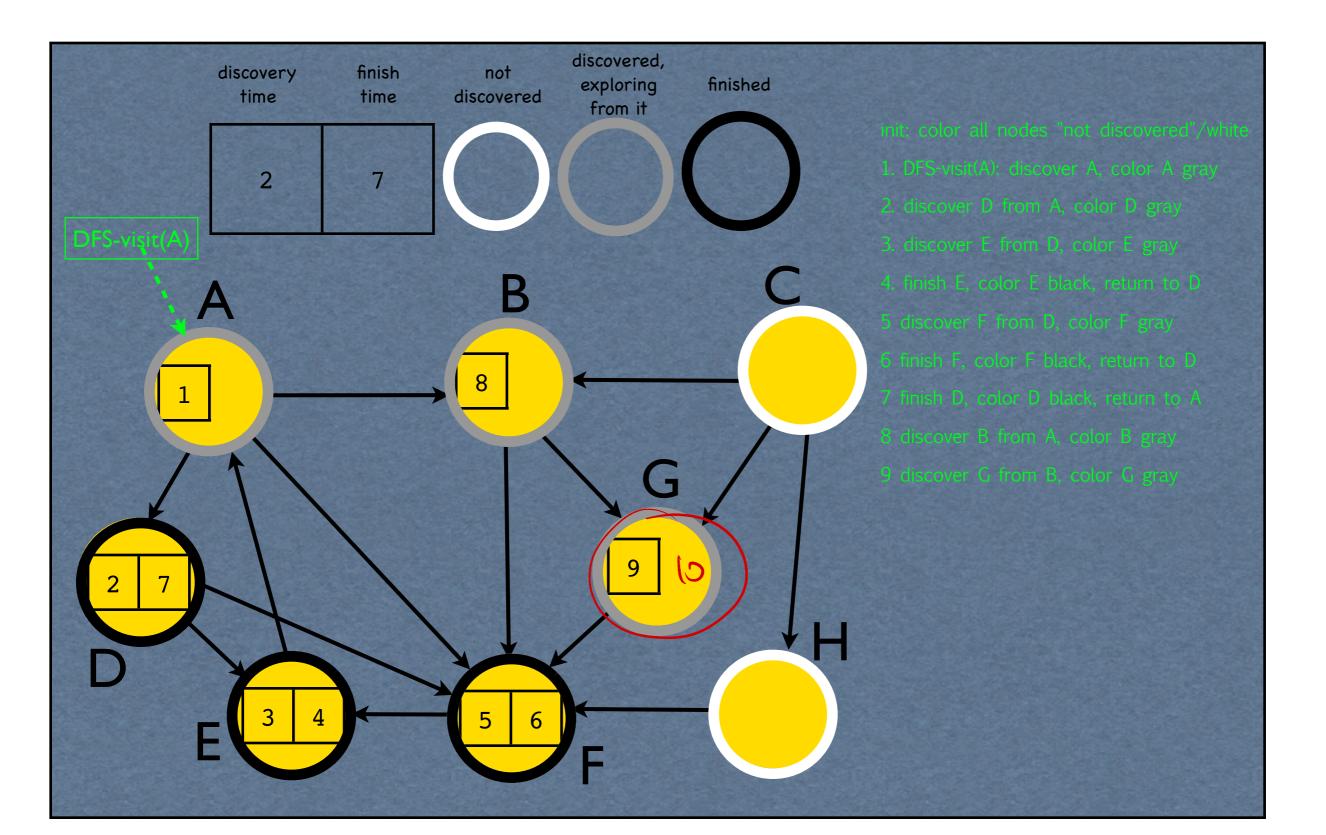


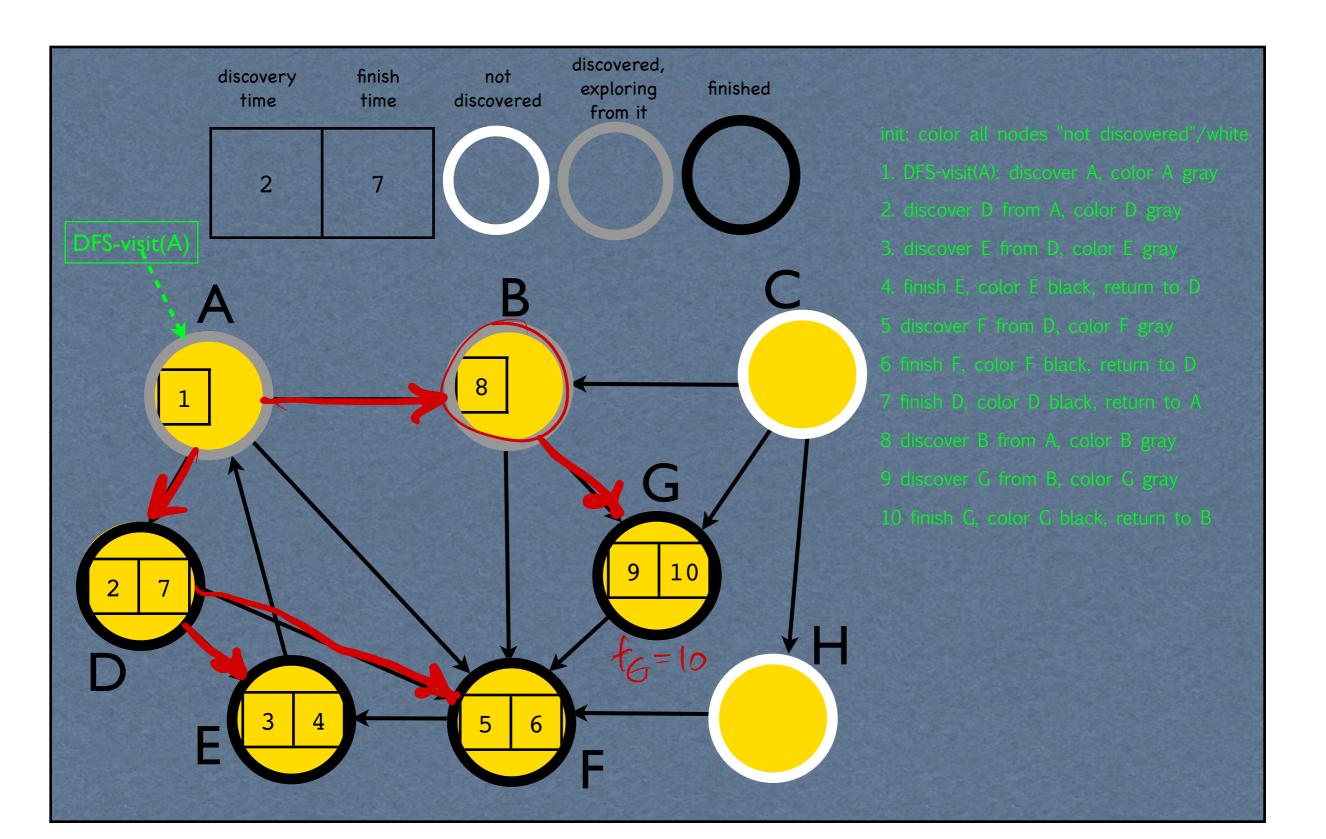


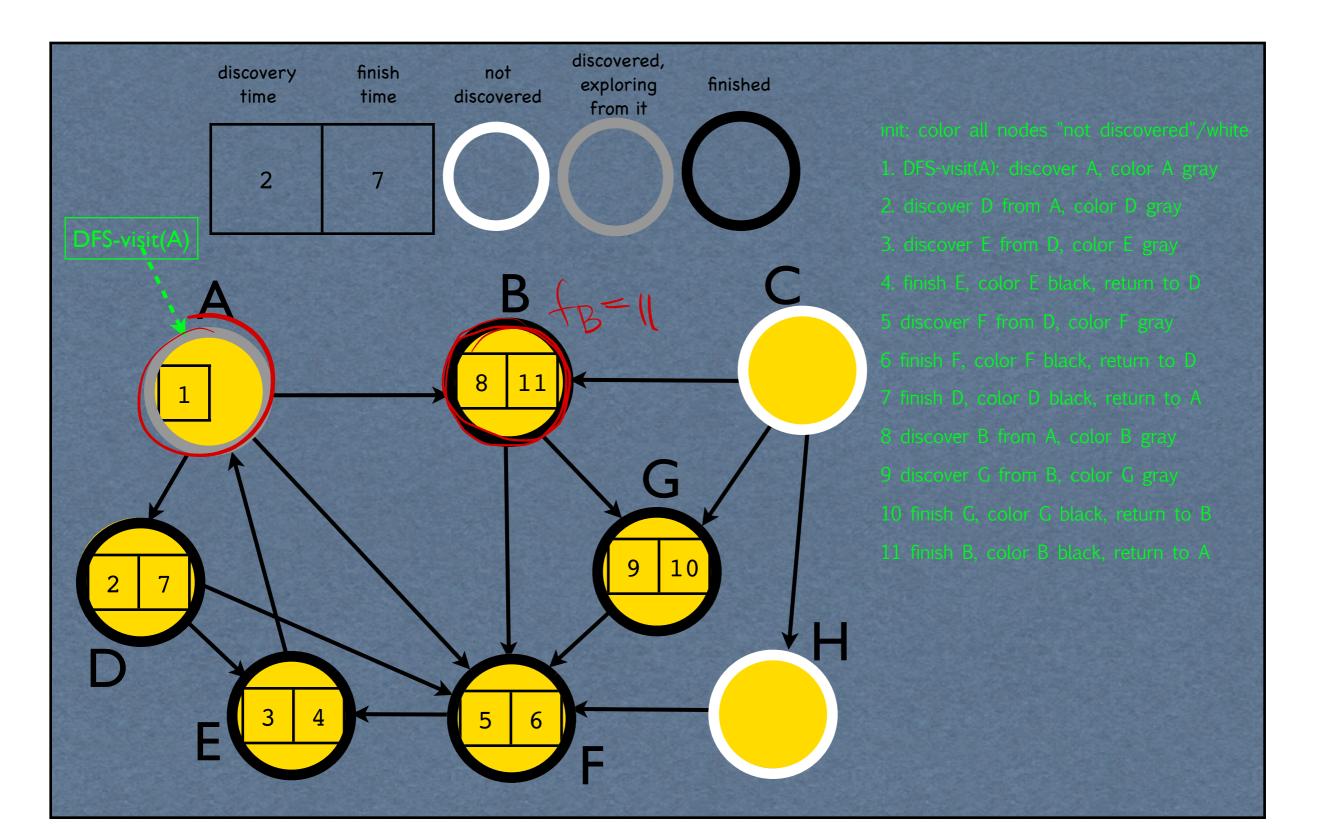


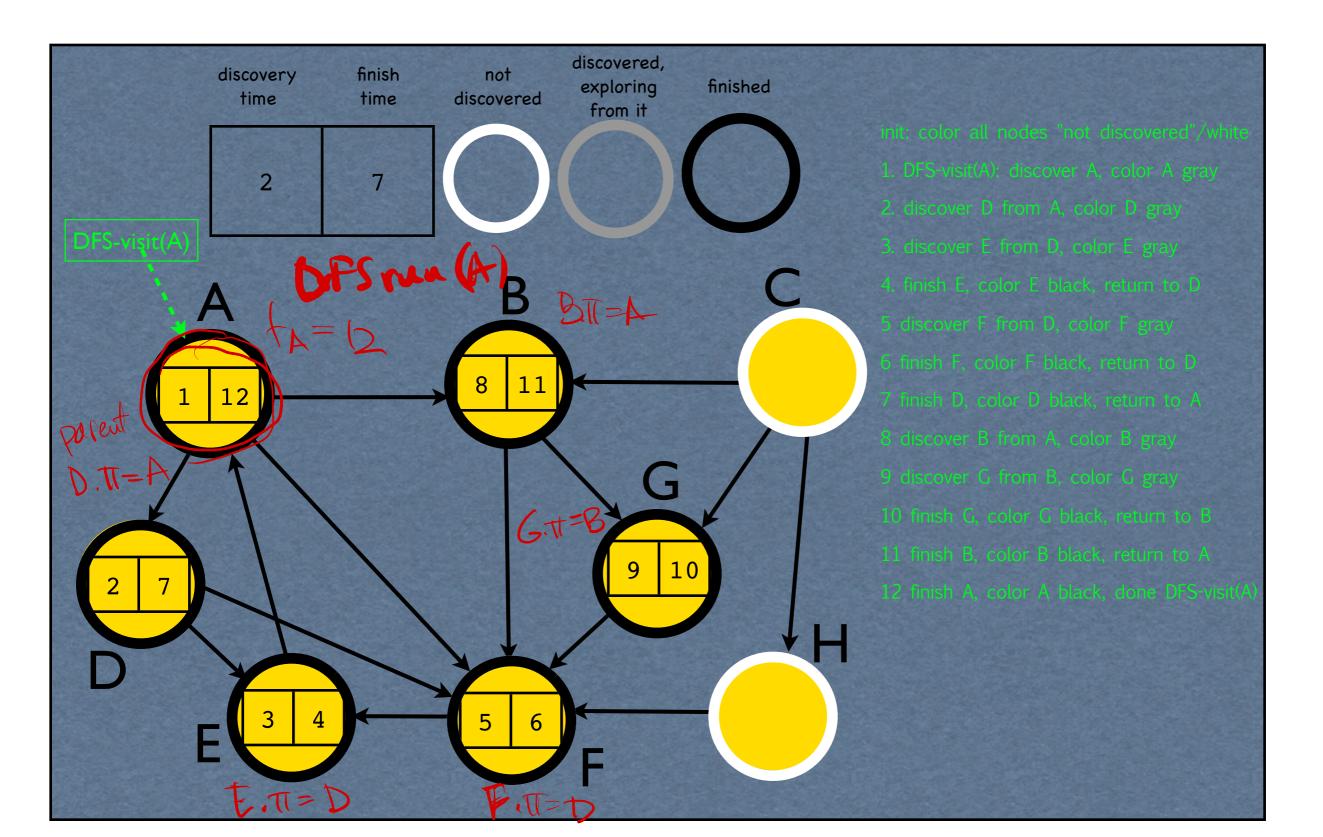


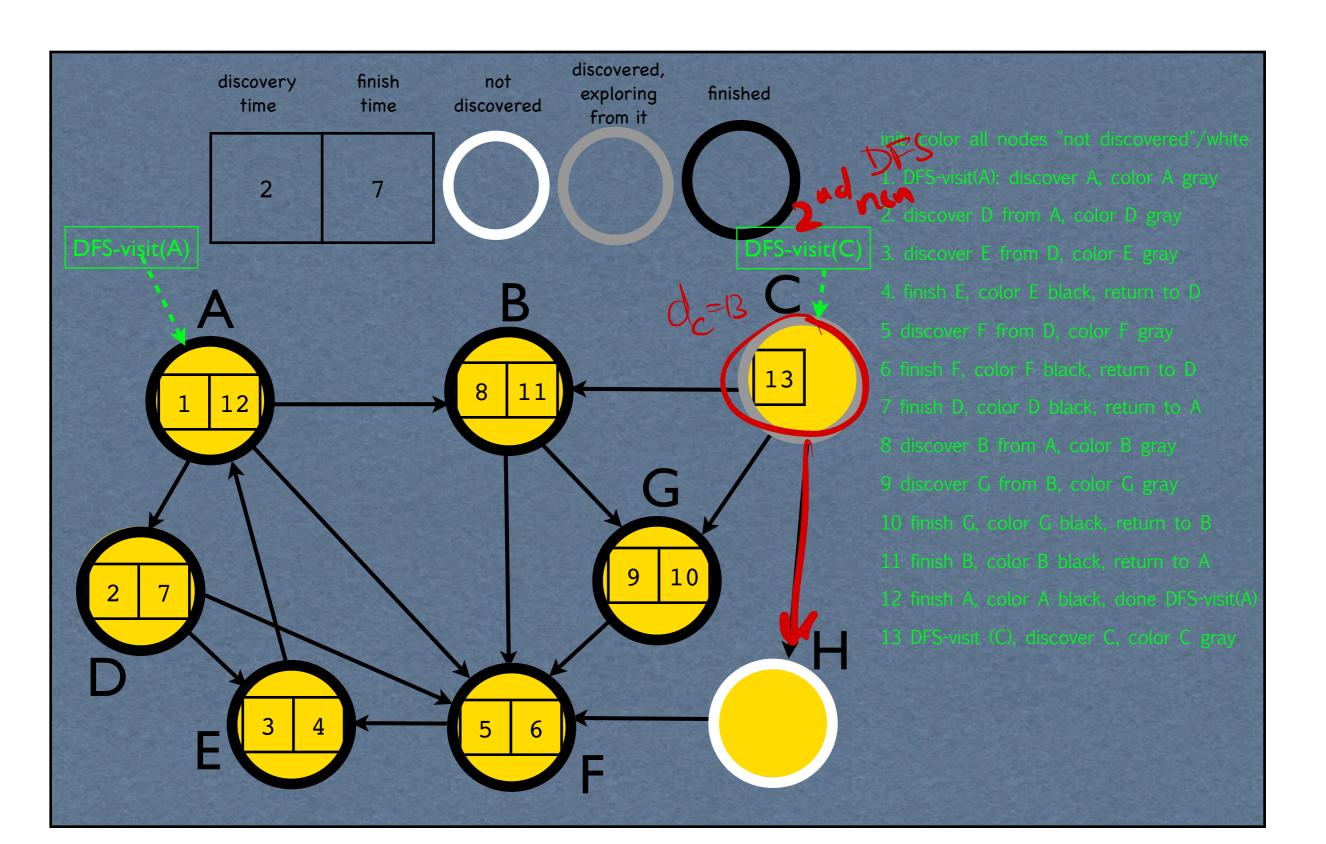


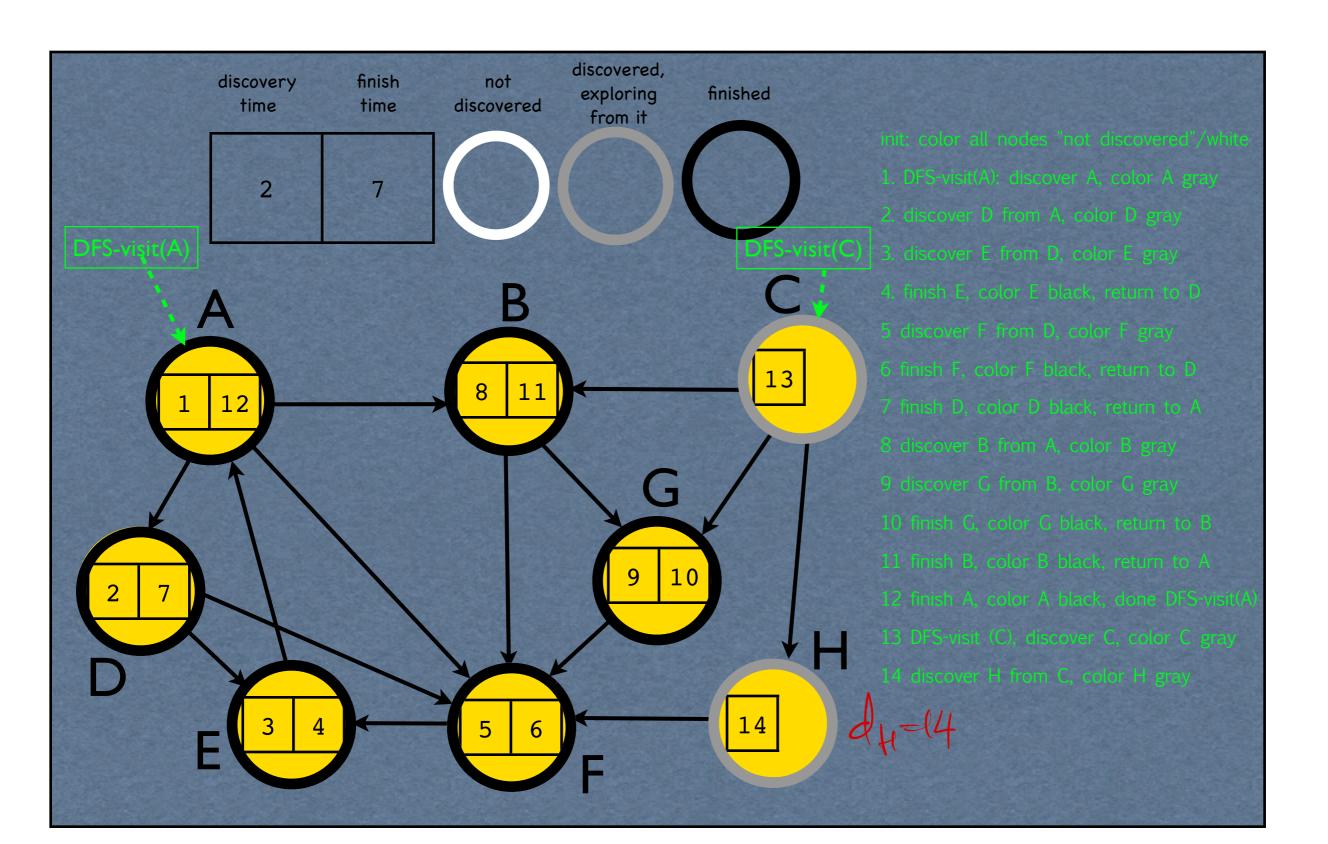


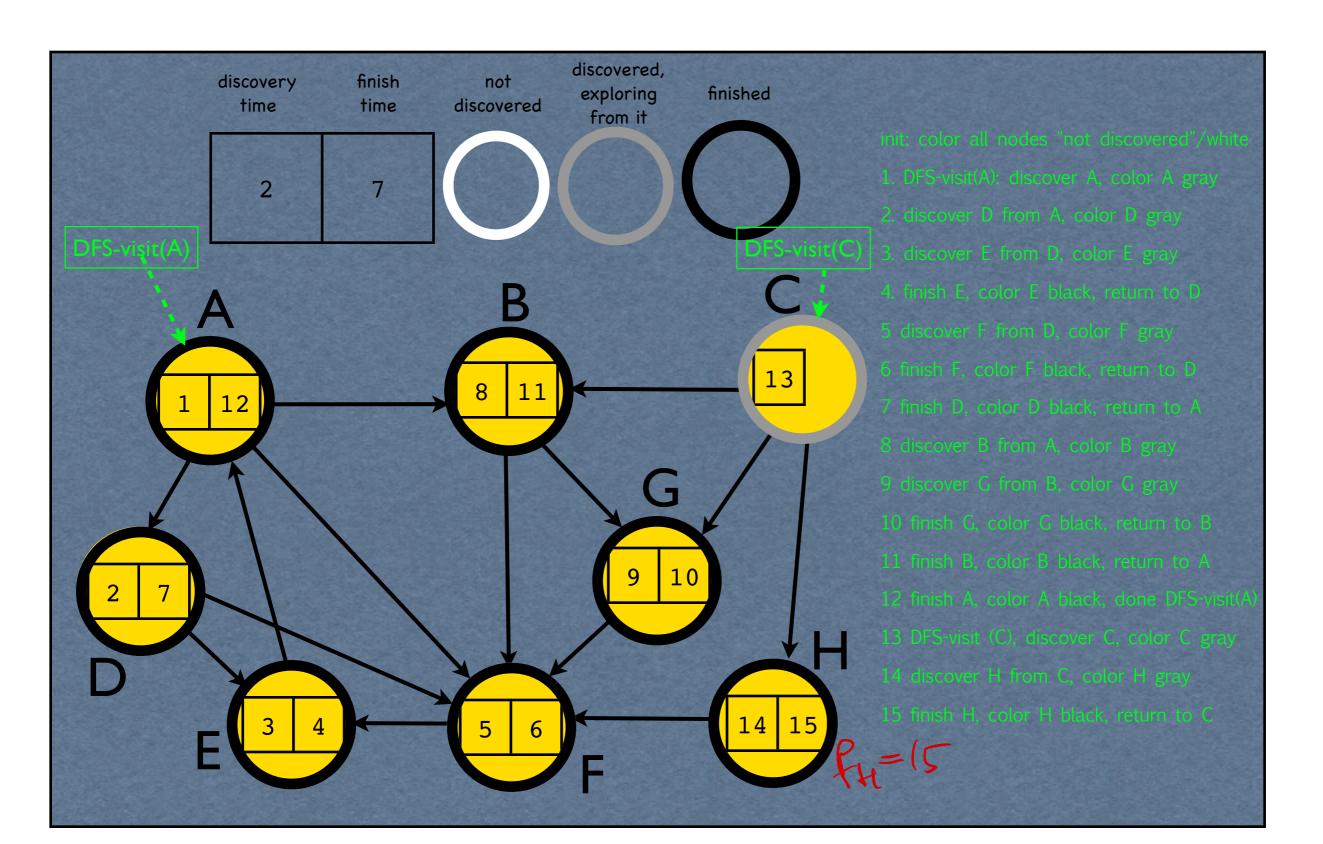


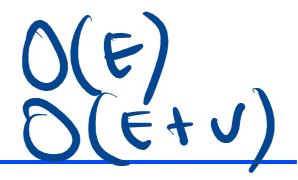


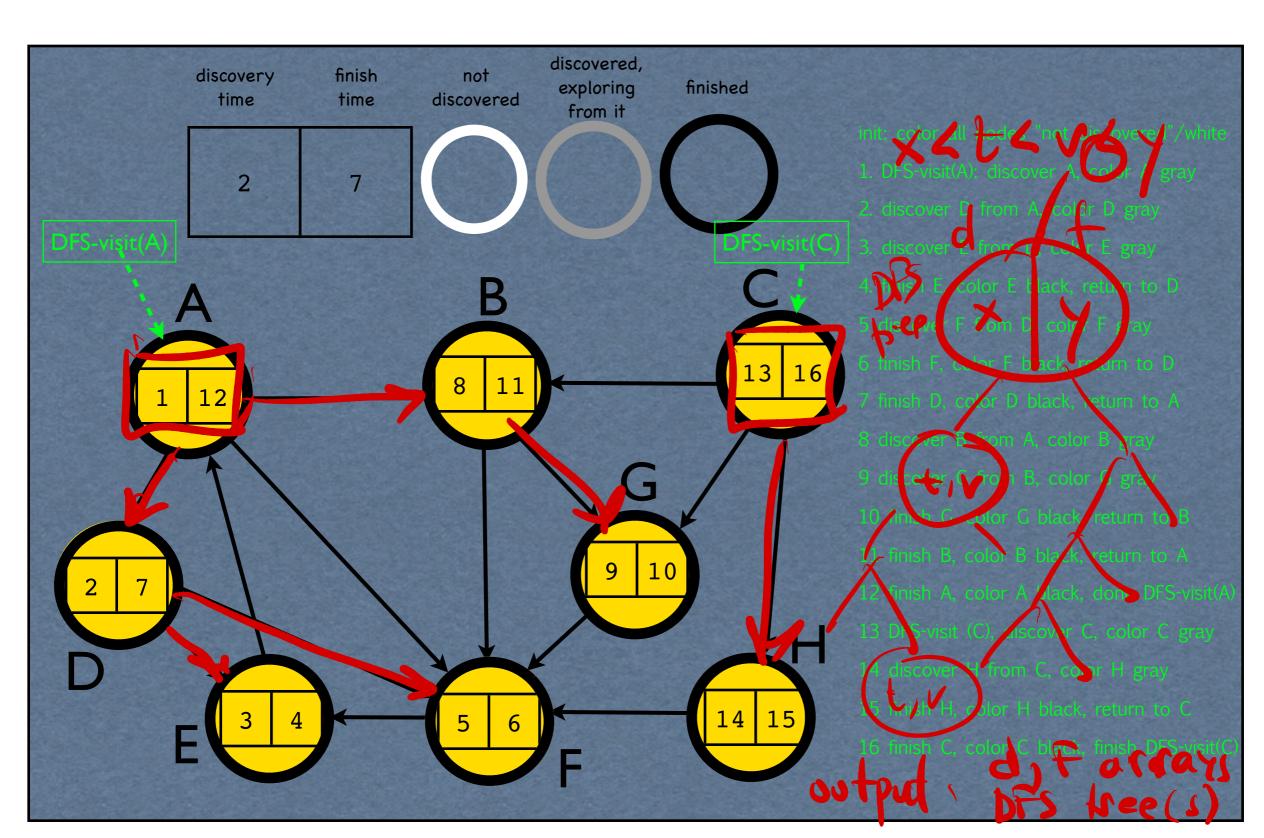












DFS edge classification

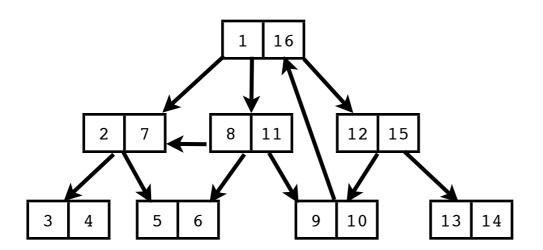
- "tree" edge: from vertices gray to white
