
(first module after the midterm)

Datastructures 1
Hash Tables

Red Black Trees



Week 8 Objectives

• Hash Tables, Hashing functions

• Red-Black Trees



Arrays VS Hash Tables

• typical computer storage is (key,value) pair

• arrays must have keys as integers
- keys=indices=positions
- due to how they work in computer’s memory
- have to be continuos
- Example A[1]=2; A[2]=-1; A[3]=0

• Hash Table also stores (key,value) pairs
- keys can be anything, like peoples names
- H[Alice]=1; H[Bob]=-1; H[Charlie]=3
- keys cannot be used as positions/indices



Basic hashing 

• arrays are very nice, but keys have to be integers
- keys from 0 to N-1

• hashes very useful when keys are not integers
- names, words, addresses, phone numbers etc
- even if key=integer (like phone #) they are not the integers we 

want as indices

• text processing : natural keys are words/n-grams/
phrases

• databases: natural keys can be anything



Hashing for integer keys

• Even if the keys are integers, they might be 
inappropriate for storage indices.

• typically the case of few keys in a very large range.  

• Example : phone numbers. 
- Might have to use about 10,000 phone numbers as keys
- if each is used as a index, the resulting array must allocate 9Billion 

locations (U.S. phone numbers have 10 digits)



Hash Tables

• key -> index -> use array[index] = value



Hash Tables - Collisions
• when several keys (words) map to the same key 

(index)

• have to store the actual keys in a list
- list head stored at the index 

• key -> index -> list_head -> search for that key



Hash Tables- Collisions with chaining
• when several keys (words) map to the same key 

(index)

• have to store the actual keys in a list
- list head stored at the index 

• key -> index -> list_head -> search for that key



Hash Tables- Collisions with chaining

• n=number of keys; m = MAXHASH;  α= n/m

• simple uniform hashing: any key k equally likely to 
be mapped on any of the indices [0...m)

• If collisions are handled with chaining linked lists, 
assuming simple uniform hashing:
- unsuccessful search for a key takes Θ(1+α)

- successful search for a key also takes Θ(1+α)

- proof in the book



 Hash Function

• Easy for humans to use such a hash table

• but not easy for a computer
- need integer memory locations 
- we have to map keys (names, colors etc) into integers

• hash function h: take input any key, returns an index 
(int) h(key)=index

• basic operations: INSERT, DELETE, SEARCH; all use 
the mapped value h(key) 



Hash Function

• Usually two stages
- convert key to a [large] integer (not necessary if keys are already 

large integers like phone numbers)
- map the integer in interval [0, MAXHASH)



Simple hash function for words
• return a simple combination of characters, modulo 

MAXHASH

• int MAXHASH=100000;

• Example hashing word “Virgil” based on ASCII codes

• int hash_function(char[]) // returns integers  
between 0 and MAXHASH
- int sum=0,i=0;

- while(char[i]>0) {sum+=char[i] * ++i*i;}

- return sum % MAXHASH;

V i r g i l
86*12 105* 22 114* 32 103* 42 105* 52 108* 62



Hash function: two qualities

• quality ONE: one-to-one (injection). Different inputs 
result in different outputs
- collision: having many keys map to same index

• collisions eventually will happen, need to be solved
- collisions should be balanced (uniformly distributed) per output indices; 

same as saying simple uniform hashing (approx) is desirable, even if not 
exact.

• quality TWO: the set of returned indices must be 
manageable 
- for example returns integers from 1 to 100000
- or returns integers in range (0, MAXHASH)



Hash Function - division method

• map key to integer k (key=k if key is already integer)

• h(k) = k mod m (m=MAXHASH)
- this equation guarantees that h(k) is one of {0,1,2,..., MAXHASH-1}

• bad choices for m : close to powers of 2
- m=2p

- m=2p-1

• good choice for m : prime numbers far away from 
powers of 2
- example: m=701



Hash Function - multiplication method

• fractional(x)= fractional part of x, or x -⎣x⎦
- example fractional(3.1472) = 0.1472

•h(k)=⎣m* fractional(kA)⎦

• typically m is a power of 2

• A is a fractional of form s/2w where s<2w

- for example A = 2654435769 / 232



Hash Function -Universal

• if the hash function is known, an adversary can 
attack the hashing schema by using many keys that 
all collide to the same index
- h(key1)=h(key2)=h(key3)...

