$$
T(n)=T(n-1)+T(n-2)+1 \| F_{n}=F_{n-1}+F_{n-2}
$$

? H(NT a both upper Lounged and lower band

$$
T(n) \backsim \frac{F_{n-1}+2 F_{n}+F_{n+1}-1}{n_{y p}}
$$

ind step

$$
\begin{aligned}
&\left(T_{(n+1)}^{T(n)} \simeq T_{n(1)+(n-1)} \simeq F_{n-1}+2 F_{n}+F_{n+1}-1\right. \\
&(+1)+2 F_{n+1}+F_{n+2}-2 \\
&=\left(F_{n}+2 F_{n+1}+F_{n+2}+1\right.
\end{aligned}
$$

Amortized Analysis Fibonacci Heaps

thanks MIT slides
thanks "Amortized Analysis" by Rebecca Fiebrink thanks Jay Aslam's notes

Objectives

- Amortized Analysis
- potential method
- Fibonacci Heaps
- construction
- operations

running time analysis

- typical: Algorithm uses data-structure and operations
- structures: table, array, hash, heap, list, stack
- operations: insert, delete, search, min, max, push, pop
- measure running time by analyzing
- the sequence of operations,
- their frequency
- each operation running time (computation cost)

Running Time Analysis

- determine the $c=$ costliest/longest iteration
- usually an outer loop of n iterations
- overall n^{*} (longest cost per iteration) $=n^{*} c$
- Thats not very accurate!
- not all iterations have the longest cost
- perhaps some average technique can work, but how to prove?
- "compensate" : show that for every costly iteration, there must be other "cheap" iterations

Example: binary counter

bit 5	bit 4	bit 3	bit 2	bit I	bit 0
0	0	0	0	0	0
0	0	0	0	0	1
0	0	0	0	1	0
0	0	0	0	1	1
0	0	0	1	0	0
0	0	0	1	0	1
0	0	0	1	1	0
0	0	0	1	1	1
0	0	1	0	0	0

- each row is a binary representation of the counter
- increasing by one
- right side: cost = how many bits require changes ${ }^{-n / 4}+n / 8$
naive running time to increment from $0+1 / 2+1 / 4$
to n :
- each row may cost up to $O(\log n)$

- n iterations/increments would be $O\left(n^{*} \log n\right)$

Example : binary counter

bit 5	bit 4	bit 3	bit 2	bit I	bit 0
0	0	0	0	0	0
0	0	0	0	0	1
0	0	0	0	I	0
0	0	0	0	I	I
0	0	0	I	0	0
0	0	0	I	0	I
0	0	0	I	I	0
0	0	0	I	I	I
0	0	I	0	0	0

(Cost (bits changed)
N/A
(1)
2
(1)
(3)
(1)
2
1
4

true cost for n iterations: $1+2+1+3+1+2+1+4+\ldots=2 n=$ $O(n)$

- reason: the iteration cost very rarely is $O(\log n)$
- O(logn) means changing a good number of bits
- for one iteration of cost $O(\operatorname{logn})$, there must be many "cheap"

binary counter amortization

- Aggregation method: consider all n iterations
- bit 0 changes every iteration $=>$ cost n
- bit 1 changes for half of iterations \Rightarrow cost $n / 2$
- bit 2 changes quarter of iterations \Rightarrow cost $n / 4$
- bit 3 changes $1 / 8$ of iterations $\Rightarrow \operatorname{cost} n / 8$

bit 5	bit 4	bit 3	bit 2	bit I	bit 0
0	0	0	0	0	0
0	0	0	0	0	I
0	0	0	0	I	0
0	0	0	0	I	I
0	0	0	I	0	0
0	0	0	I	0	I
0	0	0	I	I	0
0	0	0	I	I	I
0	0	I	0	0	0

- ... etc
- total cost : add up the cost per bit
$-n+n / 2+n / 4+n / 8+\ldots=2 n \longrightarrow$ for pedagogy only.
Aggregation method impractical, only works on toy examples like this

Amortized Analysis

- $\hat{c}_{i}=$ amortized cost of i-th operation/iteration
- we have to come up with d_{i}
- the cumulative amortized cant be smaller than the true cumulative cost, up to any iteration K

$$
\forall k: \sum_{i=1: k} c_{i} \leq \sum_{i=1: k} \hat{c_{i}}
$$

Accounting Method

- assign the di amortized cost
- if overcharge some operation (di>ci) use the excess as "prepaid credit",
- use the prepaid credit later for an expensive operation

