Amortized Analysis Move to Front

Self-organizing lists

- List L of n elements
- The operation ACCESS(x) costs

$$
\operatorname{rank}_{L}(x)=\text { distance of } x \text { from the head of } L
$$

- L can be reordered by swapping adjacent elements at a cost of 1
- Goal: access to a sequence of n items with minimal cost

List access algorithms

- Off-line Algorithm: if the sequence of access S is known in advance, one can design an optimal algorithm to rearrange the list based on how often items are accessed
- On-line Algorithm: if the sequence is not known in advance, one can design an algorithm based on some heuristics.

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Access item D:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Access item D:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Access item D:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Access item D:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Access item D:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

- Heuristic: if x is accessed at time t, it is likely to be accessed again soon after time t.
- Cost: MTF always performs within a factor of 4 of the optimal algorithm.

Amortized analysis of MTF

Theorem: $C_{M T F}(S) \leq 4 C_{O P T}(S)$
Proof: Let L_{i} be MTF's list after the i th access, and let L_{i}^{*} be OPT's list after the i th access. Let

$$
\begin{aligned}
c_{i} & =\text { MTF's cost for the } i \text { th operation } \\
& =2 \cdot \operatorname{rank}_{L_{i-1}}(x) \text { if it accesses } x \\
c_{i}^{*} & =\text { OPT's cost for the ith operation } \\
& =\operatorname{rank}_{L_{i-1}^{*}}(x)+t_{i}
\end{aligned}
$$

where t_{i} is the number of swaps that OPT performs.

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot|\{\cdots\}|
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot|\{(E, C), \cdots\}|
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot|\{(E, C),(E, A), \cdots\}|
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot|\{(E, C),(E, A),(E, D), \cdots\}|
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$\Phi\left(L_{i}\right)=2 \cdot|\{(E, C),(E, A),(E, D),(E, B), \cdots\}|$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot|\{(E, C),(E, A),(E, D),(E, B),(D, B)\}|
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot|\{(E, C),(E, A),(E, D),(E, B),(D, B)\}|=10
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Note that:

- $\Phi\left(L_{i}\right) \geq 0$ for $i=0,1, \ldots$
- $\Phi\left(L_{0}\right)=0$ if MTF and OPT start with the same list.

How much does Φ change from one swap?

- a swap creates/destroys 1 inversion
- $\Delta \Phi= \pm 2$

What happens on access?

Suppose that operation i access item x, and define

$$
\begin{aligned}
& A=\left\{y \in L_{i-1}: y \prec_{L_{i-1}} x \text { and } y \prec_{L_{i-1}^{*}} x\right\}, \\
& B=\left\{y \in L_{i-1}: y \prec_{L_{i-1}} \times \text { and } y \succ_{L_{i-1}^{*}} x\right\}, \\
& C=\left\{y \in L_{i-1}: y \succ_{L_{i-1}} x \text { and } y \prec_{L_{i-1}^{*}} x\right\}, \\
& D=\left\{y \in L_{i-1}: y \succ_{L_{i-1}} \times \text { and } y \succ_{L_{i-1}^{*}} x\right\},
\end{aligned}
$$

What happens on access?

We have $r=|A|+|B|+1$ and $r^{*}=|A|+|C|+1$.
When MTF moves x to the front, it creates $|A|$ inversions and destroys $|B|$ inversions. Each swap by OPT creates ≤ 1 inversion. Thus, we have

$$
\Phi\left(L_{i}\right)-\Phi_{L_{i-1}} \leq 2\left(|A|-|B|+t_{i}\right) .
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\hat{c}_{i}=c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right)
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right) \\
& \leq 2 r+2\left(|A|-|B|+t_{i}\right)
\end{aligned}
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right) \\
& \leq 2 r+2\left(|A|-|B|+t_{i}\right) \\
& =2 r+2\left(|A|-(r-1-|A|)+t_{i}\right) \\
& (\text { since } r=|A|+|B|+1)
\end{aligned}
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right) \\
& \leq 2 r+2\left(|A|-|B|+t_{i}\right) \\
& =2 r+2\left(|A|-(r-1-|A|)+t_{i}\right) \\
& (\text { since } r=|A|+|B|+1) \\
& =2 r+4|A|-2 r+2+2 t_{i}
\end{aligned}
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right) \\
& \leq 2 r+2\left(|A|-|B|+t_{i}\right) \\
& =2 r+2\left(|A|-(r-1-|A|)+t_{i}\right) \\
& (\text { since } r=|A|+|B|+1) \\
& =2 r+4|A|-2 r+2+2 t_{i} \\
& =4|A|+2+2 t_{i}
\end{aligned}
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right) \\
& \leq 2 r+2\left(|A|-|B|+t_{i}\right) \\
& =2 r+2\left(|A|-(r-1-|A|)+t_{i}\right) \\
& (\text { since } r=|A|+|B|+1) \\
& =2 r+4|A|-2 r+2+2 t_{i} \\
& =4|A|+2+2 t_{i} \\
& \leq 4\left(r^{*}+t_{i}\right) \\
& \left(\text { since } r^{*}=|A|+|C|+1 \geq|A|+1\right)
\end{aligned}
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right) \\
& \leq 2 r+2\left(|A|-|B|+t_{i}\right) \\
& =2 r+2\left(|A|-(r-1-|A|)+t_{i}\right) \\
& (\text { since } r=|A|+|B|+1) \\
& =2 r+4|A|-2 r+2+2 t_{i} \\
& =4|A|+2+2 t_{i} \\
& \leq 4\left(r^{*}+t_{i}\right) \\
& \left(\text { since } r^{*}=|A|+|C|+1 \geq|A|+1\right) \\
& =4 c_{i}^{*}
\end{aligned}
$$

The grand finale
Thus, we have

$$
C_{M T F}(S)=\sum_{i=1}^{|S|} c_{i}
$$

The grand finale
Thus, we have

$$
\begin{aligned}
C_{M T F}(S) & =\sum_{i=1}^{|S|} c_{i} \\
& =\sum_{i=1}^{|S|}\left(\hat{c}_{i}+\Phi\left(L_{i-1}\right)-\Phi\left(L_{i}\right)\right)
\end{aligned}
$$

The grand finale
Thus, we have

$$
\begin{aligned}
C_{M T F}(S) & =\sum_{i=1}^{|S|} c_{i} \\
& =\sum_{i=1}^{|S|}\left(\hat{c}_{i}+\Phi\left(L_{i-1}\right)-\Phi\left(L_{i}\right)\right) \\
& \leq\left(\sum_{i=1}^{|S|} 4 c_{i}^{*}\right)+\Phi\left(L_{0}\right)-\Phi\left(L_{|S|}\right)
\end{aligned}
$$

The grand finale
Thus, we have

$$
\begin{aligned}
C_{M T F}(S) & =\sum_{i=1}^{|S|} c_{i} \\
& =\sum_{i=1}^{|S|}\left(\hat{c}_{i}+\Phi\left(L_{i-1}\right)-\Phi\left(L_{i}\right)\right) \\
& \leq\left(\sum_{i=1}^{|S|} 4 c_{i}^{*}\right)+\Phi\left(L_{0}\right)-\Phi\left(L_{|S|}\right) \\
& \leq 4 C_{O P T}(s) \\
& \left(\text { since } \Phi\left(L_{0}\right)=0 \text { and } \Phi\left(L_{|S|}\right) \geq 0\right)
\end{aligned}
$$

