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Binary Search Trees - Recap

® cach node has at @ 6
most two children P
® any node value is (6% 18
— not smaller than any value S
N the left subtree c &) 17

— not larger than than any

value ift the right subtree (2) (4) (©s) &

— h = height of tree 0
@ Operations:

— Search, min, max,
successor, predecessor,
insert, delete

— runtime O(h)



Binary Search Trees - Recap

® cach node has at
most two children

@ any node value is

— not smaller than any valug
in the left subtree ;

— not larger than than any"
value in the right sub‘rree“

— h = height of tree .
@ Operations:

— Search, min, max,
successor, predecessor, left subtree

insert, deletfe values<15
— runtime O(h)



Binary Search Trees - Recap

right subtree

® cach node has at values=15

most two children

@ any node value is '

— not smaller than any valuq'

in the left subtree ;

— not larger than than any"
value it the right sub’rreye“ 2 @

— h = height of tree .
. R
@® Operations: Yoo e
~ Ny m
— Search, min, max,
successor, predecessor, left subtree
insert, delete values<15

— runtime O(h)



Balanced Trees

(3 -'

- / \ | \ \!’7\.
~ - 2 7))
'\E/" \>/ /“ <

/"""{\‘ X— o
':\ 5_/2' '.\__8._/.'
G5
N2

® a) balanced tree: depth is about log(n) - logarithmic

@® b) unbalanced tree : depth is about n - linear



Red-Black Trees

@® binary search tree

® want to enforce balancing of the tree
— height logarithmic in n=number of nodes in the tree

— height = longest path root->leaf

@® extra: each node stores a color

— color can be either red or black /-

— color can change during operations (,UCLCQJ K%QL\
® red-black properties

— root is black

— W(’rermin@are black
—{—Hmﬁe—rfred, fhen both children are black)

— for any given node, all paths to leaves (node->leaf) have the same

number of black nodes
=) gﬁ«w on Llacl acdos




Red-Black Trees

@ Theorem: a red-black tree with n nodes has height
at most 2*log(n+1)

— or logarithmic height
— thus enforcing the balancing of the tree

— and so the all operations can be implemented in O(log n) time.



Tree operations

® insert delete - need to account for colors
— rest of the lecture: insert and delete in red-black trees

@® search, min, max, successor, predecessor - same as
for regular binary search trees



Red-Black Trees - Rotation

® Rotation is a ufility _
operation that facllitates @ Rotate-left at node x
maintenance of red-black — X is replaced by its right child y
Properhes — B = left subtree of y becomes right

— during insert and delefe, the subtree of x
tree mcljgh’r temporarily violate

the red-black properties — X becomes the left child of y

— using rotation we can fix the : :
frec'so it satisfies red-black. @ Rotate-right at y symmetric

| @/\g

EFT-ROTATE(T, x)
&) (

p /\Z‘i& IACGE NG ﬁfzﬁﬁi\ Jﬁ

B N aesaaaasia
= RIGHT-ROTATE(T, y)

Jel B N = B




Red-Black Trees - Rotation

@ Example



Red-Black Trees - Insertion

® add node s a leaf

— like usual in a binary search tree

@® <olor z red, add terminal "NIL' nodes

@® check red-black conditions
— most conditions are still satisfied or easy to fix

% the real problem might be the condition that requires children of
red nodes to be black.

— start fixing at the new node z, and as we proceed more fixes might
be necessary

— three “fixing cases”
— overadll still O(log n) time.

® RB-INSERT-FIXUP procedure in the textbook



Fixing insertion case 1

@ z.p = z.parent and
y=z.uncle are red

® fix:

— make z.p and y black

— make z.p.p red

—GM

k\Q@A Kp(p&(“ ) ol U (




Fixing Insertion case 2

@ zpis red, v is black,
z is the right child

® fix:
— rotate left at z.p

— z advances fto its old

parent (now his left
chid) —




Fixing Insertion case 3
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: Case 3

@® z.p red, vy black,
z is left child

® fix: “ -‘G R
~ Trofate right of zpp

— color z.p black

— color old zp.p (now
Z brother) red



Red-Black Trees - Deletion

® delete "z” as we usuadlly delete from a binary search
tree

— maintain search property: left values< node value < right values

@® additionally keep track of
— Y= the node to replace z
— y original color (its color might change in the process)

@® Fix-up the tree red-black properties, if they are
violated

— a procedure with 4 cases
— RB-DELETE-FIXUP procedure in the textbook



Fixing deletion case 1

ﬂ

® case 1: x is black, brother w red
® fix:

— rotfate left at x.p;
— color x.p red;
— color w (now x.p.p) black



Fixing deletion case 2

® case?2: brother w is black, and w children also black
® fix:

— color w red
— advance x to its parent



Fixing deletion case 3

@® case3: brother w is black; ws left child is red; ws
right child is black

® fix:
— rofate right at w
— color the new brother from red to black
— color the old brother from black to red



Fixing deletion case 4
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@ case4: brother w is black, ws right child is red
® fix:

— rotate left at xp
— color old ws right child from red to black
— color x.p from red to black

— color old w from black to red



Running time

@ most BST operations same running time as BST trees

— Search, min, max, successor, predecessor
— these dont affect RB colors

® Insertion including fixup O(log n)
® Deletion including fixup O(log n)