• to prevent this, we can can use set H of hash 
functions
- universal set H: for each pair of keys (k,l) the number of hash 

functions h∈H that collide k and l h(k)=h(l) is no more than |H|/m

- each time we build a hash (run the code), a random hash function is 
selected from the set

• building a universal set H of hash functions relies on 
number theory - see book



Red-Black Trees
further reading necessary from textbook



Binary Search Trees - Recap

• each node has at 
most two children

• any node value is
- not smaller than any value 

in the left subtree
- not larger than than any 

value in the right subtree
- h = height of tree

• Operations: 
- search, min, max, 

successor, predecessor, 
insert, delete 

- runtime O(h)
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Balanced Trees

• a) balanced tree: depth is about log(n) - logarithmic

• b) unbalanced tree : depth is about n - linear



Red-Black Trees
• binary search tree

• want to enforce balancing of the tree
- height logarithmic in  n=number of nodes in the tree
- height = longest path root->leaf 

• extra: each node stores a color
- color can be either red or black
- color can change during operations

• red-black properties
- root is black
- leafs (terminals) are black
- if a node is red, then both children are black
- for any given node, all paths to leaves (node->leaf) have the same 

number of black nodes 



Red-Black Trees

• Theorem: a red-black tree with n nodes has height 
at most 2*log(n+1)
- or logarithmic height
- thus enforcing the balancing of the tree
- and so the all operations can be implemented in O(log n) time. 



Tree operations

• insert, delete - need to account for colors
- rest of the lecture: insert and delete in red-black trees

• search, min, max, successor, predecessor - same as 
for regular binary search trees



Red-Black Trees - Rotation

• Rotation is a utility 
operation that facilitates 
maintenance of red-black 
properties
- during insert and delete, the 

tree might temporarily violate 
the red-black properties

- using rotation we can fix the 
tree so it satisfies red-black.

• Rotate-left at node x 
- x is replaced by its right child y

- β = left subtree of y becomes right 
subtree of x

- x becomes the left child of y 

• Rotate-right at y symmetric 



Red-Black Trees - Rotation

• Example



Red-Black Trees - Insertion
• add node “z” as a leaf
- like usual in a binary search tree

• color z red, add terminal “NIL” nodes

• check red-black conditions
- most conditions are still satisfied or easy to fix
- the real problem might be the condition that requires children of 

red nodes to be black.
- start fixing at the new node z, and as we proceed more fixes might 

be necessary
- three “fixing cases”
- overall still O(log n) time.

• RB-INSERT-FIXUP procedure in the textbook



Fixing insertion case 1

• z.p = z.parent and 
y=z.uncle are red

• fix: 
- make z.p and y black 
- make z.p.p red
- advance z to z.p.p



Fixing insertion case 2

• z.p is red, y is black, 
z is the right child

• fix:
- rotate left at z.p
- z advances to its old 

parent (now his left 
child)



Fixing insertion case 3

• z.p red, y black, 
z is left child

• fix:
- rotate right at z.p.p
- color z.p black
- color old z.p.p (now 

z brother) red



Red-Black Trees - Deletion

• delete “z” as we usually delete from a binary search 
tree
- maintain search property: left values⩽ node value ⩽ right values

• additionally keep track of 
- y= the node to replace z
- y original color (its color might change in the process)

• Fix-up the tree red-black properties, if they are 
violated
- a procedure with 4 cases
- RB-DELETE-FIXUP procedure in the textbook



Fixing deletion case 1

• case 1: x is black, brother w red

• fix : 
- rotate left at x.p; 
- color x.p red; 
- color w (now x.p.p) black



Fixing deletion case 2

• case2: brother w is black, and w children also black

• fix:
- color w red
- advance x to its parent



Fixing deletion case 3

• case3: brother w is black; w’s left child is red; w’s 
right child is black

• fix:
- rotate right at w
- color the new brother from red to black
- color the old brother from black to red



Fixing deletion case 4

• case4: brother w is black, w’s right child is red

• fix:
- rotate left at x.p
- color old w’s right child from red to black
- color x.p from red to black
- color old w from black to red 



Running time

• most BST operations same running time as BST trees
- search, min, max, successor, predecessor
- these dont affect RB colors

• Insertion including fixup O(log n)

• Deletion including fixup O(log n)


