
Data structures :

do!¥÷¥,)t÷9ue☒
stacks

- Single linked Fifo) Lifo
$5T - engine

- push
-degue pop

queue preserves
Process front

÷: ÷(top)stacks

BST

←③
b-
↳nfparent

6
¥-9 ¥7

horde n

lefaf.no trans Rishi, nee
°%

n=? in -parent. Left ? ⑧

? n - parent . Right? .→④
P%P€ n -suShee

p e n . Ls

f. LS £ h
Hotter

, cousins

Adv Data structures : flash Tables , RB trees, skip lists , RED Hop

flashes (hash tables)
data - (key ,②) parts ④ eval in Htasasshhees

Clase?)
key __ memory→ integer→ index c-Range

object hash
number function fo : MAD

↳" *¥④
"""

""""" "⇒
-no randomaccess

÷:* '--⑦→☒☒①14 Kz kq%£%
array w/randomaccess
array [index] = memory address of the lust

of values

- want hash function to Se fast

- price = some collisions
.

in keys nn= MAX Raye she too

1000,000
want collision lust ☒ =

loYj-I-GyoooavptL-EflistsiuJS1MPLEHAsH@RM6.i
ant key K equally

likely to be hashed onto any of 0 : MAX

prosfchashck) - ¥] = µ¥= In
• unsuccessful search

Ckeyuotfovnd) 0-(11-2) 10-04
Uusuall 2>1

• Success search
they found / 0-(1+4) I 0-141

proof
(ideal

• unsuccess (key not found)

Elfin)=E[search in list hashckki]

=Eof-hH -

i] =L - 1m
asuccess K C- flash

µ-
ith inserted

#Y Ki , Kj keeps
- inserted after Ki before Kd

→☐→☒→i→.li?I#.aisi..nR.V.Xij=J1ttki1--hlkj)ECtijJ--
prob Qej=£)=µoµ

• hail =/ hail
later key gets hashed in lost (first hey)=1m

search time = ECK FÉ
,

c ' + IÉ+?y . inserted after "
WEcolliding with bi

time for
Ki=tniÉ(it "¥.IE#D--tn-EIA0tF--i+fm)--ltn1mEca-i)--n-items

in ot 11-2 .
. .tn-L

- l +¥m ②1¥ = @ (it IntoAts)

flash functors
. Pnfkey) - iudexefo : MAD

key→? integer
µwg↳" Gotland h-index ex.FI
Key -word

↳ integer
* MAX -_far fruit

basic h :(at) = * wyd MAX EG : Max -☐

pemahdbfMA#
heal fractional (* •④I

pqyz← fractional -47--2 - ihfgercz)

A- fractional of {-w w= bit required
by MAX

Hash-functions - universal -set

- adversary : chooses many keys h(k)= same
-because = feed .

→ long

kstof.F.S-hashfmdio.us) universals

• every hash created → -hes picked at random

191 -_size of the set of functions
UNIVERSAL

every 2 keys helhES/hod=Ke)}-•l*
⑦ Adversary cannot create loup list of collisions.

Binary Search Trees - Recap

• each node has at
most two children

• any node value is
- not smaller than any value

in the left subtree
- not larger than than any

value in the right subtree
- h = height of tree

• Operations:
- search, min, max,

successor, predecessor,
insert, delete

- runtime O(h)

O
65

←
⑤L

Binary Search Trees - Recap

• each node has at
most two children

• any node value is
- not smaller than any value

in the left subtree
- not larger than than any

value in the right subtree
- h = height of tree

• Operations:
- search, min, max,

successor, predecessor,
insert, delete

- runtime O(h)

left subtree
values⩽15

Binary Search Trees - Recap

• each node has at
most two children

• any node value is
- not smaller than any value

in the left subtree
- not larger than than any

value in the right subtree
- h = height of tree

• Operations:
- search, min, max,

successor, predecessor,
insert, delete

- runtime O(h)

left subtree
values⩽15

right subtree
values⩾15

Balanced Trees

• a) balanced tree: depth is about log(n) - logarithmic

• b) unbalanced tree : depth is about n - linear

Red-Black Trees
• binary search tree

• want to enforce balancing of the tree
- height logarithmic in n=number of nodes in the tree
- height = longest path root->leaf

• extra: each node stores a color
- color can be either red or black
- color can change during operations

• red-black properties
- root is black
- leafs (terminals) are black
- if a node is red, then both children are black
- for any given node, all paths to leaves (node->leaf) have the same

number of black nodes

Od
d la

blade bladed

←
⇒ balanced on black nodes

.

