Date structures:

$\xrightarrow{\text { back queue preserves prows front }}$

\forall node n

$$
\begin{aligned}
& \text { Left } \\
& \text { sustree }
\end{aligned} \text { valn } \leq \text { Right }_{\text {gustree }}
$$

$$
\begin{aligned}
n=\text { ? } & n \text {. parent. Left? (N0) } \\
& n \text {. parent. Risht? } \xrightarrow{\text { (100) }}<p<n \text {-subtice }
\end{aligned}
$$

$$
p<n \cdot L
$$

$$
p l s \leq n
$$

brotter, consyus

Adv Datastruchures: Hash Tables, RB trees, Skiplists, Fib Hep Hashes (hash tables)
data $=($ key, $\sqrt{\text { aral }})$ pairs \quad val $=$ val in hashes

- vaunt hash function to be fast
- price = some collisions
n keys $\quad \cdots=$ MAX Range size 100 $\begin{aligned} & 1000,00 \\ & \text { want collision list } \simeq\left(\frac{n}{m}\right. \simeq \frac{1000,000}{100} \simeq 104000 \\ &=\alpha=E[\text { list size }]\end{aligned}$

SIMPLE UNIFORM HASHING ant key k equally likely to be hasted into any of 0: max

$$
\operatorname{pros}[\operatorname{hash}(k)=i]=\frac{1}{\mu A x}=\frac{1}{m}
$$

- unsuccessful search
(key not found) $\theta(1+\alpha) \approx \theta(\alpha)$ usual $\alpha>1$
- success (kerch found) $\theta(1+\alpha) \simeq \theta(\alpha)$
proof. unsuccess (key not found)

$$
\begin{aligned}
& E[\text { lille }]=E[\text { search in list hash }(k)=i] \\
= & E[\text { size -of -hit }-i]=\alpha=\frac{n}{m}
\end{aligned}
$$

a success $k \in$ Hash $k_{i}=i_{i}^{\text {th erected key }} k_{i}, k_{j}$ keys

$$
E\left(x_{i j}\right]=\operatorname{prob}\left(x_{i j}-1\right)=\text { prob }
$$

before ko

$$
\begin{aligned}
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} E\left[x_{i j}\right]\right)=\frac{1}{n} \sum_{i=1}^{\text {search }} \begin{array}{l}
\text { time } \\
\text { forks }
\end{array}\left(1+\sum_{j=i+1}^{n} \frac{1}{m}\right) \\
& =\sqrt{n m} \sum_{i=1}^{n}(n-i)_{0+1+2 \ldots+n-1}^{n} \\
& =1+\frac{1}{\mu m} \frac{(n-1) \mu}{2}=\theta\left(1+\frac{n}{m}\right)=\theta(1+\alpha)
\end{aligned}
$$

Hash functons. $\quad h($ key $)=$ index $\in[0: M A X]$ $\mathrm{KeH} \stackrel{?}{\longrightarrow}$ integer

$$
\begin{aligned}
& \text { Hws heuristic }
\end{aligned}
$$

$$
\begin{aligned}
& M A X=\operatorname{for} \text { from} 2^{p} \\
& \begin{array}{l}
\text { basic } h(x)=x \underset{\text { remander }}{\bmod } \max \in[0: M A x-1] \\
h(x)=[M A X \text { fractional }(x: A] \quad
\end{array} \\
& \begin{array}{l}
\text { pouer } \\
\text { of } 2
\end{array} \quad \text { fractional }(z)=z-\operatorname{infeger}(z) \\
& A=\text { fraptioncl of } \frac{S}{2^{w}} \quad \begin{array}{c}
w=\text { bits repired } \\
\text { by MAK }
\end{array}
\end{aligned}
$$

Hash -functions - umiersal-set

- andversafy: chooses many keys $h(k)=$ same
because $h=$ fixed.
\Rightarrow long list of if
Solution: $S=\{$ hash functions \} universal
- every hash created $\Rightarrow h \in S$ picked at random.
$|S|=$ size of the set of functions UNIVERSAL every 2 keys kl

$$
\{h \in s \mid h(k)=h(e)\} \leqslant \frac{|s|}{M A x}
$$

(Th) Adversary cannot create loup list of collisions.

