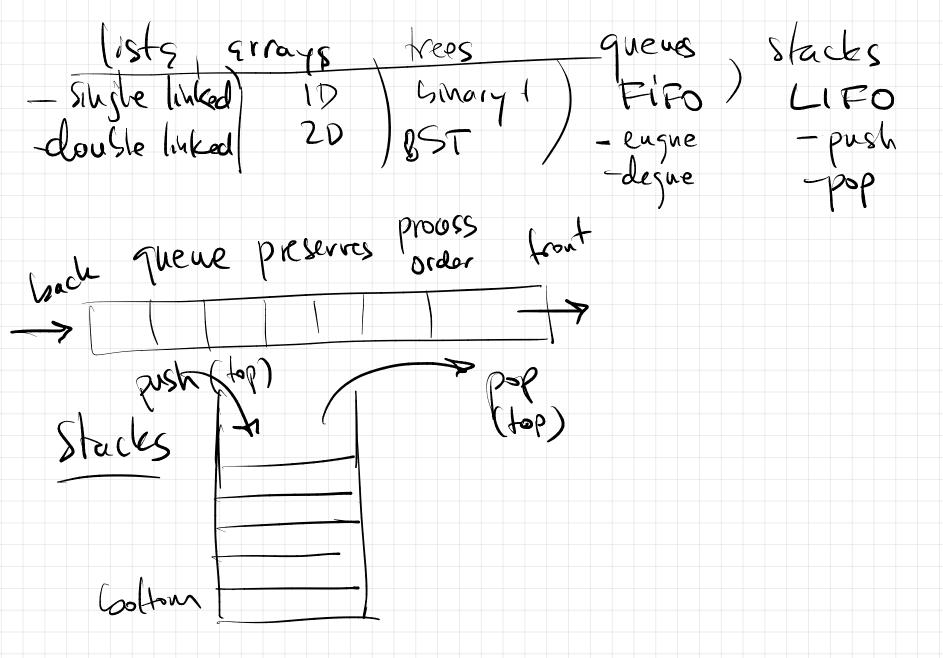
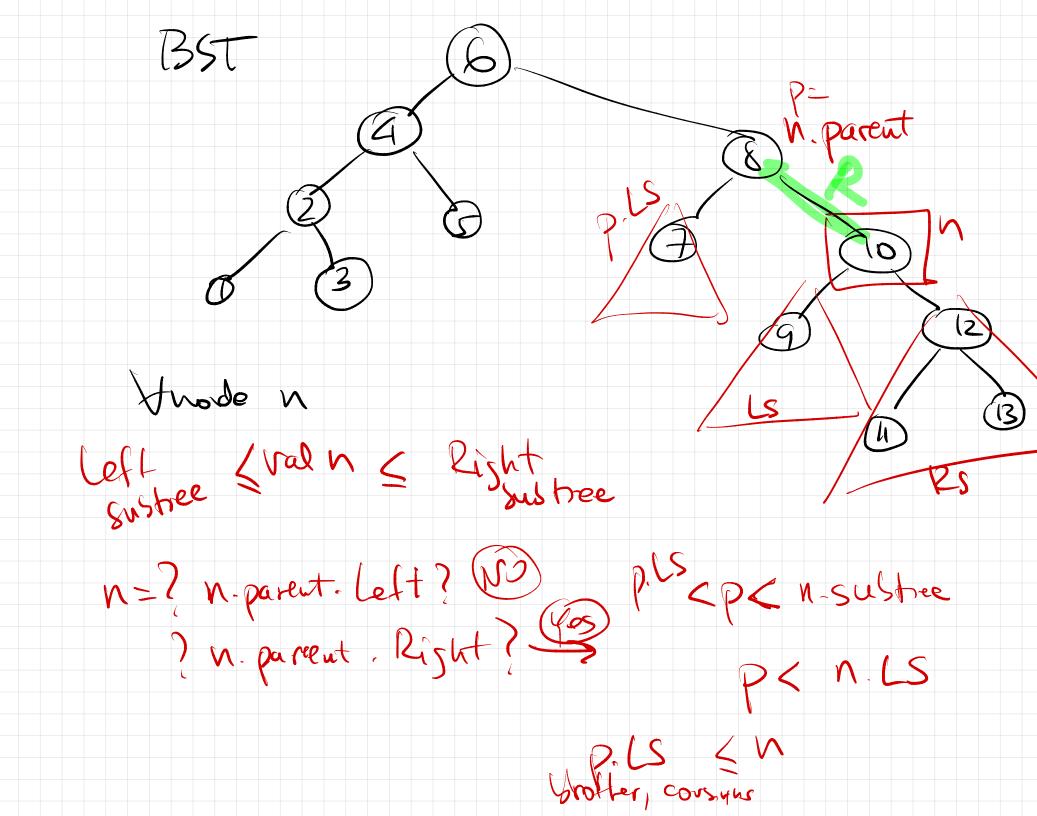