Red-Black Trees

• Theorem: a red-black tree with n nodes has height
at most 2*log(n+1)
- or logarithmic height
- thus enforcing the balancing of the tree
- and so the all operations can be implemented in O(log n) time.

A
th un

m an adman

f. f.
tan tab mhm

" "

Hu Aw man

Tree operations

• insert, delete - need to account for colors
- rest of the lecture: insert and delete in red-black trees

• search, min, max, successor, predecessor - same as
for regular binary search trees

Red-Black Trees - Rotation

• Rotation is a utility
operation that facilitates
maintenance of red-black
properties
- during insert and delete, the

tree might temporarily violate
the red-black properties

- using rotation we can fix the
tree so it satisfies red-black.

• Rotate-left at node x
- x is replaced by its right child y

- β = left subtree of y becomes right
subtree of x

- x becomes the left child of y

• Rotate-right at y symmetric

-

D
'd ⑥Eyed

DD DD

Red-Black Trees - Rotation

• Example

¥12
DID

Red-Black Trees - Insertion
• add node “z” as a leaf
- like usual in a binary search tree

• color z red, add terminal “NIL” nodes

• check red-black conditions
- most conditions are still satisfied or easy to fix
- the real problem might be the condition that requires children of

red nodes to be black.
- start fixing at the new node z, and as we proceed more fixes might

be necessary
- three “fixing cases”
- overall still O(log n) time.

• RB-INSERT-FIXUP procedure in the textbook

•
AH

Fixing insertion case 1

• z.p = z.parent and
y=z.uncle are red

• fix:
- make z.p and y black
- make z.p.p red
- advance z to z.p.p

Zap. "

yaz. uncle

E

-

Fianna 000

Fixing insertion case 2

• z.p is red, y is black,
z is the right child

• fix:
- rotate left at z.p
- z advances to its old

parent (now his left
child)

Tf .

O
o

↳
Rotation at 2. p -

app .

£0

-

- a

Fixing insertion case 3

• z.p red, y black,
z is left child

• fix:
- rotate right at z.p.p
- color z.p black
- color old z.p.p (now

z brother) red

2.p -p
z, p .

2- D

iii.⇒¥:*
I. ZO O
-

D

Red-Black Trees - Deletion

• delete “z” as we usually delete from a binary search
tree
- maintain search property: left values⩽ node value ⩽ right values

• additionally keep track of
- y= the node to replace z
- y original color (its color might change in the process)

• Fix-up the tree red-black properties, if they are
violated
- a procedure with 4 cases
- RB-DELETE-FIXUP procedure in the textbook

Fixing deletion case 1

• case 1: x is black, brother w red

• fix :
- rotate left at x.p;
- color x.p red;
- color w (now x.p.p) black

Fixing deletion case 2

• case2: brother w is black, and w children also black

• fix:
- color w red
- advance x to its parent

Fixing deletion case 3

• case3: brother w is black; w’s left child is red; w’s
right child is black

• fix:
- rotate right at w
- color the new brother from red to black
- color the old brother from black to red

Fixing deletion case 4

• case4: brother w is black, w’s right child is red

• fix:
- rotate left at x.p
- color old w’s right child from red to black
- color x.p from red to black
- color old w from black to red

Running time

• most BST operations same running time as BST trees
- search, min, max, successor, predecessor
- these dont affect RB colors

• Insertion including fixup O(log n)

• Deletion including fixup O(log n)