Binary Search Trees - Recap

- each node has at most two children
- any node value is
- not smaller than any value in the left subtree
- not larger than than any value in the right subtree
- $h=$ height of tree

- Operations:
- search, min, max, successor, predecessor, insert, delete
- runtime $O(h)$

Binary Search Trees - Recap

- each node has at most two children
- any node value is
- not smaller than any value" in the left subtree
- not larger than than any value in the right subtree
- $h=$ height of tree
- Operations:
- search, min, max, successor, predecessor, insert, delete
- runtime $O(h)$

Binary Search Trees - Recap

right subtree

- each node has at most two children
- any node value is
- not smaller than any value" in the left subtree
- not larger than than anyl value in the right subtree
- $h=$ height of tree
- Operations:
- search, min, max, successor, predecessor, insert, delete
- runtime $O(h)$

Balanced Trees

- a) balanced tree: depth is about $\log (n)$ - logarithmic - b) unbalanced tree : depth is about n - linear

Red-Black Trees

- binary search tree
- want to enforce balancing of the tree
- height logarithmic in $n=n u m b e r$ of nodes in the tree
- height = longest path root->leaf
extra: each node stores a color
- color can be either red or black
- color can change during operations

- red-black properties
- root is black
- leafs (terminals) are black
- if a node is red, then both children are black
- for any given node, all paths to leaves (node->leaf) have the same number of black nodes

$$
\Rightarrow \text { balanced }
$$

on black nodes.

Red-Black Trees

- Theorem: a red-black tree with n nodes has height at most $2^{*} \log (n+1)$
- or logarithmic height
- thus enforcing the balancing of the tree
- and so the all operations can be implemented in $O(\log n)$ time.

Tree operations

- insert, delete - need to account for colors
- rest of the lecture: insert and delete in red-black trees
- search, min, max, successor, predecessor - same as for regular binary search trees

Red-Black Trees - Rotation

Rotation is a utility operation that facilitates maintenance of red-black properties

- during insert and delete, the tree might temporarily violate the red-black properties
- using rotation we can fix the tree so it satisfies red-black.
- Rotate-left at node x
- x is replaced by its right child y
- $\beta=$ left subtree of y becomes right subtree of x
- x becomes the left child of y

Rotate-right at y symmetric

Red-Black Trees - Rotation

- Example

Red-Black Trees - Insertion

- add node " z " as a leaf
- like usual in a binary search tree

Color z red, add terminal "NIL" nodes
check red-black conditions

- most conditions are still satisfied or easy to fix
* the real problem might be the condition that requires children of red nodes to be black.
- start fixing at the new node z, and as we proceed more fixes might be necessary
- three "fixing cases"
- overall still $O(\log n)$ time.
- RB-INSERT-FIXUP procedure in the textbook

Fixing insertion case 1

11

Fixing insertion case 2

- z.p is red, y is black, z is the right child

14
fix:

- rotate left at z.p
- z advances to its old parent (now his left child)

14

Fixing insertion case 3

- z.p red, y black, z is left child
- fix:
- rotate right at z.p.p
- color Z.p black
- color old z.p.p (now
 z brother) red

Red-Black Trees - Deletion

- delete " z " as we usually delete from a binary search tree
- maintain search property: left values \leqslant node value \leqslant right values
- additionally keep track of
- $y=$ the node to replace z
- y original color (its color might change in the process)
- Fix-up the tree red-black properties, if they are violated
- a procedure with 4 cases
- RB-DELETE-FIXUP procedure in the textbook

Fixing deletion case 1

- case 1: x is black, brother w red
- fix :
- rotate left at x.p;
- color x.p red;
- color w (now x.p.p) black

Fixing deletion case 2

- case2: brother w is black, and w children also black - fix:
- color w red
- advance x to its parent

Fixing deletion case 3

- case3: brother w is black; w's left child is red; w's right child is black
- fix:
- rotate right at w
- color the new brother from red to black
- color the old brother from black to red

Fixing deletion case 4

- case4: brother w is black, w's right child is red
- fix:
- rotate left at x.p
- color old ws right child from red to black
- color x.p from red to black
- color old w from black to red

Running time

- most BST operations same running time as BST trees
- search, min, max, successor, predecessor
- these dont affect RB colors
- Insertion including fixup $O(\log n)$
- Deletion including fixup $O(\log n)$