 - a tree edge advances the graph exploration/traversal
- back" edge: from vertices gray to gray
 - a back edge points to a cycle within the current exploration nodes
- "forward" edge: from vertices a(gray) to b(black), if a discovered first
 - discovery_time[a] < discovery_time[b]</pre>
 - points to a different part of the tree, already explored from a
- "cross" edge: from vertices a(gray) to b(black), if b discovered first
 - discovery_time[a] > discovery_time[b]
 - points to a different part of the tree, explored before discovering a

Forward edge

Cooss edp 4: grayes Slack d (gray] > d (slade)

Checkpoint

- on the animated example, label each edge as "tree", "back", "cross", or "forward"
- do the same on the following example (DFS discovery and finish times marked for each node)



Checkpoint

almost same example, with a small modification: one edge was reversed

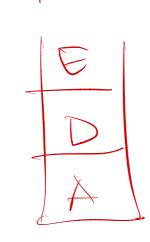
The state, we recall the collection of th

15

Stack = gray wodes

bud [] order

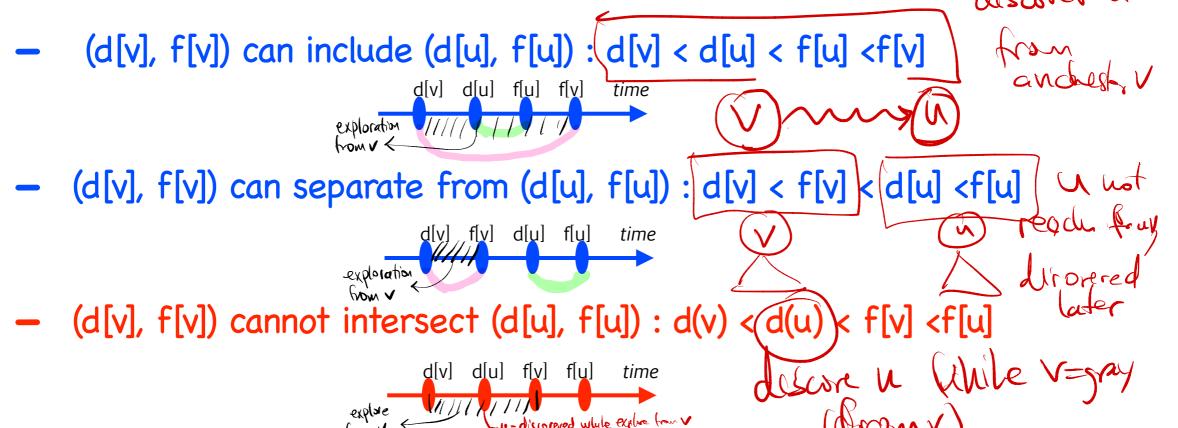
time 3 stack:



DFS observations

- Running time O(V+E), same as BFS
- vertex v is gray between times discover[v] and finish[v]

 gray time intervals (discover[v], finish[v]) are inclusive of each other



 graph G=(V,E) is acyclic (does not have cycles) if DFS does not find any "back" edge

Theorem fluy>fluy fluy } => uo path v~n proof feal > fev) from previous shide 2 options

6 derje fev) < deal < feal => path ? OR) close V before discover U =) no path v >> u ordtus < dtvs < ftrs > pathwww =) contradicts the hypothesis, ust possible => d[v]<f[v] <d[u]<f[u] =>

no path v => u (u duscovered)

after v close)

Undirected graphs cycles

- graph G=(V,E) is acyclic (does not have cycles) if DFS does not find any "back" edge
- since G is undirected, no cycles implies |E|≤|V|-1
- running DFS, if we find more than |V|-1 edges, there must be a cycle
- Undirected graphs: find-cycles algorithm takes O(V)

Directed graphs cycles

- graph G=(V,E) is acyclic (does not have cycles) if DFS does not find any "back" edge
- for directed graphs, even without cycles they can have more edges, |E| > |V|-1
- algorithm to determine cycles: run DFS, look for back edges - O(V+E) time
- DAG = directed acyclic graph

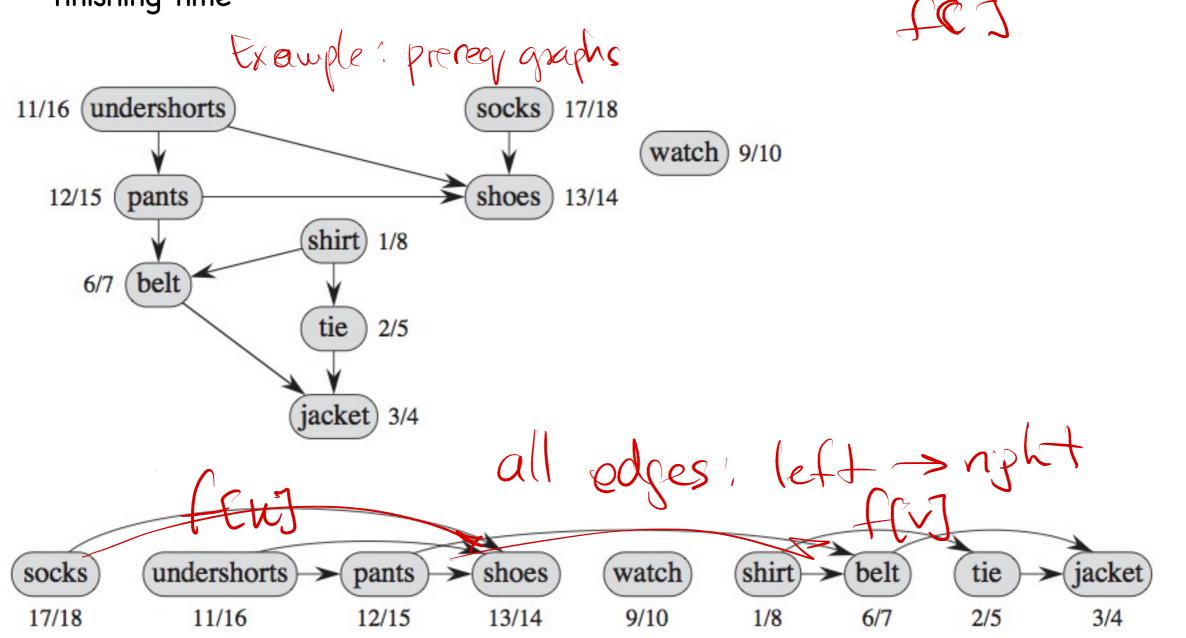
The Sine contine all vertices on line.

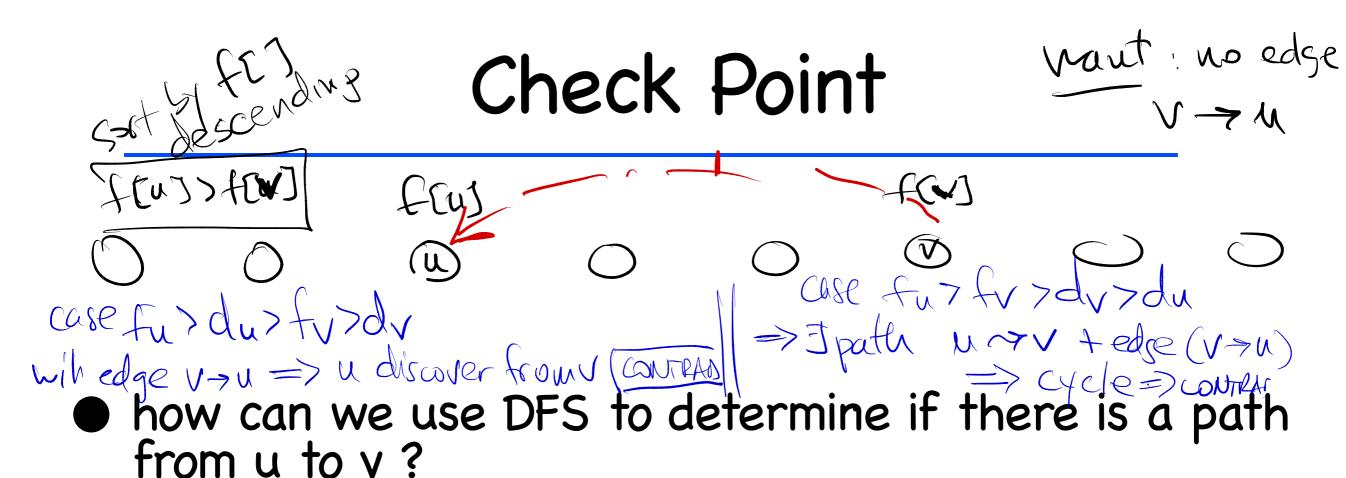
all edges Left -> Right

Topological sort (DAG)

 DAG admits topological sort: all vertices "sorted" on a line, such that all edges point from left to right-no cycles - 2 graphs below are the same-

to do this: algorithm: run DFS, time O(V+E). Output vertices in reverse order given by finishing time





prove that by sorting vertices in the reverse order of finishing times, we obtained a topological sort max for left; min to pipht side

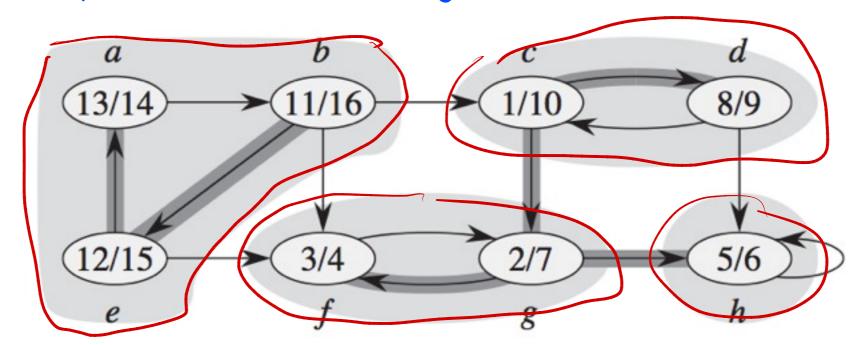
assuming no cycles

in other words, all edges point in the same direction

Blue edpes ices (u,v): form a DAG

Strongly connected components

- SCC = a set of vertices $S\subset V$, such that for any two $(u,v)\in S$, graph G contains a path $u \rightarrow v$ and a path $v \rightarrow u$
- trivial for undirected graphs
 - all connected vertices are in fact strongly connected
- tricky for directed graphs
- graph below has the DFS discover/finish times and marked 4 strongly connected components; "tree" edges highlighted
- between two SCC, A and B, there cannot exists paths both ways $(A\ni u_{\rightarrow}v\in B \text{ and } B\ni v_{\rightarrow}u\in A)$
 - paths both ways would make A and B a single SCC

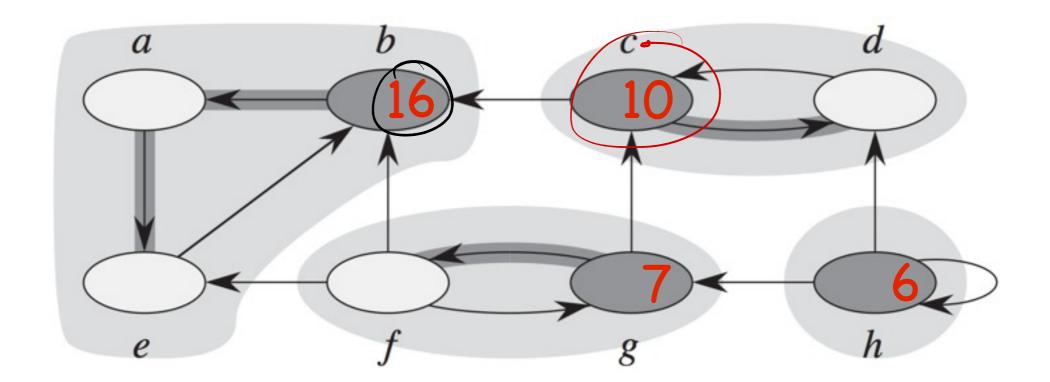


Strongly connected components

- run 1st DFS on G to get finishing times f[u]
- run 2nd DFS on G-reversed (all edges reversed -see picture), each DFS-visit in reverse order of f[u]

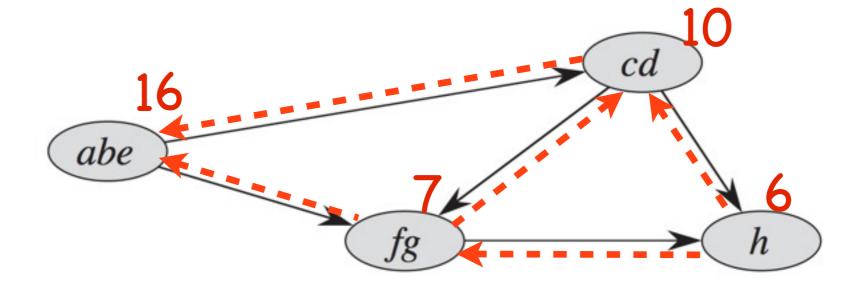
 finishing times marked in red for the DFS-visit root vertices