Potential method

- associate a potential function ϕ with datastructure T
- $\phi(\mathrm{Ti})=$ "potential" (or risk for cost) associated with datastructure after i-th operation
- typically a measure of complexity/risk/size of the datastructure
- require $\hat{c_{i}} \geq c_{i}+\phi\left(T_{i}\right)-\phi\left(T_{i-1}\right)$ for all \mathbf{i}
- $\hat{c_{i}}=$ amortized cost (up to us to define)
- $\mathrm{ci}=$ true cost for operation i
- $\phi=$ potential function
- $\mathrm{Ti}=$ datastructure after ith operation

Accounting Method for binary counter

- assign amortized cost of di=2 for each operation
- verify the amortized condition

$$
\forall k: \sum_{i=1: k} c_{i} \leq \sum_{i=1: k} \hat{c}_{i}
$$

Accounting Method for binary counter

bit 5	bit 4	bit 3	bit 2	bit I	bit 0	true cost (c_{i})	amortized $\operatorname{cost} \hat{c}_{i}$	cum true cost	cum amortized cost $\sum \hat{c_{i}}$
0	0	0	0	0	0	N/A	N/A	N/A	$7 \mathrm{~N} / \mathrm{A})^{\text {a }}$
0	0	0	0	0	1	1	2	1	2
0	0	0	0	1	0	2	2	3	4
0	0	0	0	1	1	1	2	4	6
0	0	0	1	0	0	3	2	7	8
0	0	0	1	0	1	I	2	8	10
0	0	0	1	1	0	2	2	10	12
0	0	0	1	1	1	I	2	11	14.
0	0	I	0	0	0	(4	2	15	16,

- assign amortized cost of di=2 for each operation construnt

Potential method for binary count

- define the potential $\phi(\mathrm{Ti})=$ the number of " 1 " bits
$i=1 / k / T_{i}=$ Gary comer after i iterations
verify $\hat{c_{i}} \geq c_{i}+\phi\left(T_{i}\right)-\phi\left(T_{i-1}\right)$ for each operation
- there is only one operation: "increment" $>\sum i=1: k$
- di =2, amortized cost defined by us
- before the operation i, at T_{i-1}, say there are k trailing 1 on es, before i-th increment
- ci= true cost = $k+1$ bit changes: k of "1" bits, made " 0 "" (from right to left up to the first " 0 "); plus the first " 0 " made " 1 "
- $\phi\left(\mathrm{T}_{\mathrm{i}}\right)-\phi\left(\mathrm{T}_{\mathrm{i}-1}\right)=" 1 "$ gained $-" 1 "$ lost $=1-\mathrm{k}$
- equation becomes $2 \geqslant k+1+1-k$, it checks out! $\mathrm{di}=2$ is good

Stack operations - review

- stack is an array with LAST-IN-FIRST-OUT operations
- push(value). put the new value on the stack (at the top)
- pop(n): take the top n values, return the, delete them from stack

$$
\text { (or maxstack of } \leq n \text {) }
$$

- naive analysis for n operations : $n^{*} O(n)=O\left(n^{2}\right)$
- better: for pop() to extract many elements, many push() must have happened before, each push is O (1)

	z			
c	c		d	
b	b	b	b	b
a	a	a	a	a
	$\operatorname{push}(z)$	$\operatorname{pop}(2)$	$\operatorname{push}(d)$	$\operatorname{pop}(1)$

Accounting method for Stack

- account each push (x) with $\$ 2$:
- \$1 for the actual push (x) operation, to add x to the stack
- \$1 credit for the possible later pop() operation that extracts x
- each pop(k) also \$2, for any k
- so each operation is accounted with $\$ 2$,
- total running time for n operations is $2^{*} n=O(n)$
- when $\operatorname{pop}(k)$ is called, each one of the popped elements have stored $\$ 1$ to account for their extraction, $O(k)$ time

Potential method for Stack

- define the potential $\Phi\left(\right.$ stack $=$ size(stack) $\Rightarrow \begin{array}{l}\text { design } \\ \text { for stacks }\end{array}$ - $\Phi(T)=|T| ; T=$ the stack; $T_{i}=$ stack after i operations
- define the amortized costs: $d_{\text {push }}=2$; $d_{p o p}=2$
- consider the true costs $\mathrm{C}_{\text {push }}=1 ; \mathrm{c}_{\text {pop }(\mathrm{k})}=\mathrm{K}$
- prove that for each operation the potential satisfies the fundamental property (exercise)

Amortized Analysis Move to Front

Self-organizing lists

- List L of n elements
- The operation ACCESS(x) costs

$$
\operatorname{rank}_{L}(x)=\text { distance of } x \text { from the head of } L \text {. }
$$

- L can be reordered by swapping adjacent elements at a cost of 1 chove: wore accessed elem to front
- Goal: access to a sequence of n items with minimal cost

List access algorithms

- Off-line Algorithm: if the sequence of access S is known in advance, one can design an optimal algorithm to rearrange the list based on how often items are accessed
- On-line Algorithm: if the sequence is not known in advance, one can design an algorithm based on some heuristics.