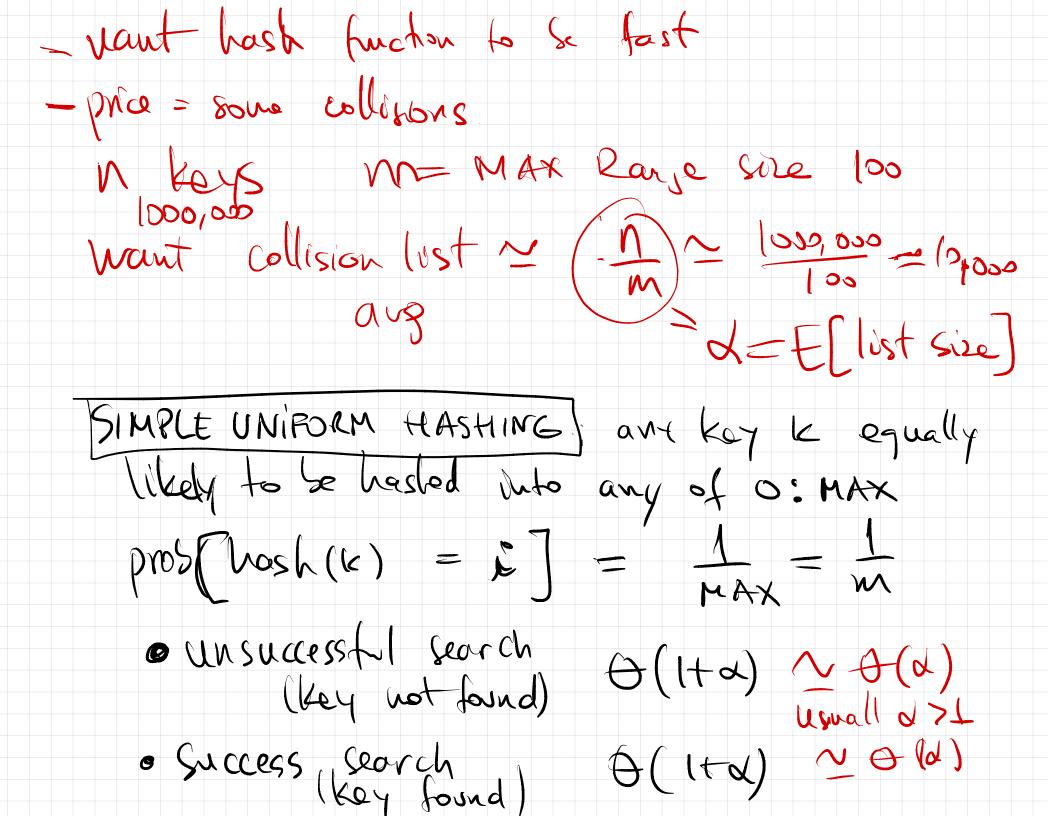
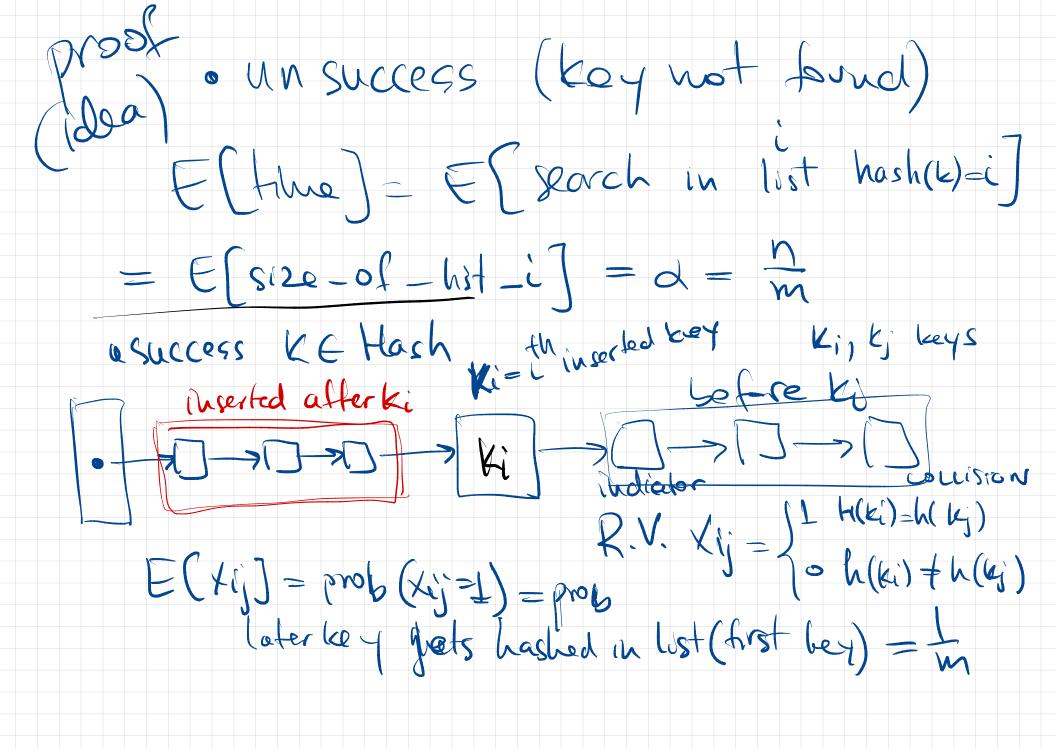
Date structures:

