T(W) = T +i(u—) +\ H T~ Vom0
7 H (N 2 %\m ()JMP}Z//LQUMQQJ GO (swwﬂ Laoadk




Amortized Analysis
Fibonacci Heaps

thanks MIT slides
thanks “Amortized Analysis™ by Rebecca Fiebrink

thanks Jay Aslam’s notes



Objectives

® Amortized Analysis

— potential method

@ Fibonacci Heaps
— construction

— operations



running time analysis

@ fypical: Algorithm uses data-structure and operations
— structures: table, array, hash, heap, list, stack
— operations: insert, delefe, search, min, max, push, pop

@ measure running time by analyzing
— the sequence of operations,
— their frequency

— each operation running time (computation cost)



Running Time Analysis

@ determine the c = costliest/longest iteration

— usually an outer loop of n iterations
— overall n* (longest cost per iteration) = n*c

® Thats not very accurate!
— not all iterations have the longest cost

— perhaps some average technique can work, but how to prove?

® “compensate” : show that for every costly iteration,
there must be other "cheap” iterations



Examwlgh blnary counter
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@ each row is a binary represe
— increasing by one
— right side: cost = how many bits require \éI\an

@® naive running fime to increment from

— each row may cost up to O(log n)

— n iterations/increments would be O(n*logn)
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Example : binary counter
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bit 4
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@® true cost for n iterations: 142+1+3+1+2+1+4+... = 2n =

O(n)

@ reason: the iteration cost very rarely is O(log n)
— Of(logn) means changing a good number of bits

— for one iteration of cost O(logn), there must be many “cheap”

iterations



binary counter amortization

bit 5 | bit 4 | bit 3 | bit 2 | bit | | bit O

@ Aggregation method: consider all n oo oo
Itferations ofolofof1]o

— bit O changes every iteration => cost n W A e

— bit 1 changes for half of iterations => cost n/2 o [ofo] 1 ]o]

— bit 2 changes quarter of iterations => cost n/4 2 g g : : ?

— bit 3 changes 1/8 of iterations => cost n/8 o o1 [ofo]o

- ..efc

@ fotal cost : add up the cost per bit
= n+n/2+nfsh+n/8 + ..=2n \or D@QQ\T&]\/ CMR/ |

® L,Agg'%egg’rion me’rhcﬂﬁprae’rical} only
works on toy examples like this




Amortized Analysis

0‘= "Ue cost of i- fh opera’non/ iteration

amortized cost of i-th operation/iteration

— we have to come up with d

® the cumulative amortized cant be smaller than the
true cumulative cost, up to any iteration k

1=1:k 1=1:k



Accounting Method

@ assign the di amortized cost

® if overcharge some operation (di>ci) use the excess
as "prepaid credit”,

@® use the prepaid credit later for an expensive
operation



Potential method

@ associate a potfential function ¢ with datastructure T

— §(Ti) ="potential” (or risk for cost) associated with datastructure
after i-th operation

— typically a measure of complexity/risk/size of the datastructure
® require ¢, > ¢, + ¢(T;) — H(T;_,) for all |
® ¢ = amortized cost (up fo us to define)
@® ci = true cost for operation i

® ¢} = potential function

® Ti = datastructure after ith operation



Accounting Method for bgary counter
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@ assign amortized cost of di=2 for eacl]((opera’rlon

® verify the amortized condition Yk:




Accounting Method for binary counter

0 true cost (ci) amortized costé;||cum tryé cost ) « |cum amor/l/zed%g Y é
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@® assign amortized cost of di=2 for each operation (.t
® verify the amortized condition (w{; DI
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Potential method for binary count

® deﬂne the potential ¢(Ti) = the number of "1” bits

= 1= \Ao\f\( Couw b o&HQ( L U@m
® verlfy > ¢+ (1) — o(T; Ilf:gr;each operation ||

\

there is only one operation: “increment 8 ZZE SRR
A
di=2 , amortized cost defined by us Zq }f&‘

before the operation i, at Ti.i, say there are K ’rralllng 1
I-th increment

ci= true cost = k+l bit changes: k of "1” bits made (0" (frdm right =
to left up to the first "0”); plus the first "0” made “1” >/ v O

O(T) - ¢(Ti-1) ="1" gained - "1” lost = 1-k

equation becomes 2=k+1 + 1-K, it checks out! di = 2 is good

O|/1|10|1]|1]|1]|1
K+1




Stack operations - review

@® stack is an array with LAST-IN-FIRST-OUT operations
N\
® push(value)” put the @n the stack (at the top)

0 take the top n values, return the, delete them

stack [of wartlacde L < vx)
@® naive analysis for n operations : n*O(n) = O(n?)