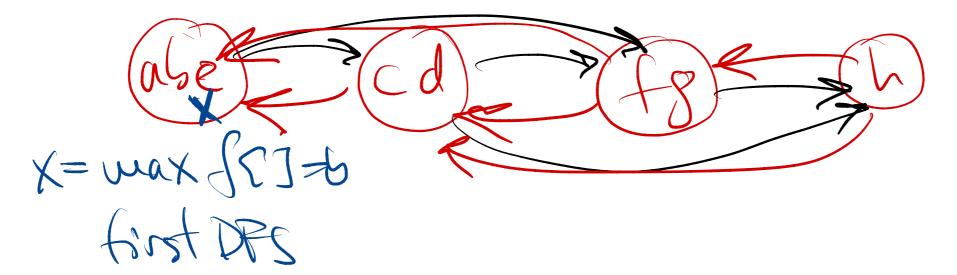
 - output each tree (vertices reached) obtained by 2nd DFS as an SCC



Strongly connected components

- why 2nd DFS produces precisely the SCC -s?
- SCC-graph of G: collapse all SCC into one SCC-vertex, keep edges between the SCC-vertices
- SCC graph is a DAG;
 - contradiction argument: a cycle on the SCC-graph would immediately collapse the cycles SCC-s into one SCC
- reversed edges (shown in red); reversed-SCC-graph also a DAG
- second DFS runs on reversed-edges (red); once it starts at a high-finish-time (like 16) it can only go through vertices in the same SCC (like abe)





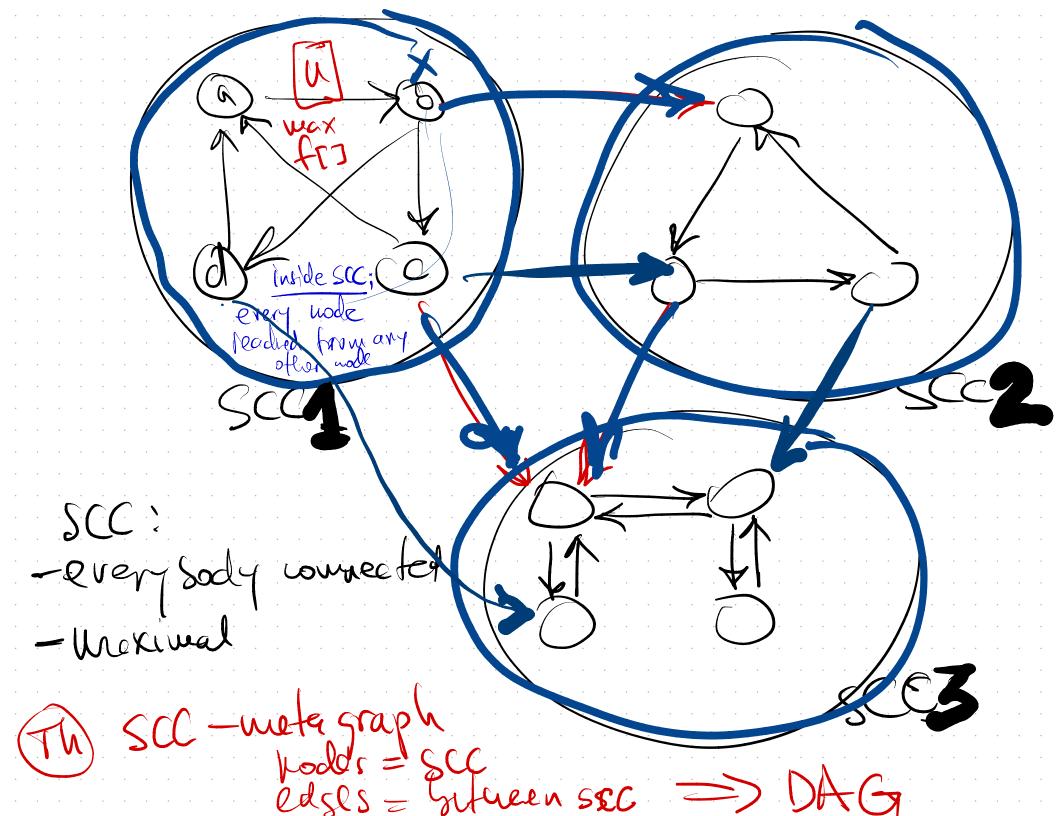
th version?

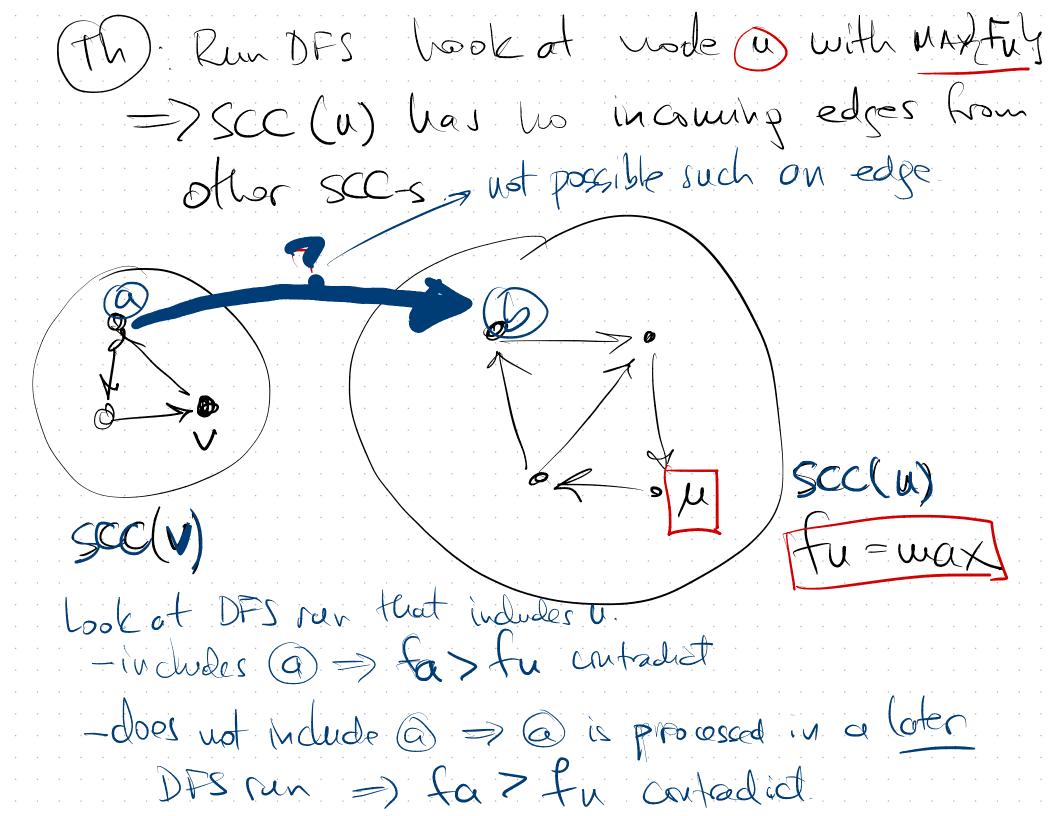
F(u) > f(v) (first DH3 run) => no path v >> u