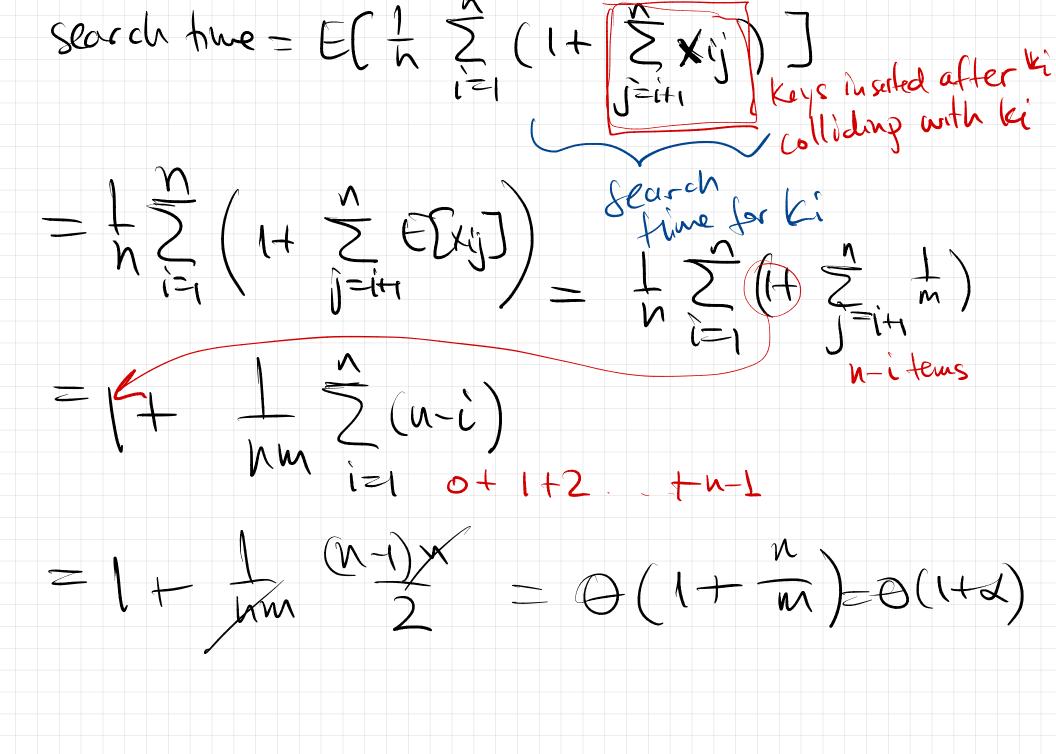




Adv Dafastuchures: Hash Tables, 23 trees, Skiplists, Filster Hashes (hash tables) data = (key, trad) pairs (val) = val in Hashes Key=memory (large?) Key=memory integer diject integer hash judex ju Keyl F Kg -K2-> (437 MAX array w/randomaccess avray tindex] = memory address of the last of values







Hash functions h(key) = indexe[o: MAX] Ket > integer Hus heunistic Hus (very large) h Key = word > integer Key = word > integer MAX = far from 2^h basic $h(x) = \chi \mod \max E[0:MAX-1]$ remaindly MAX $N(x) = [n] \text{ fractional } (X \cdot A)]$ $P_{of2}^{ver} = \frac{1}{r} \frac{1}$ $A = fractional of \frac{S}{2^{W}} \qquad W = Sits remined$ $2^{W} \qquad W = MAX$