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x) \quad \begin{aligned}
& \text { access } \\
& \operatorname{Rank}(x)
\end{aligned} \quad \begin{array}{r}
\text { more to font } \\
\operatorname{Rank}(x)
\end{array}
$$

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Access item D:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Access item D:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Access item D:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Access item D:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Access item D:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

Move-to-front algorithm

- Algorithm: After accessing x, move x to the head of L using swaps.

$$
\operatorname{cost}=2 \cdot \operatorname{rank}_{L}(x)
$$

- Move D to front:

- Heuristic: if x is accessed at time t, it is likely to be accessed again soon after time t.
- Cost: MTF always performs within a factor of 4 of the optimal algorithm.

Amortized analysis of MTF

Theorem: $C_{M T F}(S) \leq 4 C_{O P T}(S)$
Proof: Let L_{i} be MTF's list after the i th access, and let L_{i}^{*} be OPT's list after the i th access. Let

where t_{i} is the number of swaps that OPT performs.

Potential function
inversion $i<j$
Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by
$\Phi\left(L_{i}\right)=2 \cdot \mid\left\{(x, y): x \alpha_{i} y\right.$ and $\left.y \alpha_{i}^{*} x\right\} \mid$ current Milit $=2 \cdot \#$ inversions between

Example:

$$
\begin{aligned}
& \text { after for } L_{i} \rightarrow E \rightarrow(C \rightarrow B \rightarrow B \\
& L_{i}^{*} \rightarrow(C \rightarrow A \rightarrow B \rightarrow D \\
& E C, E A, E D, E B, D B
\end{aligned}
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot|\{\cdots\}|
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot|\{(E, C), \cdots\}|
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot|\{(E, C),(E, A), \cdots\}|
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot|\{(E, C),(E, A),(E, D), \cdots\}|
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$\Phi\left(L_{i}\right)=2 \cdot|\{(E, C),(E, A),(E, D),(E, B), \cdots\}|$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot \mid\{(\underline{E, C)},(\underline{E, A}),(E, D),(E, B),(D, B)\} \mid=10
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Example:

$$
\Phi\left(L_{i}\right)=2 \cdot|\{(E, C),(E, A),(E, D),(E, B),(D, B)\}|=10
$$

Potential function

Define the potential function $\Phi: L_{i} \rightarrow \mathcal{R}$ by

$$
\begin{aligned}
\Phi\left(L_{i}\right) & =2 \cdot \mid\left\{(x, y): x \prec_{L_{i}} y \text { and } y \prec_{L_{i}^{*}} x\right\} \mid \\
& =2 \cdot \# \text { inversions }
\end{aligned}
$$

Note that:

- $\Phi\left(L_{i}\right) \geq 0$ for $i=0,1, \ldots$
- $\Phi\left(L_{0}\right)=0$ if MTF and OPT start with the same list.

How much does Φ change from one swap?

- a swap creates/destroys 1 inversion
- $\Delta \Phi= \pm 2$

What happens on access?

Suppose that operation i access item x, and define

$$
\begin{aligned}
& \left.A=\left\{y \in L_{i-1}: y \prec_{L_{i-1}} x \text { and } y \prec_{L_{i-1}^{*}} x\right\},=\{\text { elem in front }(x))\right\} \\
& \left.B=\left\{v \in L_{0}: v \prec_{1} \quad x \text { and } v \succ_{L_{1}} x\right\} \text { (iss) }\right\}
\end{aligned}
$$

$B=\left\{y \in L_{i-1}: y \prec_{L_{i-1}} x\right.$ and $\left.y \succ_{L_{i-1}^{*}} x\right\}$, $\{$ elem infract $(x)\}$
$C=\left\{y \in L_{i-1}: y \succ_{L_{i-1}} x\right.$ and $\left.y \prec_{L_{i-1}^{*}} x\right\}, \quad \operatorname{affer}(x)$ in MTPT $\}$
$D=\left\{y \in L_{i-1}: y \succ_{L_{i-1}} x\right.$ and $\left.y \succ_{L_{i-1}^{*}} x\right\},=\{$ elem after $(x)\}$ in beth (lists $\}$
$M T F$ listatter

$$
\text { opt }<L_{i-1} *
$$

\square (B) $\cup D$

What happens on access?

