
Intro to graphs 
Minimum Spanning Trees



Graphs
• nodes/vertices and edges between vertices
- set V for vertices, set E for edges
- we write graph G = (V,E)

• example : cities on a map (nodes) and roads (edges) 



Adjacency matrix
• aij =1 if there is an edge from vertex i to vertex j
• if graph is undirected, edges go both ways, and the 

adj. matrix is symmetric 

• if the graph is directed, the adj. matrix is not 
necessarily symmetric
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Adjacency lists

• linked list marks all edges starting off a given vertex
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reversed Adj hist
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paths and cycles
• path: a sequence of vertices (v1,v2,v3,...,vk) such that all (vi,vi+1) are edges in the graph

• edges can form a cycle = a path that ends in the 
same vertex it started

• paths and cycles are defined for both directed and 
undirected graphs
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paths and cycles
• path: a sequence of vertices (v1,v2,v3,...,vk) such that all (vi,vi+1) are edges in the graph

• edges can form a cycle = a path that ends in the 
same vertex it started

• paths and cycles are defined for both directed and 
undirected graphs



Traverse/search graphs : BFS
• BFS = breadth-first search. 
• Start in a given vertex s, find all reachable vertices 

from s
- proceed in waves
- computes d[v] = number of edges from s to v. If v not reachable from s, we have d[v] = ∞.
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Traverse/search graphs : BFS
• BFS = breadth-first search. 
• Start in a given vertex s, find all reachable vertices 

from s
- proceed in waves
- computes d[v] = number of edges from s to v. If v not reachable from s, we have d[v] = ∞.
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BFS
• use a queue to store processed vertices
- for each vertex in the queue, follow adj matrix to get vertices of the next wave

‣ BFS(V,E,s)
‣ for each vertex v≠s, set d[v]=∞
‣ init queue Q; enqueue(Q,s) //puts s in the queue
‣ while Q not empty
‣ u = dequeue(S) // takes the first elem available from the queue
‣ for each vertex v ∈ Adj[u]
‣ if (d[v]==∞) then 
‣ d[v]=d[u]+1
‣ Enqueue(Q,v)

‣ end if
‣ end for

‣ end while

• Running time O(V+E), since each edge and vertex is 
considered once.
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Traverse/search graphs : DFS
• DFS = depth-first search
- once a vertex is discovered, proceed to its adj vertices, or “children”(depth) rather than to its “brothers” (breadth)

‣ DFS-wrapper(V,E)
‣ foreach vertex u∈V {color[u] = white} end for //color all nodes white
‣ foreach vertex u∈V
‣ if (color[u]==white) then DFS-Visit(u)

‣ end for

‣ DFS-Visit(u) //recursive function
‣ color[u] = gray; //gray means “exploring from this node”

‣ time++; discover_time[u] = time;//discover time

‣ for each v ∈ Adj[u]
‣ if (color[v]==white) then DFS-Visit(v)//explore from u

‣ end for
‣ color [u] = black; finish_time[u]=time; //finish time

-
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DFS edge classification
• “tree” edge : from vertices gray to white
- a tree edge advances the graph exploration/traversal

• “back” edge : from vertices gray to gray
- a back edge points to a cycle within the current exploration nodes

• “forward” edge : from vertices a(gray) to b(black), if 
a discovered first 
- discovery_time[a] < discovery_time[b]
- points to a different part of the tree, already explored from a

• “cross” edge : from vertices a(gray) to b(black), if b 
discovered first 
- discovery_time[a] > discovery_time[b]
- points to a different part of the tree, explored before discovering a

advancing Dfs tree de

-0
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Checkpoint
• on the animated example, label each edge as 

"tree","back", "cross", or "forward"
• do the same on the following example (DFS discovery 

and finish times marked for each node)