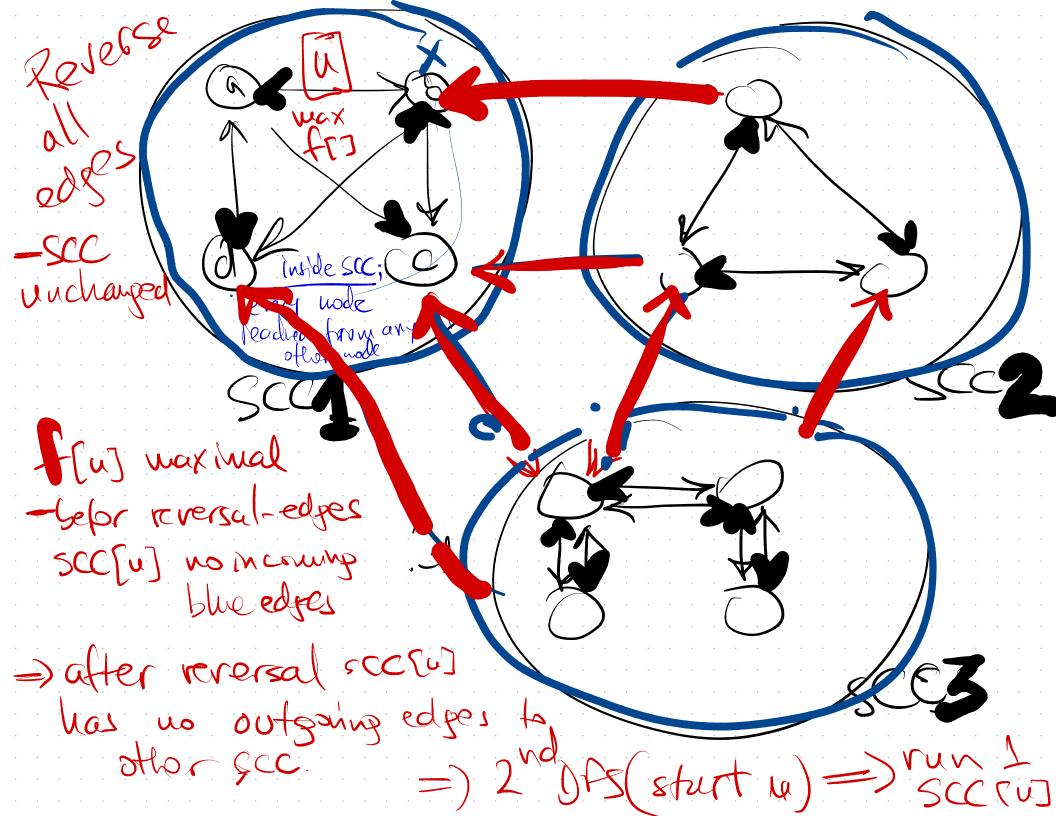
u,v & same SCC

Minimum Spanning Trees

Lesson 2

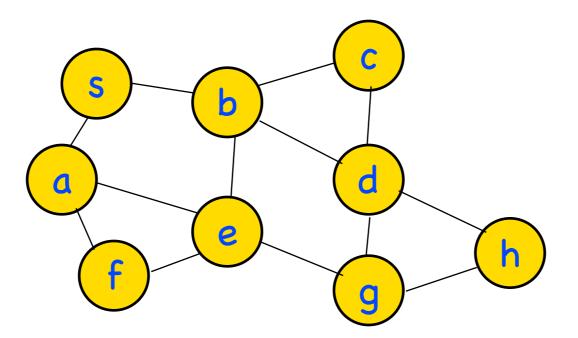






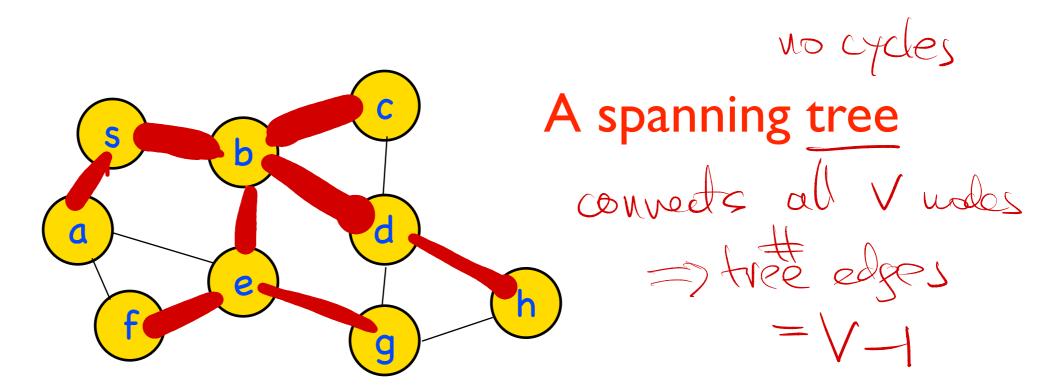
Spanning Trees

- context: undirected graphs
- a set of edges A that "span" or "touch" all vertices, and forms no cycles
 - necessary this set of edges A has size = |V|-1
- spanning tree: the tree formed by the set of spanning edges together with vertex set T = (V,F)



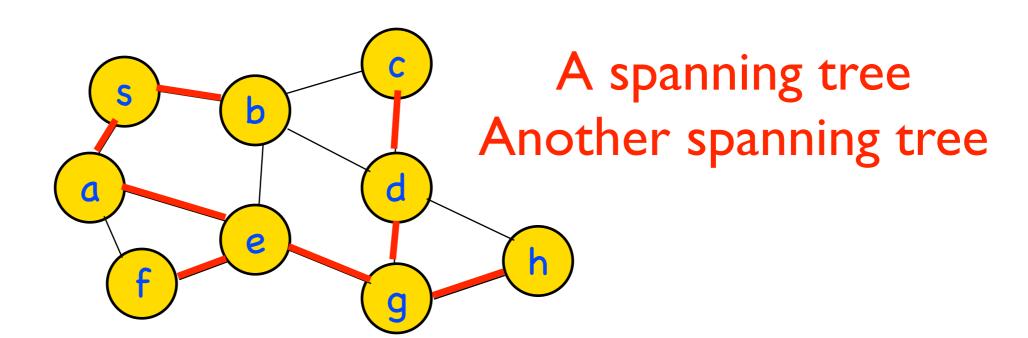
Spanning Trees

- context: undirected graphs
- a set of edges A that "span" or "touch" all vertices, and forms no cycles
 - necessary this set of edges A has size = |V|-1
- spanning tree: the tree formed by the set of spanning edges together with vertex set T = (V,F)



Spanning Trees

- context: undirected graphs
- a set of edges A that "span" or "touch" all vertices, and forms no cycles
 - necessary this set of edges A has size = |V|-1
- spanning tree: the tree formed by the set of spanning edges together with vertex set T = (V,F)



Minimum Spanning Tree (MST)

- context: undirected graph, edges have weights
 - edge (u,v)∈E has weight w(u,v)
- MST is a spanning tree of minimum total weight (of its edges)

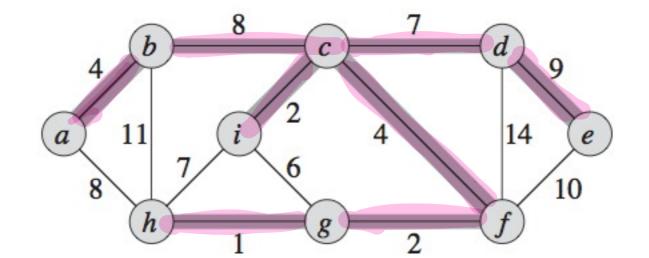
un total ost = \(\sum \text{W(edges)}

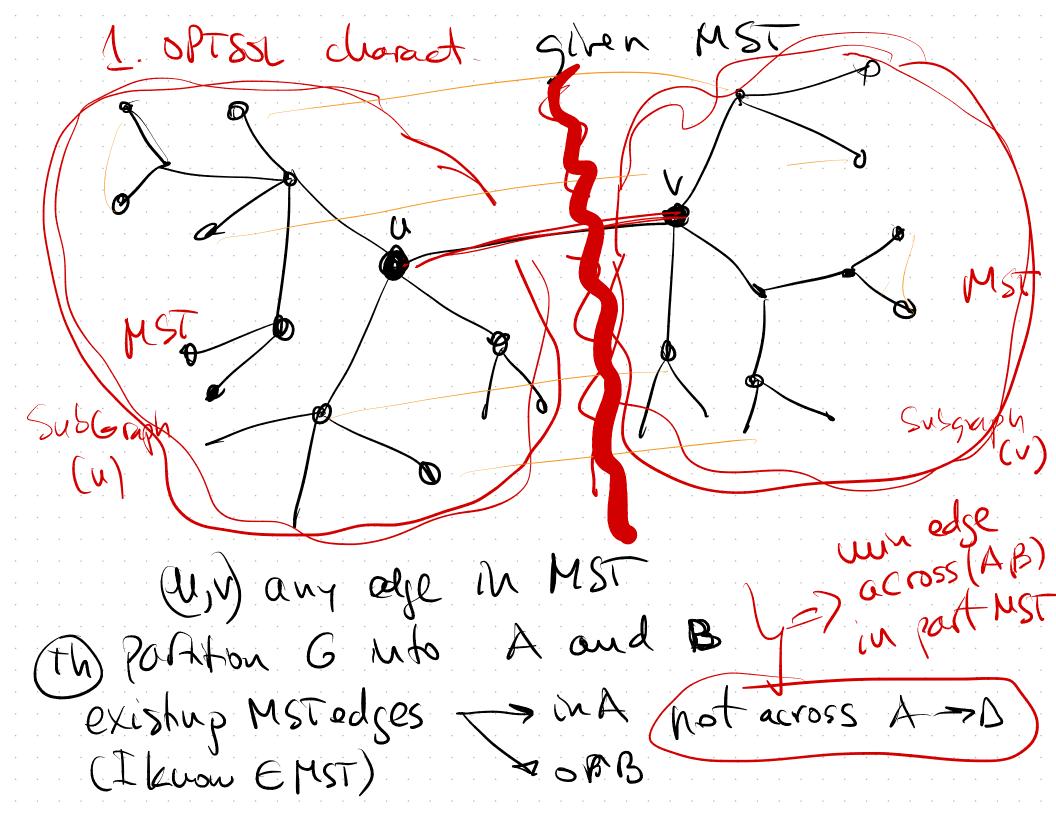
edge weights 307

- must span all vertices
- exactly |V|-1 edges

- sum of edges weight be minimum among spanning trees

(pit- 4+6+ 7 +9+2+4+1+2





Growing Minimum Spanning Trees

- "safe edge" (u,v) for a given set of edges A: there is a MST that uses A and (u,v)
 - that MST may not be unique

GENERIC-MST (G)
A = set of tree edges, initially empty
while A does not form a spanning tree // meaning while |A| < |V|-1
find edge (u,v) that is safe for A
add (u,v) to A

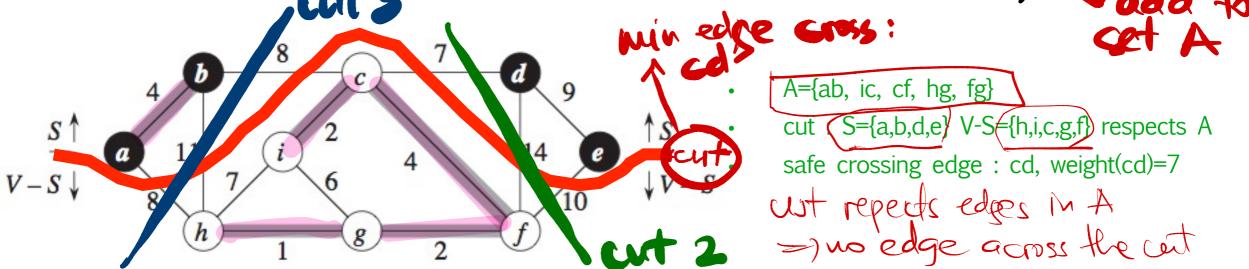
- how to find a safe edge to a given set of edges A?
 - Prim algorithm

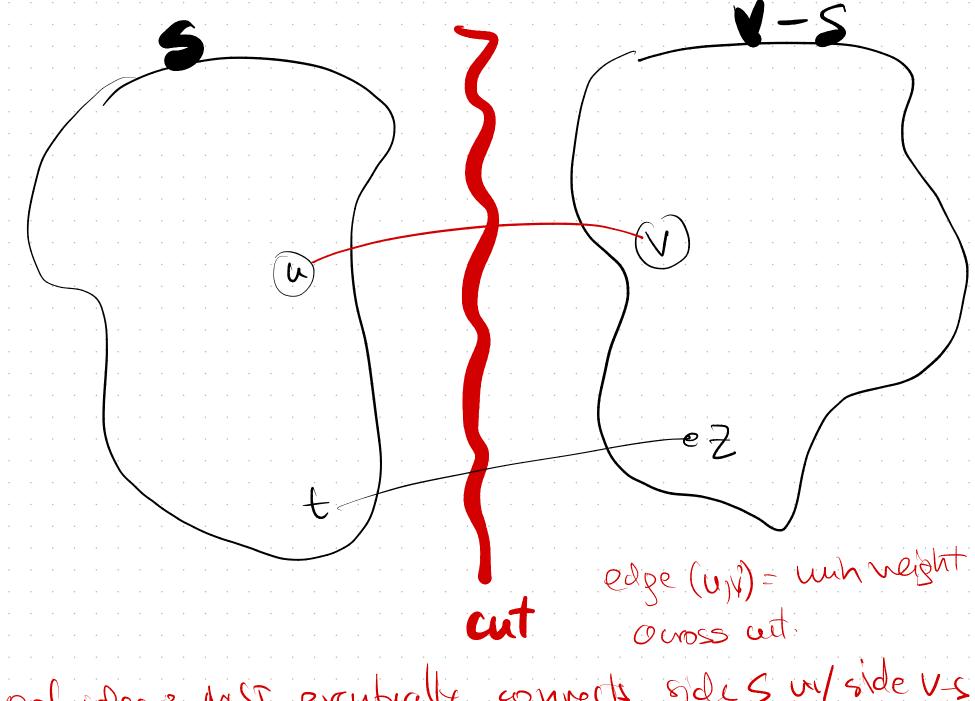
end while

- Kruskal algorithm

Cuts in the graph

- "cut" is a partition of vertices in two sets: V=S u V-S
 A = set of edges already selected to be in MST
- an edge (u,v) crosses the cut (5,V-S) if u and v are on different partitions (one in S the other in V-S)
- cut (S, V-S) respects set of edges A if A has no cross edge
- "min weight cross edge" is a cross edge for the cut, having minimum weight across all cross edges
- Cut Theorem: if A is a set of edges part of some MST, and (S,V-S)a cut respecting A, then a min-weight cross edge is safe for A (cap be added to A towards an MST)

