$T(n) = T(n-1) + T(n-2) + 1 || F_n = F_{n-1} + F_{n-2}$ a both upper Lounded and lowor Land 1 HINT Fu-1 + 2Fn + Fn+1 -Fn-2)+2Fn-1)+/ Fn-1 + 2 + n+1 2ta+y TINTÍ Fr

Amortized Analysis Fibonacci Heaps

thanks MIT slides thanks "Amortized Analysis" by Rebecca Fiebrink thanks Jay Aslam's notes

Objectives

Amortized Analysis

- potential method

• Fibonacci Heaps

- construction
- operations

running time analysis

typical: Algorithm uses data-structure and operations

- structures: table, array, hash, heap, list, stack
- operations: insert, delete, search, min, max, push, pop
- measure running time by analyzing
 - the sequence of operations,
 - their frequency
 - each operation running time (computation cost)

Running Time Analysis

determine the c = costliest/longest iteration

- usually an outer loop of n iterations
- overall n* (longest cost per iteration) = n*c
- Thats not very accurate!
 - not all iterations have the longest cost
 - perhaps some average technique can work, but how to prove?
- "compensate": show that for every costly iteration, there must be other "cheap" iterations

Example: binary counter

each row is a binary representation of the counter

L 1+2+1+3+1+2+1+4.

>2n = O(n)

- increasing by one
- right side: cost = how many bits require changes $\sqrt{4} \times \sqrt{8} + \frac{1}{2}$
- naive running time to increment from 0 to n :
 - each row may cost up to O(log n)
 - n iterations/increments would be O(n*logn)

Example : binary counter

- true cost for n iterations: 1+2+1+3+1+2+1+4+... = 2n = O(n)
- reason: the iteration cost very rarely is O(log n)
 - O(logn) means changing a good number of bits
 - for one iteration of cost O(logn), there must be many "cheap" iterations

binary counter amortization

- Aggregation method: consider all n iterations
 - bit 0 changes every iteration => cost n
 - bit 1 changes for half of iterations => cost n/2
 - bit 2 changes quarter of iterations => cost n/4
 - bit 3 changes 1/8 of iterations => cost n/8
 - ... etc
- total cost : add up the cost per bit
- n + n/2 + n/4+ n/8 + ... = 2n for pedagogy only.
 Aggregation method impractical, only works on toy examples like this

bit 5	hit 4	hit 3	bit 2	hit I	bit 0
0	0	0	0	0	0
0	0	0	0	0	Ι
0	0	0	0	I	0
0	0	0	0	Ι	-
0	0	0	I	0	0
0	0	0	Ι	0	
0	0	0	Ι	Ι	0
0	0	0	Ι	Ι	Ι
0	0	I	0	0	0

Amortized Analysis

- $c_i = \text{true cost of i-th operation/iteration}$ • $\hat{c_i} = \text{amortized cost of i-th operation/iteration}$
- the cumulative amortized cant be smaller than the true cumulative cost, up to any iteration k

$$\forall k : \sum_{i=1:k} c_i \le \sum_{i=1:k} \hat{c_i}$$

Accounting Method

- assign the di amortized cost
- if overcharge some operation (di>ci) use the excess as "prepaid credit",
- use the prepaid credit later for an expensive operation

Potential method

) associate a potential function Φ with datastructure T

- $\phi(Ti) = potential'' (or risk for cost)$ associated with datastructure after i-th operation
- typically a measure of complexity/risk/size of the datastructure
- require $\hat{c}_i \ge c_i + \phi(T_i) \phi(T_{i-1})$ for all i
- \hat{c}_i = amortized cost (up to us to define)
- ci = true cost for operation i
- Φ = potential function
- Ti = datastructure after ith operation

Accounting Method for binary counter

bit 5	bit 4	bit 3	bit 2	bit l	bit 0	true cost (c _i)	amortized cost $\hat{c_i}$	Savings $c_i \bigoplus (T_i) - \bigoplus (T_{i-1}) \sum_{i=1:k} \hat{c}_i$	
0	0	0	0	0	0	N/A	N/A		
0	0	0	0	0	I	I	2	(+1) Apotential	
0	0	0	0	I	0	2	2		
0	0	0	0				2	(+)	
0	0	0		0	0	3	2		
0	0	0		0	10	I	2	ÆD	
0	0	فر		\bigcirc	0	2	2		
0	0	0	I	I	I	I	2	+1	
0	0	I	0	0	0	4	2	-2 Ulum The	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									