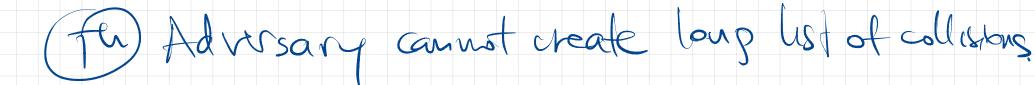
Hash-functions - universal-set

altrersary: drooses many keys h(k) = same Jacanse h = fixed.

Solution: S=Ghash functions) Universal

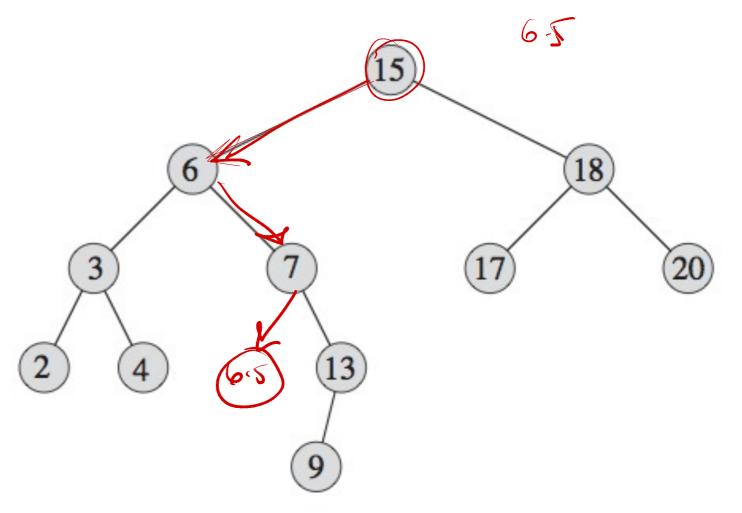
oevery hash oreated => hES picked at random.

 $\frac{(5|=size of the set of functions}{VNiversAL}$ every 2 keys ke $\frac{15|}{15|}$ $\frac{15|}{16}$ $\frac{16}{16} = h(e) = h(e) = h(e) = h(e)$



Binary Search Trees - Recap

- each node has at most two children
 - any node value is
 - not smaller than any value in the left subtree
 - not larger than than any value in the right subtree
 - h = height of tree
- Operations:
 - search, min, max, successor, predecessor, insert, delete
 - runtime O(h)



Binary Search Trees - Recap

- each node has at most two children
 - any node value is
 - not smaller than any value in the left subtree
 - not larger than than any value in the right subtree
 - h = height of tree
- Operations:
 - search, min, max, successor, predecessor, insert, delete
 - runtime O(h)

left subtree values≤15

13

6

3

2

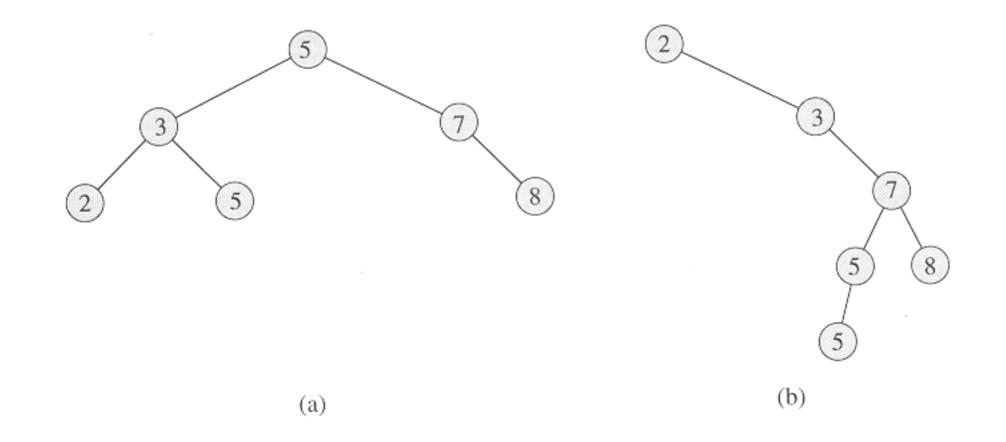
4

18

Binary Search Trees - Recap

- right subtree each node has at values≥15 most two children any node value is 18 6 not smaller than any value in the left subtree 3 not larger than than any value in the right subtree 4 2 13 h = height of tree Operations: search, min, max, left subtree successor, predecessor, insert, delete values≤15
 - runtime O(h)