We have $r=|A|+|B|+1$ and $r^{*} ₹|A|+|C|+1$.
When MTF moves x to the front, it creates |A| inversions and destroys $|B|$ inversions. Each swap by OPT creates ≤ 1 inversion. Thus, we have

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\hat{c}_{i}=c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right)
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\begin{aligned}
\hat{c}_{i} & =\left(c_{i}\right)+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right) \\
& \leq\left(2 r+2\left(|A|-|B|+t_{i}\right)\right.
\end{aligned} \text {, upper Land of } \Delta \phi
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right) \\
& \leq 2 r+2\left(|\widehat{A}|-|B|+t_{i}\right) \\
& =2 r+2\left(\widehat{A} \mid-(r-1-|A|)+t_{i}\right) \\
& (\text { since } r=|A|+|B|+1)
\end{aligned}
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right) \\
& \leq 2 r+2\left(|A|-|B|+t_{i}\right) \\
& =2 r+2\left(|A|-(r-1-|A|)+t_{i}\right) \\
& (\text { since } r=|A|+|B|+1) \\
& =2 r+4|A|-2 r+2+2 t_{i}
\end{aligned}
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right) \\
& \leq 2 r+2\left(|A|-|B|+t_{i}\right) \\
& =2 r+2\left(|A|-(r-1-|A|)+t_{i}\right) \\
& (\text { since } r=|A|+|B|+1) \\
& =2 r+4|A|-2 r+2+2 t_{i} \\
& =4|A|+2+2 t_{i}
\end{aligned}
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

$$
\leq 4(\underbrace{(M+1)}_{\leq c^{*}})+4 t i
$$

$$
\begin{aligned}
\hat{c}_{i} & =c_{i}+\Phi\left(L_{i}\right)-\Phi\left(L_{i-1}\right) \\
& \leq 2 r+2\left(|A|-|B|+t_{i}\right) \\
& =2 r+2\left(|A|-(r-1-|A|)+t_{i}\right) \\
& (\text { since } r=|A|+|B|+1) \\
& =2 r+4|A|-2 r+2+2 t_{i} \\
& =4|A|+2+2 t_{i} \\
& \leq 4\left(r^{*}+t_{i}\right) \\
& (\text { since })=|A|+|C|+1 \geq|A|+1)
\end{aligned}
$$

Amortized cost

The amortized cost for the ith operation of MTF with respect to Φ is

The grand finale
Thus, we have

$$
C_{M T F}(S)=\sum_{i=1}^{|S|} c_{i}
$$

The grand finale
Thus, we have

$$
\begin{aligned}
C_{M T F}(S) & =\sum_{i=1}^{|S|} c_{i} \\
& =\sum_{i=1}^{|S|}\left(\hat{c}_{i}+\Phi\left(L_{i-1}\right)-\Phi\left(L_{i}\right)\right)
\end{aligned}
$$

The grand finale
Thus, we have

$$
\begin{aligned}
C_{M T F}(S) & =\sum_{i=1}^{|S|} c_{i} \\
& =\sum_{i=1}^{|S|}\left(\hat{c}_{i}+\Phi\left(L_{i-1}\right)-\Phi\left(L_{i}\right)\right) \\
& \leq\left(\sum_{i=1}^{|S|} 4 c_{i}^{*}\right)+\Phi\left(L_{0}\right)-\Phi\left(L_{|S|}\right)
\end{aligned}
$$

The grand finale
Thus, we have

$$
\begin{aligned}
C_{M T F}(S) & =\sum_{i=1}^{|S|} c_{i} \\
& =\sum_{i=1}^{|S|}\left(\hat{c}_{i}+\Phi\left(L_{i-1}\right)-\Phi\left(L_{i}\right)\right) \\
& \leq\left(\sum_{i=1}^{|S|} 4 c_{i}^{*}\right)+\Phi\left(L_{0}\right)-\Phi\left(L_{|S|}\right) \\
& \leq 4 C_{O P T}(s) \\
& \left(\text { since } \Phi\left(L_{0}\right)=0 \text { and } \Phi\left(L_{|S|}\right) \geq 0\right)
\end{aligned}
$$