assign amortized cost of di=2 for each operation

verify the amortized condition

$$\forall k : \sum_{i=1:k} c_i \le \sum_{i=1:k} \hat{c_i}$$

Accounting Method for binary counter

bit 5	bit 4	bit 3	bit 2	bit l	bit 0	true cost (c _i)	amortized cost $\hat{c_i}$	cum true cost $\sum c_i$	cum amortized cost $\sum_{i} \hat{c}_i$
0	0	0	0	0	0	N/A	N/A	N/A	N/A ^{i=1:k}
0	0	0	0	0	I	I	2	I .	2
0	0	0	0	I	0	2	2	3	4 ,
0	0	0	0	Ι	I	I	2	4,	61
0	0	0	I	0	0	3	2	7	8
0	0	0	I	0	I	I	2	8,	I0-
0	0	0	I	I	0	2	2	105	12.
0	0	0	I	I	I	I	2		14
0	0	Ι	0	0	0	4	2	15	16

• assign amortized cost of di=2 for each operation constant

verify the amortized condition

$$\forall k : \sum_{i=1:k} c_i \le \sum_{i=1:k} \hat{c_i}$$

Potential method for binary count

- define the potential $\phi(Ti) =$ the number of "1" bits • verify $\hat{c}_i \ge c_i + \phi(T_i) - \phi(T_{i-1})$ for each operation terms

 - there is only one operation: "increment" 2(21)

 - before the operation i, at T_{i-1} , say there are k trailing 1 ones, before i-th increment
 - ci= true cost = k+1 bit changes: k of "1" bits made "0" (from right to left up to the first "0"); plus the first "0" made "1"
 - $\phi(T_i) \phi(T_{i-1}) = 1'' \text{ gained } 1'' \text{ lost } = 1-k$
 - equation becomes $2 \ge k+1 + 1-k$, it checks out! di = 2 is good

Stack operations - review

- stack is an array with LAST-IN-FIRST-OUT operations
- push(value): put the new value on the stack (at the top)
- pop(n): take the top n values, return the, delete them from stack (or maxstack if $\leq n$)
- naive analysis for n operations : $n^*O(n) = O(n^2)$
- better: for pop() to extract many elements, many push() must have happened before, each push is O(1)

	Z			
С	С		d	
b	b	b	b	b
a	а	а	a	a
	push(z)	pop(2)	push(d)	pop(l)

Accounting method for Stack

account each push(x) with \$2:

- \$1 for the actual push(x) operation, to add x to the stack
 - \$1 credit for the possible later pop() operation that extracts x
- each pop(k) also \$2, for any k
- so each operation is accounted with \$2,
- total running time for n operations is $2^n = O(n)$
- when pop(k) is called, each one of the popped elements have stored \$1 to account for their extraction, O(k) time

Potential method for Stack

desition for stacks

unvers

- define the potential Φ (stack) = size(stack)
 - $\phi(T) = |T|$; T = the stack; T_i = stack after i operations
- define the amortized costs: dpush=2 ; dpop=2
- consider the true costs c_{push}=1 ; c_{pop(k)}=k
- prove that for each operation the potential satisfies the fundamental property (exercise)

 $\hat{c}_i \ge c_i + \phi(T_i) - \phi(T_{i-1})$

• which means the amortized cost d=2 is valid. push: 27 + 49 P°P(k)a k - 4

Amortized Analysis Move to Front

Self-organizing lists

- List L of n elements
- The operation ACCESS(x) costs

Goal: access to a sequence of n items with minimal cost

List access algorithms

- Off-line Algorithm: if the sequence of access S is known in advance, one can design an optimal algorithm to rearrange the list based on how often items are accessed
- On-line Algorithm: if the sequence is not known in advance, one can design an algorithm based on some heuristics.

Algorithm: After accessing x, move x to the head of L using $cost = 2 \cdot rank_L(x)$ Rank(x) Novelofmet swaps.

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

• Access item D: $L \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

• Access item D: $L \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

• Access item D: $L \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

• Access item D: $L \rightarrow A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

E

► Access item D: $L \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow C$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

$$L \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

• Move D to front: $L \rightarrow A \rightarrow B \rightarrow D \rightarrow C \rightarrow E$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

$$L \longrightarrow A \longrightarrow B \longrightarrow D \longrightarrow C \longrightarrow E$$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

• Move D to front: $L \rightarrow A \rightarrow D \rightarrow B \rightarrow C \rightarrow E$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

$$L \longrightarrow A \longrightarrow D \longrightarrow B \longrightarrow C \longrightarrow E$$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

$$L \longrightarrow D \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow E$$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

$$L \longrightarrow D \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow E$$

Algorithm: After accessing x, move x to the head of L using swaps.

$$cost = 2 \cdot rank_L(x)$$

$$L \longrightarrow D \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow E$$

- Heuristic: if x is accessed at time t, it is likely to be accessed again soon after time t.
- Cost: MTF always performs within a factor of 4 of the optimal algorithm.

