
COS 423 Theory of Algorithms   •   Kevin Wayne   •   Spring 2007 

Adapted by Cheng Li and Virgil Pavlu 

Fibonacci Heaps 

Lecture slides adapted from: 

•   Chapter 20 of Introduction to Algorithms by Cormen, Leiserson, Rivest, and Stein. 

•   Chapter 9 of The Design and Analysis of Algorithms by Dexter Koze 

 



Fibonacci Heaps 

History.   [Fredman and Tarjan, 1986] 
  Ingenious data structure and analysis. 

  Original motivation:  improve Dijkstra's shortest path algorithm 

(module 12) from                to  

Basic idea. 

  Similar to binomial heaps, but less rigid structure. 

  Binomial heap:  eagerly consolidate trees after each insert. 

  Fibonacci heap:  lazily defer consolidation until next extract-min. 
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Fibonacci Heaps:  Structure 

Fibonacci heap. 
  Set of heap-ordered trees. 

  Maintain pointer to minimum element. 

  Set of marked nodes. 
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Fibonacci Heaps:  Structure 

Fibonacci heap. 
  Set of heap-ordered trees. 

  Maintain pointer to minimum element. 

  Set of marked nodes. 
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Fibonacci Heaps:  Structure 

Fibonacci heap. 
  Set of heap-ordered trees. 

  Maintain pointer to minimum element. 

  Set of marked nodes. 

5 

7 23 

30 

17 

35 

26 46 

24 

Heap H 
39 

41 18 52 

3 

44 

min 

use to keep heaps flat (stay tuned) 

marked 

⑦→ similar to RB Hees

-



Fibonacci Heaps:  Notation 

Notation. 
      = number of nodes in heap. 

  degree(x) = number of children of node x. 

        = upper bound on the maximum degree of any node. 

    In fact,                        . The proof (omitted) uses Fibonacci 

numbers. 

       = number of trees in heap H. 

           = number of marked nodes in heap H. 
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Fibonacci Heaps:  Potential Function 
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This lecture is not a complete treatment of Fibonacci 
heaps; in order to implement (code) and use them, more 
details are necessary (see book). Our main purpose here is 
to understand how the potential function works. 
 
Next: analyze change in potential and amortized costs for 
heaps operations: 
•  Insert (easy, required) 
•  Extract min (medium, required) 
•  Decrease Key (difficult, optional) 
•  Union (easy, required) 
•  Delete (medium, required) 
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Fibonacci Heaps:  Insert 

Insert. 
  Create a new singleton tree. 

  Add to root list; update min pointer (if necessary). 
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Fibonacci Heaps:  Insert 

Insert. 
  Create a new singleton tree. 

  Add to root list; update min pointer (if necessary). 
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Fibonacci Heaps:  Insert Analysis 

Actual cost.   
  H’ = the heap after insert 

Change in potential.  

 

 

Amortized cost.   
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Linking Operation 

Linking operation.  Make larger root be a child of smaller root. 
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Fibonacci Heaps:  Extract-Min 

Extract-min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min 

Extract-Min. 
  Delete min; meld its children into root list; update min. 

  Consolidate trees so that no two roots have same degree. 
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Fibonacci Heaps:  Extract-Min Analysis 

Extract-Min. 
 

 

Actual cost.  

               to meld min's children into root list. (at most       

children of min) 

                            to update min.(the size of the root list is at most  

                       ) 

                            to consolidate trees.(one of the roots is linked to 

another in each merging, and thus the total number of iterations 

is at most the number of roots in the root list.) 

Change in potential:   

                                        (at most             roots with distinct 

degrees remain and no nodes become marked during the 

operation) 

Amortized cost:   
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Fibonacci Heaps:  Decrease Key 

Intuition for deceasing the key of node x. 
  If heap-order is not violated, just decrease the key of x. 

  Otherwise, cut tree rooted at x and meld into root list. 

  To keep trees flat:  as soon as a node has its second child cut, 

cut it off and meld into root list (and unmark it). 
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Fibonacci Heaps:  Decrease Key 

Case 1.  [heap order not violated] 
  Decrease key of x. 

  Change heap min pointer (if necessary). 
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Fibonacci Heaps:  Decrease Key 

Case 1.  [heap order not violated] 
  Decrease key of x. 

  Change heap min pointer (if necessary). 
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Fibonacci Heaps:  Decrease Key 

Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

Case 2a.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key 

Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 

44 

24 

26 

17 

30 

23 

7 

21 

52 

39 

18 

41 

38 

88 24 

5 15 

72 

decrease-key of x from 35 to 5 

x p 

p' 

second child cut 

min 



Fibonacci Heaps:  Decrease Key 

Case 2b.  [heap order violated] 
  Decrease key of x. 

  Cut tree rooted at x, meld into root list, and unmark. 

  If parent p of x is unmarked (hasn't yet lost a child), mark it; 

Otherwise, cut p, meld into root list, and unmark 

(and do so recursively for all ancestors that lose a second child). 
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Fibonacci Heaps:  Decrease Key Analysis 

Decrease-key. 
 

 

 

Actual cost.       , where c is the number of cascading cuts 

         time for changing the key. 

         time for each of c cuts, plus melding into root list. 

Change in potential.   

                         (the original       trees and c trees produced by 

cascading cuts)  

                             (c-1 nodes were unmarked by the first c-1 

cascading cuts and the last cut may have marked a node) 

  Difference in potential                                   . 

Amortized cost.  
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Fibonacci Heaps:  Union 

Union.  Combine two Fibonacci heaps. 

Representation.  Root lists are circular, doubly linked lists. 
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Fibonacci Heaps:  Union 

Union.  Combine two Fibonacci heaps. 

Representation.  Root lists are circular, doubly linked lists. 

49 

39 

41 

7 17 

18 52 

3 

30 

23 

35 

26 46 

24 

44 

21 

min 

Heap H 



Fibonacci Heaps:  Union 

Actual cost:  

Change in potential:  0 (        and         remain the same) 

Amortized cost:   
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Fibonacci Heaps:  Delete 

Delete node x. 
  decrease-key of x to -∞. 

  extract-min element in heap. 

Amortized cost.   

         amortized for decrease-key. 

             amortized for extract-min. 
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Priority Queues Performance Cost Summary 
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make-heap 

Operation 

insert 

find-min 

extract-min 

union 

decrease-key 

delete 
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†  amortized n = number of elements in priority queue 
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