1 16

2 7 8 11 12 15

3 4 5 6 9 10 13 14



Checkpoint

• almost same example, with a small modification: one 
edge was reversed

1 16

2 7 8 15 10 13

3 4 5 6 9 14 11 12



DFS observations
• Running time O(V+E), same as BFS
• vertex v is gray between times discover[v] and finish[v]
• gray time intervals (discover[v], finish[v]) are inclusive of 

each other
-  (d[v], f[v]) can include (d[u], f[u]) : d[v] < d[u] < f[u] <f[v] 

- (d[v], f[v]) can separate from (d[u], f[u]) : d[v] < f[v] < d[u] <f[u]

- (d[v], f[v]) cannot intersect (d[u], f[u]) : d(v) < d(u) < f[v] <f[u] 

• graph G=(V,E) is acyclic (does not have cycles) if DFS 
does not find any “back” edge

d[v]  d[u]  f[u]  f[v]   time

d[v]  f[v]  d[u]  f[u]   time

d[v]  d[u]  f[v]  f[u]   time

DET f

- -

v

Weald v

KIKI



Undirected graphs cycles

• graph G=(V,E) is acyclic (does not have cycles) if DFS 
does not find any “back” edge

• since G is undirected, no cycles implies |E|⩽|V|-1
• running DFS, if we find more than |V|-1 edges, there 

must be a cycle
• Undirected graphs: find-cycles algorithm takes O(V)

-
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Directed graphs cycles

• graph G=(V,E) is acyclic (does not have cycles) if DFS 
does not find any “back” edge

• for directed graphs, even without cycles they can 
have more edges, |E| > |V|-1

• algorithm to determine cycles: run DFS, look for back 
edges - O(V+E) time

• DAG = directed acyclic graph

? ?

Q*de ⇒ man easier
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Topological sort
• DAG admits topological sort: all vertices “sorted” on a line, such that all edges point 

from left to right-no cycles - 2 graphs below are the same-

• to do this: algorithm: run DFS, time O(V+E).  Output vertices in reverse order given by 
finishing time

Segue

-

-
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Check Point

• how can we use DFS to determine if there is a path 
from u to v ?

• prove that by sorting vertices in the reverse order 
of finishing times, we obtained a topological sort
- assuming no cycles
- in other words, all edges point in the same direction

watch shirt the underset pants belt jacket socks shoes

*¥a③→

* all paths

①
exercise
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←



Strongly connected components
• SCC = a set of vertices S⊂V, such that for any two (u,v)∈S, graph G 

contains a path u⤳v and a path v⤳u
• trivial for undirected graphs

- all connected vertices are in fact strongly connected

• tricky for directed graphs
• graph below has the DFS discover/finish times and marked 4 strongly connected components; “tree” edges highlighted
• between two SCC, A and B, there cannot exists paths both ways (A∋u⤳v∈B and  B∋v’⤳u’∈A)

- paths both ways would make A and B a single SCC

⇒
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Strongly connected components
• run 1st DFS on G to get finishing times f[u]
• run 2nd DFS on G-reversed (all edges reversed -see 

picture), each DFS-visit in reverse order of f[u]
- finishing times marked in red for the DFS-visit root vertices

• output each tree (vertices reached) obtained by 2nd 
DFS as an SCC

16 10

7 6

-•



Strongly connected components
• why 2nd DFS produces precisely the SCC -s?
• SCC-graph of G: collapse all SCC into one SCC-vertex, keep 

edges between the SCC-vertices
• - SCC graph is a DAG;

- contradiction argument: a cycle on the SCC-graph would immediately collapse 
the cycle’s SCC-s into one SCC

• reversed edges (shown in red); reversed-SCC-graph also a DAG
• second DFS runs on reversed-edges (red); once it starts at a 

high-finish-time (like 16) it can only go through vertices in the 
same SCC (like abe)