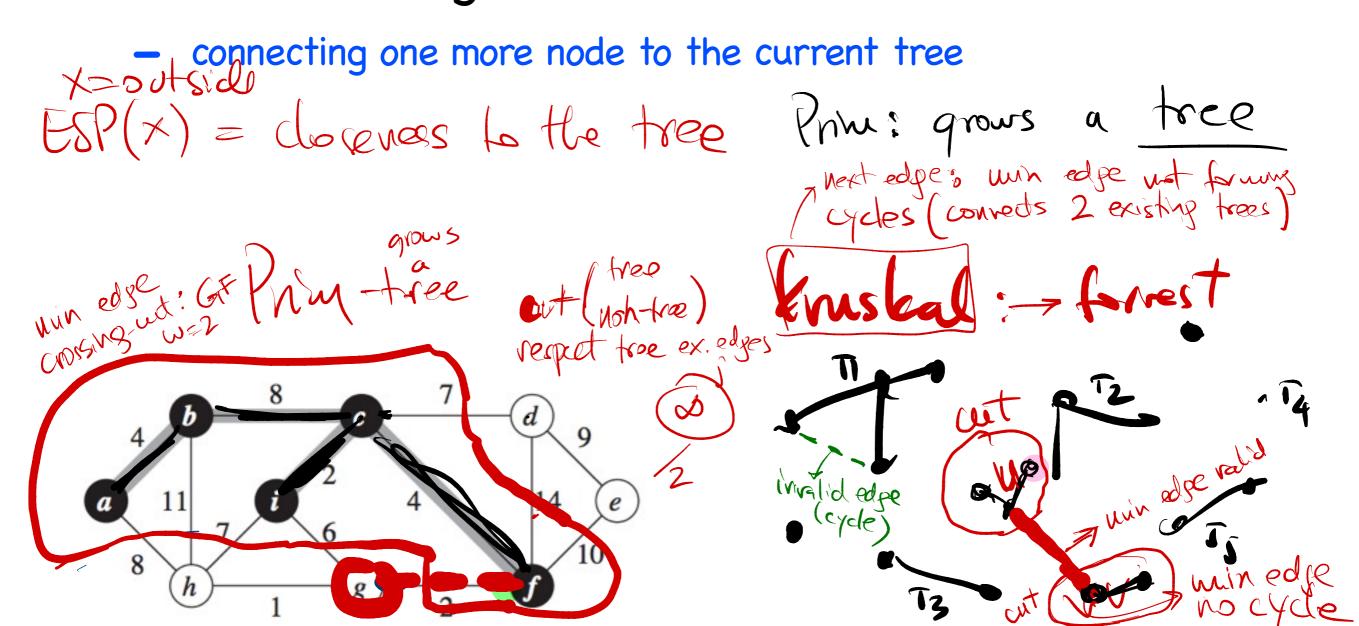




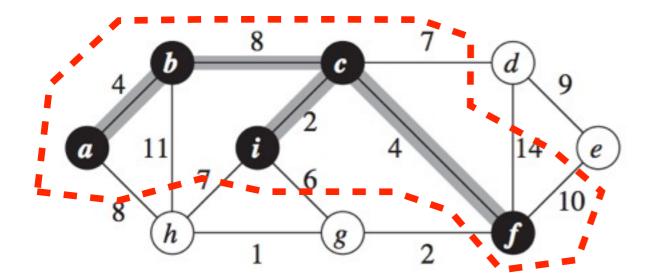
proof idea? MST eventually with some edge t-Z.

convects side S un/side V-s w(U-ru) < w(t->2) >> edge (u,v) is better

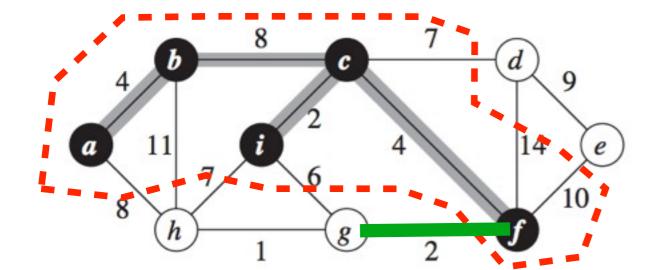
- grows a single tree A, S = set of vertices in the tree
 - as opposed to a forest of smaller disconnected trees
- add a safe edge at a time



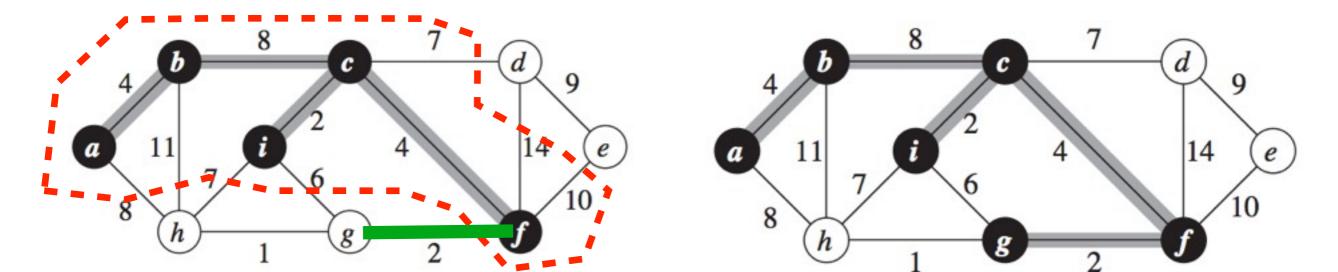
- grows a single tree A, S = set of vertices in the tree
 - as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
 - connecting one more node to the current tree
- define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A



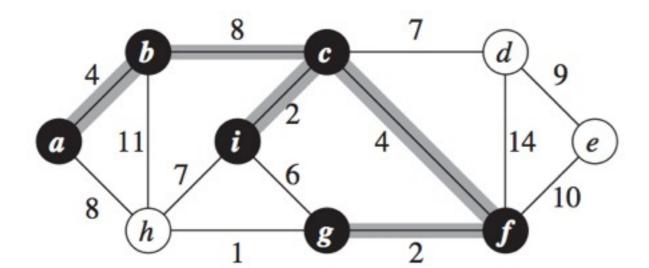
- grows a single tree A, S = set of vertices in the tree
 - as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
 - connecting one more node to the current tree
- define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
 - edge gf in the picture is added to A, vertex g added to the tree



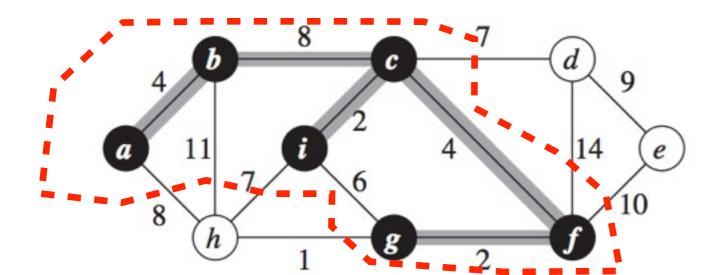
- grows a single tree A, S = set of vertices in the tree
 - as opposed to a forest of smaller disconnected trees
- add a safe edge at a time
 - connecting one more node to the current tree
- define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
 - edge gf in the picture is added to A, vertex g added to the tree



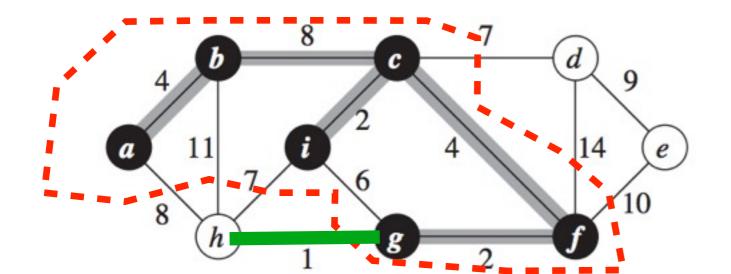
- add another(next) safe edge
 - connecting one more node to the current tree



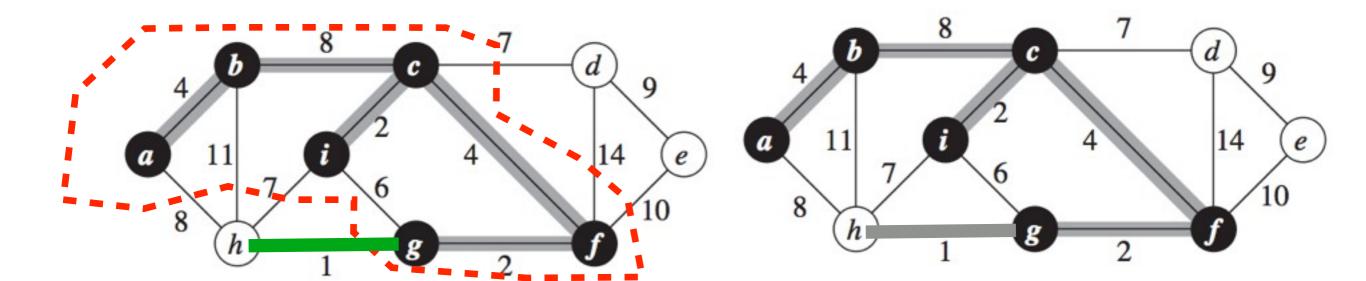
- add another(next) safe edge
 - connecting one more node to the current tree
- define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A