Amortized analysis of MTF

Theorem: $C_{MTF}(S) \le 4C_{OPT}(S)$ **Proof:** Let L_i be MTF's list after the *i*th access, and let L_i^* be OPT's list after the *i*th access. Let

$$c_i = MTF's \text{ cost for the } i\text{th operation}$$

$$= 2 \cdot rank_{L_{i-1}}(x) \text{ if it accesses } x;$$

$$c_i = OPT's \text{ cost for the } i\text{th operation}$$

$$= rank_{L_{i-1}^*}(x) + t_i,$$

$$dec \text{ -access swaps}$$

where t_i is the number of swaps that OPT performs.

Define the potential function $\Phi: L_i \to \mathcal{R}$ by

Noversion ilj AGJ7AGJ

Example:

after hors
$$L_i \rightarrow E \rightarrow C \rightarrow A \rightarrow D \rightarrow B$$

i operations $L_i^* \rightarrow C \rightarrow A \rightarrow B \rightarrow D \rightarrow E$
 $E_i^* \rightarrow C \rightarrow A \rightarrow B \rightarrow D \rightarrow E$
 $E_i^* \rightarrow E_i^* \rightarrow$

Define the potential function $\Phi: L_i \to \mathcal{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$
$$= 2 \cdot \# \text{ inversions}$$

Example:

 $\Phi(L_i) = 2 \cdot |\{\cdots\}|$

Define the potential function $\Phi: L_i \to \mathcal{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$
$$= 2 \cdot \# \text{ inversions}$$

Example:

 $\Phi(L_i) = 2 \cdot |\{(E, C), \cdots\}|$

Define the potential function $\Phi: L_i \to \mathcal{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$
$$= 2 \cdot \# \text{ inversions}$$

Example:

 $\Phi(L_i) = 2 \cdot |\{(E, C), (E, A), \cdots\}|$

Define the potential function $\Phi: L_i \to \mathcal{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$
$$= 2 \cdot \# \text{ inversions}$$

Example:

 $\Phi(L_i) = 2 \cdot |\{(E, C), (E, A), (E, D), \cdots\}|$

Define the potential function $\Phi: L_i \to \mathcal{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$
$$= 2 \cdot \# \text{ inversions}$$

Example:

 $\Phi(L_i) = 2 \cdot |\{(E, C), (E, A), (E, D), (E, B), \cdots\}|$

Define the potential function $\Phi: L_i \to \mathcal{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$
$$= 2 \cdot \# \text{ inversions}$$

Example:

 $\Phi(L_i) = 2 \cdot |\{(E, C), (E, A), (E, D), (E, B), (D, B)\}| = 0$

Define the potential function $\Phi: L_i \to \mathcal{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$
$$= 2 \cdot \# \text{ inversions}$$

Example:

 $\Phi(L_i) = 2 \cdot |\{(E, C), (E, A), (E, D), (E, B), (D, B)\}| = 10$

Define the potential function $\Phi: L_i \to \mathcal{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$
$$= 2 \cdot \# \text{ inversions}$$

Note that:

•
$$\Phi(L_i) \ge 0$$
 for $i = 0, 1, ...$
• $\Phi(L_0) = 0$ if MTF and OPT start with the same list.

How much does Φ change from one swap?

a swap creates/destroys 1 inversion

$$\blacktriangleright \Delta \Phi = \pm 2$$

What happens on access?

Suppose that operation *i* access item *x*, and define

$$A = \{y \in L_{i-1} : y \prec_{L_{i-1}} x \text{ and } y \prec_{L_{i-1}^*} x\}, = \int e[e_{u} \text{ in form}(x)]$$

$$B = \{y \in L_{i-1} : y \prec_{L_{i-1}} x \text{ and } y \succ_{L_{i-1}^*} x\}, = \int e[e_{u} \text{ in form}(x)]$$

$$C = \{y \in L_{i-1} : y \succ_{L_{i-1}} x \text{ and } y \prec_{L_{i-1}^*} x\}, \quad \text{altr}(x) \text{ in NTF}$$

$$D = \{y \in L_{i-1} : y \succ_{L_{i-1}} x \text{ and } y \prec_{L_{i-1}^*} x\}, = \int e[e_{u} \text{ after}(x)]$$

$$D = \{y \in L_{i-1} : y \succ_{L_{i-1}} x \text{ and } y \succ_{L_{i-1}^*} x\}, = \int e[e_{u} \text{ after}(x)]$$

$$MTF \text{ bis latter}$$

$$L_{i-1} \quad A \cup B \quad x \quad C \cup D$$

$$ST \ll L_{i-1}^* \quad A \cup C \quad x \quad B \cup D$$

What happens on access?