16
10

7 6



Minimum Spanning Trees
Lesson 2
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Spanning Trees
• context : undirected graphs
• a set of edges A that “span” or “touch” all vertices, 

and forms no cycles
- necessary this set of edges A has size = |V|-1

• spanning tree: the tree formed by the set of 
spanning edges together with vertex set T = (V,F)
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Spanning Trees
• context : undirected graphs
• a set of edges A that “span” or “touch” all vertices, 

and forms no cycles
- necessary this set of edges A has size = |V|-1

• spanning tree: the tree formed by the set of 
spanning edges together with vertex set T = (V,F)
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Minimum Spanning Tree (MST)
• context : undirected graph, edges have weights
- edge (u,v)∈E has weight w(u,v)

• MST is a spanning tree of minimum total weight (of 
its edges)
- must span all vertices
- exactly |V|-1 edges
- sum of edges weight be minimum among spanning trees

-weight ( free ) =I wishHe)

f
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Growing Minimum Spanning Trees
• “safe edge” (u,v) for a given set of edges A: there is a MST that uses A and (u,v)- that MST may not be unique

• GENERIC-MST (G)
• A = set of tree edges, initially empty
• while A does not form a spanning tree // meaning while |A| < |V|-1
- find edge (u,v) that is safe for A
- add (u,v) to A

• end while

• how to find a safe edge to a given set of edges A?- Prim algorithm- Kruskal algorithm

③ mother used edge can cross CS- Rs



Cuts in the graph
• “cut” is a partition of vertices in two sets : V=S ∪ V�S
• an edge (u,v) crosses the cut (S,V-S) if u and v are on 

different partitions (one in S the other in V-S)
• cut (S, V-S) respects set of edges A if A has no cross edge
• “min weight cross edge” is a cross edge for the cut, having 

minimum weight across all cross edges
• Cut Theorem : if A is a set of edges part of some MST, and 

(S,V-S)a cut respecting A , then a min-weight cross edge is “safe” for A (can be added to A towards an MST)

• A={ab, ic, cf, hg, fg}

• cut : S={a,b,d,e} V-S={h,i,c,g,f} respects A

• safe crossing edge : cd, weight(cd)=7

-

• ay
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• add another(next) safe edge 
- connecting one more node to the current tree

• define cut (S,V-S), which respects A. Using the cut 
theorem, the min-weight edge across the cut is the 
next edge added to A
- edge hg in the picture is added to A, vertex h added to the tree



Prim MST algorithm

• Prim simple
- but implementation a bit tricky

• Running Time depends on 
implementation of Extract-
Min from the Queue
- best theoretical implementation uses Fibonacci Heaps
- also the most complicated
- only makes a practical difference for very large graphs

-
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- eventually all connected into a MST
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Kruskal MST algorithm
• Grows a forest of trees Forrest = (V,A)
- eventually all connected into a MST
- initially each vertex is a tree with no edges, and A is empty

• each edge added connects two trees (or components)
- find the minimum weight edge (u,v) across two components, say connecting trees T1∋v and T2∋u (edges between nodes of the same 

trees are no good because they form cycles) (blue in the picture)
- define cut (S,V-S); S = vertices of T1 (in red). This cut respects set A
- edge (u,v) is the minimum cross edge, thus a safe edge to add to A. T1 and T2 are connected now into one tree  



Kruskal algorithm

• Kruskal is simple
• implementation and running time depend on FIND-

SET and UNION operations on the disjoint-set forest.
- chapter 21 in the book, optional material for this course

• running time O(E logV)

Iedge valid



MST algorithm comparison
• if you know graph density (edges to vertices)

Kruskal
Prim

with array 
implement.

Prim w/
binomial 

heap

Prim w/
Fibonacci 

heap
in practice

sparse graph
E=O(V)

O(VlogV) O(V2) O(VlogV) O(VlogV)
Kruskal, or

Prim+binom 
heap

dense graph
E=Θ(V2)

O(V2logV) O(V2) O(V2logV) O(V2)
Prim with 

array 

avg density
E=Θ(VlogV)

O(Vlog2V) O(V2) O(Vlog2V) O(VlogV)
Prim with 
Fib heap, if 

graph is large