- add another(next) safe edge
 - connecting one more node to the current tree
- define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
 - edge hg in the picture is added to A, vertex h added to the tree



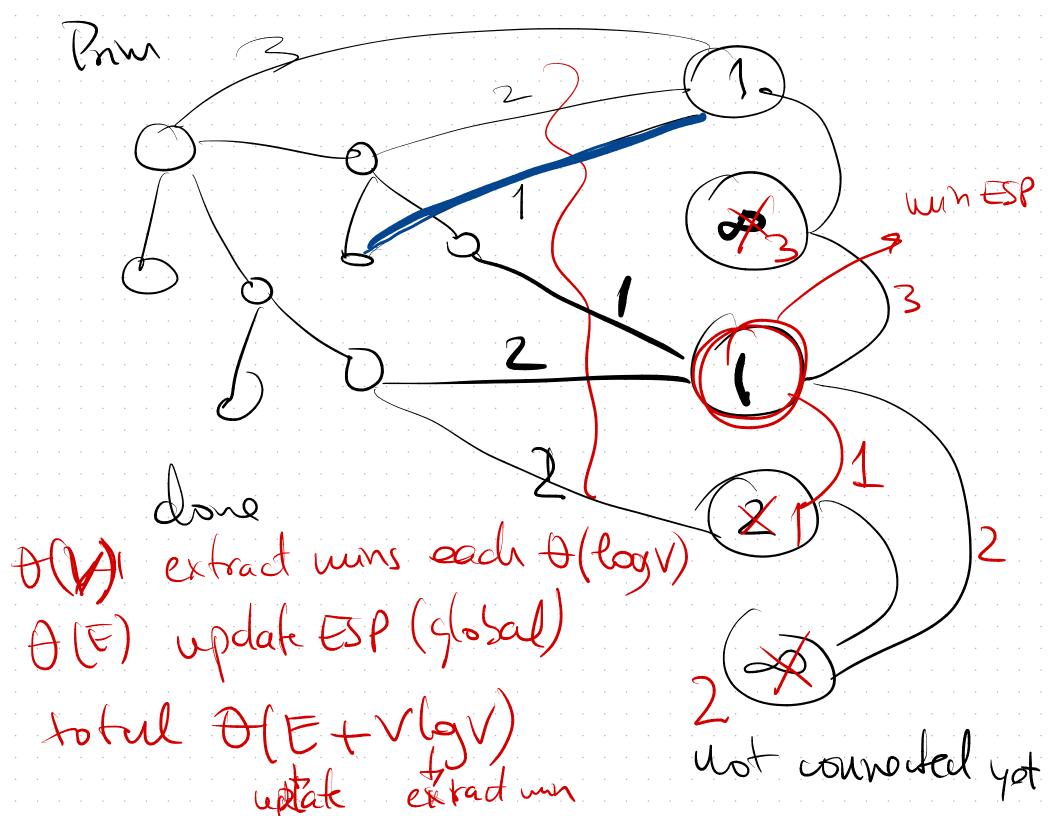
- add another(next) safe edge
 - connecting one more node to the current tree
- define cut (S,V-S), which respects A. Using the cut theorem, the min-weight edge across the cut is the next edge added to A
 - edge hg in the picture is added to A, vertex h added to the tree



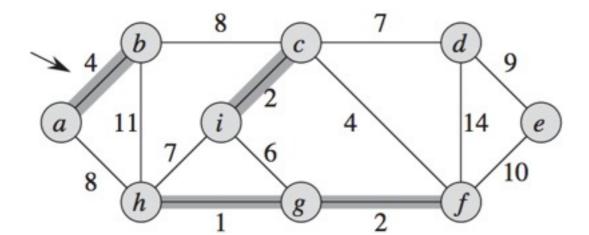
Prim MST algorithm

- Prim simple
 - but implementation a bit tricky
- Running Time depends on implementation of Extract— Min from the Queue
 - best theoretical implementation uses Fibonacci Heaps
 - also the most complicated
 - only makes a practical difference for very large graphs

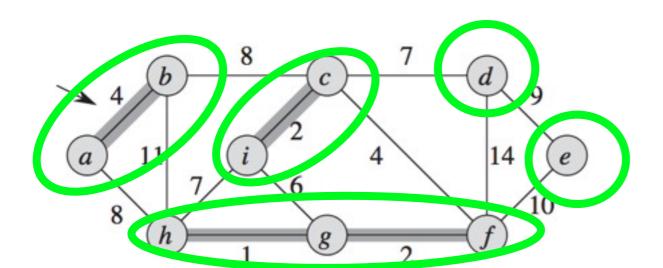
```
MST-PRIM(G, w, r)
     for each u \in G.V
          u.key = \infty
          u.\pi = NIL
 4 \quad r.key = 0
     Q = G.V
     while Q \neq \emptyset
          u = \text{EXTRACT-MIN}(Q)
 8
         for each v \in G. Adj u
 9
              if v \in Q and w(u, v) < v. key
10
                   \nu.\pi = u
11
                   v.key = w(u, v)
```



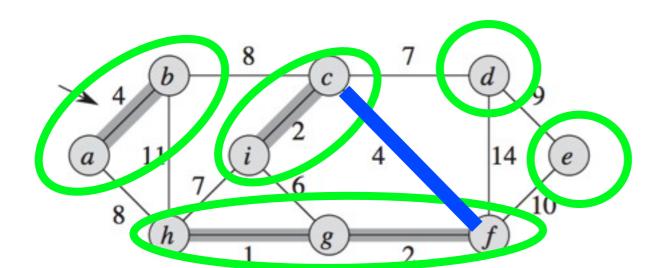
- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty



- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)



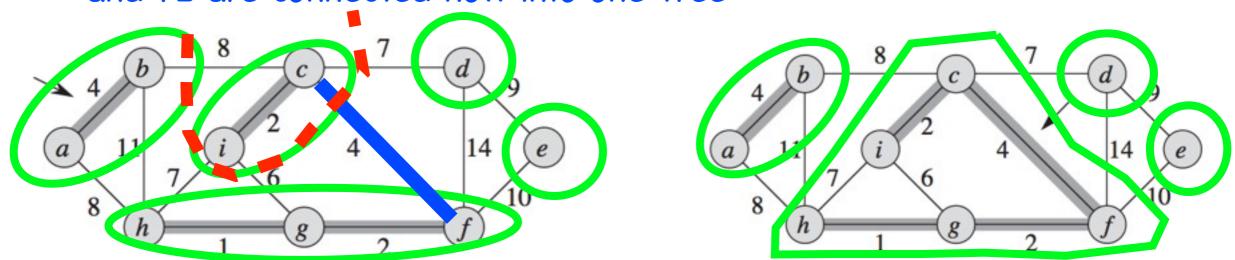
- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)
 - find the minimum weight edge (u,v) across two components, say connecting trees T1∋v and T2∋u (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)



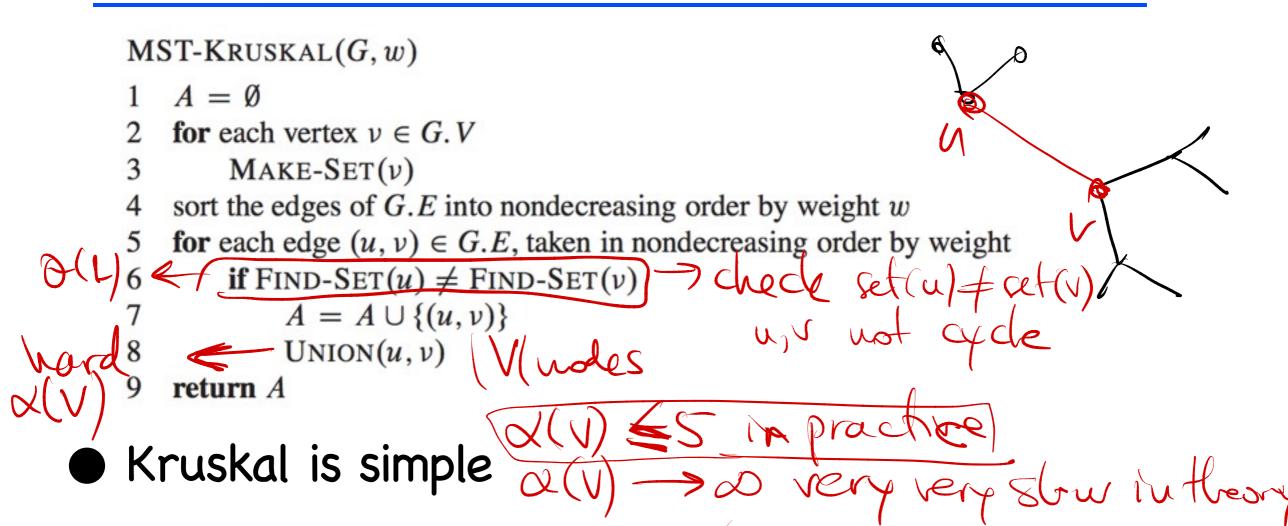
- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)
 - find the minimum weight edge (u,v) across two components, say connecting trees T1∋v and T2∋u (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)
 - define cut (S,V-S); S = vertices of T1 (in red). This cut respects set A



- Grows a forest of trees Forrest = (V,A)
 - eventually all connected into a MST
 - initially each vertex is a tree with no edges, and A is empty
- each edge added connects two trees (or components)
 - find the minimum weight edge (u,v) across two components, say connecting trees T1∋v and T2∋u (edges between nodes of the same trees are no good because they form cycles) (blue in the picture)
 - define cut (S,V-S); S = vertices of T1 (in red). This cut respects set A
 - edge (u,v) is the minimum cross edge, thus a safe edge to add to A. T1 and T2 are connected now into one tree



Kruskal algorithm



- implementation and running time depend on FIND-SET and UNION operations on the disjoint-set forest.
 - chapter 21 in the book, optional material for this course
- running time O(E logV)

MST algorithm comparison

• if you know graph density (edges to vertices)

	Kruskal	Prim with array implement.	Prim w/ binomial heap	Prim w/ Fibonacci heap	in practice
sparse graph E=O(V)	O(VlogV)	O(V ²)	O(VlogV)	O(VlogV)	Kruskal, or Prim+binom heap
dense graph E=Θ(V²)	O(V ² logV)	O(V ²)	O(V ² logV)	$O(V^2)$	Prim with array
avg density E=Θ(VlogV)	O(Vlog ² V)	O(V ²)	O(Vlog ² V)	O(VlogV)	Prim with Fib heap, if graph is large