$$\Phi(L_i) - \Phi_{L_{i-1}} \leq (2)|A| - |B| + (t_i).$$
offer Access(i)
$$MTF OPT$$

$$\hat{c}_i = c_i + \Phi(L_i) - \Phi(L_{i-1})$$

$$\hat{c}_i = (\hat{c}_i) + \Phi(L_i) - \Phi(L_{i-1})$$

$$\leq (2r) + 2(|A| - |B| + t_i) \rightarrow \text{ups} \text{ for and of } \triangle \varphi$$

$$\begin{aligned} \hat{c}_i &= c_i + \Phi(L_i) - \Phi(L_{i-1}) \\ &\leq 2r + 2(|A| - |B| + t_i) \\ &= 2r + 2(|A| - (r - 1 - |A|) + t_i) \\ (\text{ since } r &= |A| + |B| + 1) \end{aligned}$$

$$\hat{c}_{i} = c_{i} + \Phi(L_{i}) - \Phi(L_{i-1})$$

$$\leq 2r + 2(|A| - |B| + t_{i})$$

$$= 2r + 2(|A| - (r - 1 - |A|) + t_{i})$$
(since $r = |A| + |B| + 1$)
$$= 2r + 4|A| - 2r + 2 + 2t_{i}$$

$$\begin{aligned} \hat{c}_i &= c_i + \Phi(L_i) - \Phi(L_{i-1}) \\ &\leq 2r + 2(|A| - |B| + t_i) \\ &= 2r + 2(|A| - (r - 1 - |A|) + t_i) \\ (\text{ since } r &= |A| + |B| + 1) \\ &= 2r + 4|A| - 2r + 2 + 2t_i \\ &= 4|A| + 2 + 2t_i \end{aligned}$$

$$\hat{c}_{i} = c_{i} + \Phi(L_{i}) - \Phi(L_{i-1}) \\
\leq 2r + 2(|A| - |B| + t_{i}) \\
= 2r + 2(|A| - (r - 1 - |A|) + t_{i}) \\
(since r = |A| + |B| + 1) \\
= 2r + 4|A| - 2r + 2 + 2t_{i} \\
= 4|A| + 2 + 2t_{i} \\
\leq 4(r^{*} + t_{i}) \\
(since r^{*}) = |A| + |C| + 1 \ge (A| + 1)$$

$$\begin{array}{c}
\hat{c}_{i} = c_{i} + \Phi(L_{i}) - \Phi(L_{i-1}) \\
\leq 2r + 2(|A| - |B| + t_{i}) \\
= 2r + 2(|A| - (r - 1 - |A|) + t_{i}) \\
(\operatorname{since} r = |A| + |B| + 1) \\
= 2r + 4|A| - 2r + 2 + 2t_{i} \\
= 4|A| + 2 + 2t_{i} \\
\leq 4(r^{*} + t_{i}) \\
\leq 4(r^{*} + t_{i}) \\
\leq 4r^{*} = |A| + |C| + 1 \ge |A| + 1) \\
= 4c_{i}^{*}
\end{array}$$
WAN 2ci 2 2ci 2 42 ci 42

Thus, we have

$$C_{MTF}(S) = \sum_{i=1}^{|S|} c_i$$

Thus, we have

$$egin{aligned} & C_{MTF}(S) = \sum_{i=1}^{|S|} c_i \ & = \sum_{i=1}^{|S|} (\hat{c}_i + \Phi(L_{i-1}) - \Phi(L_i)) \end{aligned}$$

Thus, we have

$$egin{split} \mathcal{C}_{MTF}(S) &= \sum_{i=1}^{|S|} c_i \ &= \sum_{i=1}^{|S|} (\hat{c}_i + \Phi(L_{i-1}) - \Phi(L_i)) \ &\leq (\sum_{i=1}^{|S|} 4c_i^*) + \Phi(L_0) - \Phi(L_{|S|}) \end{split}$$

)

Thus, we have

$$C_{MTF}(S) = \sum_{i=1}^{|S|} c_i$$

= $\sum_{i=1}^{|S|} (\hat{c}_i + \Phi(L_{i-1}) - \Phi(L_i))$
 $\leq (\sum_{i=1}^{|S|} 4c_i^*) + \Phi(L_0) - \Phi(L_{|S|})$
 $\leq 4C_{OPT}(s)$
(since $\Phi(L_0) = 0$ and $\Phi(L_{|S|}) \geq 0$