Amortized Analysis
Move to Front



Self-organizing lists

» List L of n elements
» The operation ACCESS(x) costs

rank; (x) = distance of x from the head of L.

» L can be reordered by swapping adjacent elements at a cost of
1

» Goal: access to a sequence of n items with minimal cost



List access algorithms

» Off-line Algorithm: if the sequence of access S is known in
advance, one can design an optimal algorithm to rearrange
the list based on how often items are accessed

» On-line Algorithm: if the sequence is not known in advance,
one can design an algorithm based on some heuristics.
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» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)
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Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using

swaps.
cost = 2 - rank;(x)

» Move D to front:
L —{0)—(A)—-(B)}~(S)—(E)

» Heuristic: if x is accessed at time t, it is likely to be accessed
again soon after time t.

» Cost: MTF always performs within a factor of 4 of the
optimal algorithm.



Amortized analysis of MTF

Theorem: CMTF(S) < 4COPT(5)
Proof: Let L; be MTF's list after the ith access, and let L be
OPT's list after the ith access. Let

¢; = MTF's cost for the ith operation

= 2 - rankg, ,(x) if it accesses x;

c: = OPT's cost for the ith operation
= rankL;,«_l(x) o

where t; is the number of swaps that OPT performs.
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Potential function

Define the potential function ® : L; — R by

®(Li) =2-[{(x,y) : x <1, y and y < x}|

=2 - # Inversions

Example:

L,-—>-—>—+—>@—>
Lj‘—)—)-—>-—>@-—>

®(L;) =2-{(E,C),(E,A),(E,D),(E,B),(D,B)}| =10



Potential function

Define the potential function ® : L; — R by

(L) =2-{(x,y) : x <r; y and y <+ x}|

=2 - #£ Inversions

Note that:

» ®(L;)>0fori=0,1,...

» ®(Lg) =0 if MTF and OPT start with the same list.
How much does & change from one swap?

> a swap creates/destroys 1 inversion
. NP = =2




What happens on access?

Suppose that operation /i access item x, and define

A={y €Li1:y <, xand y <+ x},
B={yeLli-1:y<y_,xandy >+ x},

@ :{y eELli_q1:y ~L,_,Xanay -</_;3<_1 X},
D={yeli-1:y>1,_,xandy =1 X},

AU B i cub |

3 AUC \x\ BUD |




What happens on access?

L., AUB X cCubD
p= rankLi_](x)
s AU C X BuD

r* = rankLI,_l* (x)

We have r = |A| + |B|+ 1 and r* = |A| + |C| + 1.

When MTF moves x to the front, it creates |A| inversions and
destroys |B| inversions. Each swap by OPT creates < 1 inversion.
Thus, we have

O(Li) — by, , < 2(|A| - |B| + ).



Amortized cost

The amortized cost for the ith operation of MTF with respect to ®
IS

E',‘ = Cj + cb(l_,) = cb(L,'_.l)
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The grand finale

Thus, we have
S|

CmTr(S) = Z G
i=1

S|

— Z(é‘; ®(Li—1) — P(Li))

S|
< (Z 4c’) + d(Lo) — P(Lys))

< 4Copt(s)
( since ®(Lo) = 0 and ®(L5) > 0)