@® better: for pop() to extract many elements, many push()
must have happened before, each push is O(1)

Z
C C d
b b b b b
d d | | d
push(z) | pop(2) | push(d) | pop(l)




Accounting method for Stack

@® account each push(x) with $2:
= or the actual push(x) operation, to add x to the stack
— redi’r for the possible later pop() operation that extracts x

® each pop(K) also $2, for any k
@ so each operation is accounted with $2,
@ total running time for n operations is 2*n = O(n)

@® when pop(k) is called, each one of the popped
elements have stored $1 to account for their
extraction, O(k) time



Potential method for Stack

Aoy
@ define the potential @(s’rack) = size(stack) o Swd

— §(T) =Tl ; T = the stack; Ti = stack after i operations

@ define the amortized costs: doush=2 ;g@
@® consider the true costs Cpush=l ; Cpop(k=K

® prove that for each operation the potential satisfies
the fundamental property (exercise)

z} T erat) —omy )|

® which means the mor’nzed cost d= valid.
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Amortized Analysis
Move to Front



Self-organizing lists

» List L of n elements
» The operation ACCESS(x) costs

&ra/nl&\] — distance of x from the head of L.

» [ can b reordered by swappjg adjacent elements at a cost of
1 e . Lo 0Ccessed Q(/@Ju\ “LD ’(:Y‘OVU+

» Goal: access to a sequence of n items with minimal cost




List access algorithms

» Off-line Algorithm: if the sequence of access S is known in
advance, one can design an optimal algorithm to rearrange
the list based on how often items are accessed

» On-line Algorithm: if the sequence is not known in advance,
one can design an algorithm based on some heuristics.



Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps. (LSS ot lo [t

cost = 2 - rank;(x) R lc (1) {omle (<)



Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

| —@-E-OC0E

» Access item D:



Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Access item D:
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Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Access item D:
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Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Access item D:
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Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Access item D:

-@-E-O-0-@



Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Move D to front:
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Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Move D to front:

—@-E-0-0-@



Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Move D to front:

L —(A)-{8)-(0} (S~ (E)



Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Move D to front:

~@-E-0-0-@



Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Move D to front:

L —~@-0)B-0-@



Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Move D to front:

~@-0-6-0-@



Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Move D to front:

—B-@-6-0-@



Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.
cost = 2 - rank;(x)

» Move D to front:

—B-@-6-0-@



Move-to-front algorithm

» Algorithm: After accessing x, move x to the head of L using
swaps.

cost = 2 - rank;(x)

» Move D to front:
L —®-@-E-C-@

» Heuristic: if x is accessed at time t, it is likely to be accessed
again soon after time t.

/

»|Cost: MTF always performs within a factor of 4 of the
optimal algorithm.




Amortized analysis of MTF

Theorem: CMTF(S) < 4COPT(5)
Proof: Let L; be MTF's list after the ith access, and let L be
OPT's list after the ith access. Let

ci)= MTF's cost for the ith operation

= 2 - ranky, ,(x) if it accesses x;

(=10

s cost for the ith operation\

@Q) @ At ~acced s SwapS

where t; is the number of swaps tghat OPT performs.



Potential function [ rsion ELS

ACY7 A0

Define the potential function ® : L; — R by

®(Li) =2- {(x,y) : x <; y and y =L X} (uccent MTE (ST

L\' ,:?wfruf(" oPT Lst

Example:

s o7 Li—(E)~(c)-(A)-(0)—(B)
N O%{ Lf—)—)-—>—>@-—>



Potential function

Define the potential function ® : L; — R by

®(Li) =2-[{(x,y) : x <1, y and y < x}|

=2 - # Inversions

Example:

L,-—>—>©—>-—>@-—>
Lj‘—)—)-—>-—>@-—>
®(Li)=2-|{---}



Potential function

Define the potential function ® : L; — R by

®(Li) =2-[{(x,y) : x <1, y and y < x}|

=2 - # Inversions

Example:

L,-—>—>—>-—>@-—>
Lj‘—)—)-—>-—>@-—>

o(L;) =2-{(E, C),---}



Potential function

Define the potential function ® : L; — R by

®(Li) =2-[{(x,y) : x <1, y and y < x}|

=2 - # Inversions

Example:

L,-—>—>—>-—>@-—>
Lj‘—)—)-—>-—>@-—>

CD(L,-) =2 |{(Ev C)a(EvA)v T }l



Potential function

Define the potential function ® : L; — R by

®(Li) =2-[{(x,y) : x <1, y and y < x}|

=2 - # Inversions

Example:

L,-—>—>—>-—>@-—>
Lj‘—)—)-—>-—>@-—>

CD(L,-) =2 |{(Ev C)a(EvA)v(Ev D)a}I



Potential function

Define the potential function ® : L; — R by

®(Li) =2-[{(x,y) : x <1, y and y < x}|

=2 - # Inversions

Example:

L,-—>-—>—+—>@—>
Lj‘—)—)-—>-—>@-—>

(D(L,-) =2 |{(Ev C)a(EaA)a(Ea D)a(Ev B)a}|



Potential function

Define the potential function ® : L; — R by

®(Li) =2-[{(x,y) : x <1, y and y < x}|

—2 - # inversions

Example:
Li—(E}~(C-A)-0)-E)
Li—=(O—(a)-()—(0)~(E

¢(Li):2'|{(Ea C)a(E’v_ﬁ\)v(Ea D)a(Ev B)?(Dv B)}| C_LO

- - B —



Potential function

Define the potential function ® : L; — R by

®(Li) =2-[{(x,y) : x <1, y and y < x}|

=2 - # Inversions

Example:

L,-—>-—>—+—>@—>
Lj‘—)—)-—>-—>@-—>

®(L;) =2-{(E,C),(E,A),(E,D),(E,B),(D,B)}| =10



Potential function

Define the potential function ® : L; — R by

(L) =2-[{(x,y) : x <r; y and y <+ x}|

=2 - #£ Inversions

Note that:

»(®(L) > 0fori=0,1,..
»\ ®(Lo) = O\if MTF and OPT start with the same list.

How much does & change from one swap?

> a swap creates/destroys 1 inversion
NP = =2




What happens on access?

Suppose that iﬁatloﬁccess item x, and define

A —{y € Lii ; Yy <,_;Xanay <L* x} )(eeww\ qﬁ(ﬁ\/\/(\(ﬂ}

o Lot (s

B={yeli_1:y=<_,xandy a8 X}a—)\eﬁpm MM
el
C :{y S Li—l : M >-LI. , X and y ‘<L’,“ } J\CLV‘(?C)\/\BPTJ

D={y€eli1:y>i_ , X and y 5 3 X} ?{QC&A M(ﬁ)j

i % U@ UD |

<< &L, ,* AV B)U D

7




What happens on access?

V\<¢ L, 1 @L Iz_C_/ CubD I
A Lﬁ” r=rank; (x)
@Q\/Ll.l* Ao C ) U

r* =rank; (%)
i

We have r = |A| + |B|+ 1 and r* :E|A|+ \C|+1.\

When MTF moves x to the front, it Creates

A

inversions| and

destroys |B| \inversions. Each swap by OPT creates < 1 inversion.
us, we have

as

7S DK C e g
ACCE?S(()



Amortized cost

The amortized cost for the ith operation of MTF with respect to ®
IS

E',‘ = Cj + cb(l_,) = cb(L,'_.l)



Amortized cost

The amortized cost for the ith operation of MTF with respect to ®
IS

& =)+ (L) — d(Li—1)

Lowd of AP
<G 2(Al - 18+ 1) 1




Amortized cost

The amortized cost for the ith operation of MTF with respect to ®
IS

<2r——2( —|B|+t,')
2(

A= 1= 1A)+)

( since r = |A|+ |B| + 1)




Amortized cost

The amortized cost for the ith operation of MTF with respect to ®
IS

<2r+2(|Al — |B| + t;)
— 21+ 2(JA[ - (r=1 - |A]) + t;)
( since r = |A| + |B| + 1]

=)+ @A 20D 2




Amortized cost

The amortized cost for the ith operation of MTF with respect to ®
IS

(
<2r+2(|A| — |B| + t;)
=2r+2(|A| — (r — 1 —|A]) + t;)
( since r = |A|+ |B| + 1)

=/2/—-@—/2/: 2+2t;

:4|A + 2 + 2t;

r\A




Amortized cost

The amortized cost for the ith operation of MTF with respect to ®
IS

¢i=c¢ +d(L;)— P(Li-1)
<2r+2(|A| —|B|+t;)
=2r+2(|A| — (r — 1 —|A]) + t;)
( since r = |A|+ |B| + 1)

= 2r + 4|A| — 2r + 2 + 2t;
A+ 2426
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Amortized cost

The amortized cost for the ith operation of MTF with respect to ®

Ci+¢(L) ®(Li-1)
<2r+2(|Al = |B| + t;)

—(r—1-|A]) + t;)
( since r = |A| + |B| + 1)
:2r——4|A|—2r 2 4+ 2t;

|
No
-
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= C =€ @
(since/y* = |A|+|C|+1>TA| +1

A
(oW eq

W—A&A@f%ug‘ OY T




The grand finale

Thus, we have

S|

Cutr(S) = Z G
i=1



The grand finale

Thus, we have

S|

CmTE(S) = Z G
i=1

S|
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The grand finale

Thus, we have
|5

Cure(S) =) ¢
=1

S|

— Z(c’:‘,- O(Li—1) — P(L)))

S|
< (Q_4c) + ®(Lo) — ®(Ls)



The grand finale

Thus, we have
S|

CmTr(S) = Z G
i=1

S|

— Z(é‘; ®(Li—1) — P(Li))

S|
< (Z 4¢’) + d(Lo) — P(Lys))

< 4Copt(5)
( since ®(Lo) = 0 and ®(L5) > 0)