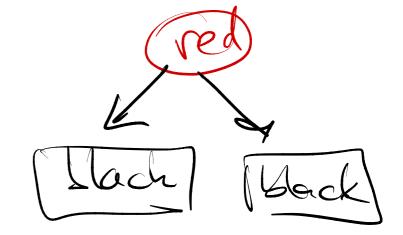
Balanced Trees



a) balanced tree: depth is about log(n) – logarithmic
 b) unbalanced tree : depth is about n – linear

Red-Black Trees

- binary search tree
- want to enforce balancing of the tree
 - height logarithmic in n=number of nodes in the tree
 - height = longest path root->leaf
- extra: each node stores a color
 - color can be either red or black
 - color can change during operations



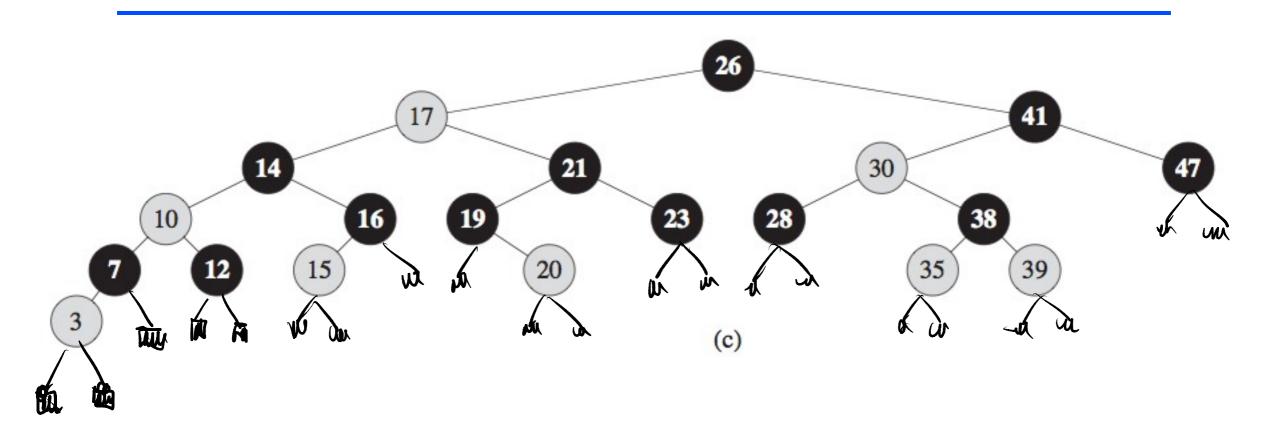
red-black properties

- root is black
- leafs (terminals) are black

- if a node is red, then both children are black

- for any given node, all paths to leaves (node->leaf) have the same number of black nodes _________ alanced on Llack hodes

Red-Black Trees



- Theorem: a red-black tree with n nodes has height at most 2*log(n+1)
 - or logarithmic height
 - thus enforcing the balancing of the tree
 - and so the all operations can be implemented in O(log n) time.

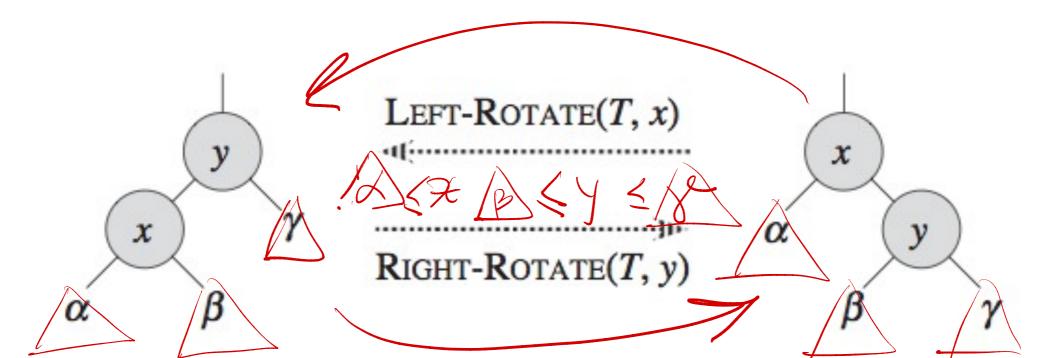
Tree operations

- Insert, delete need to account for colors
 - rest of the lecture: insert and delete in red-black trees
- search, min, max, successor, predecessor same as for regular binary search trees

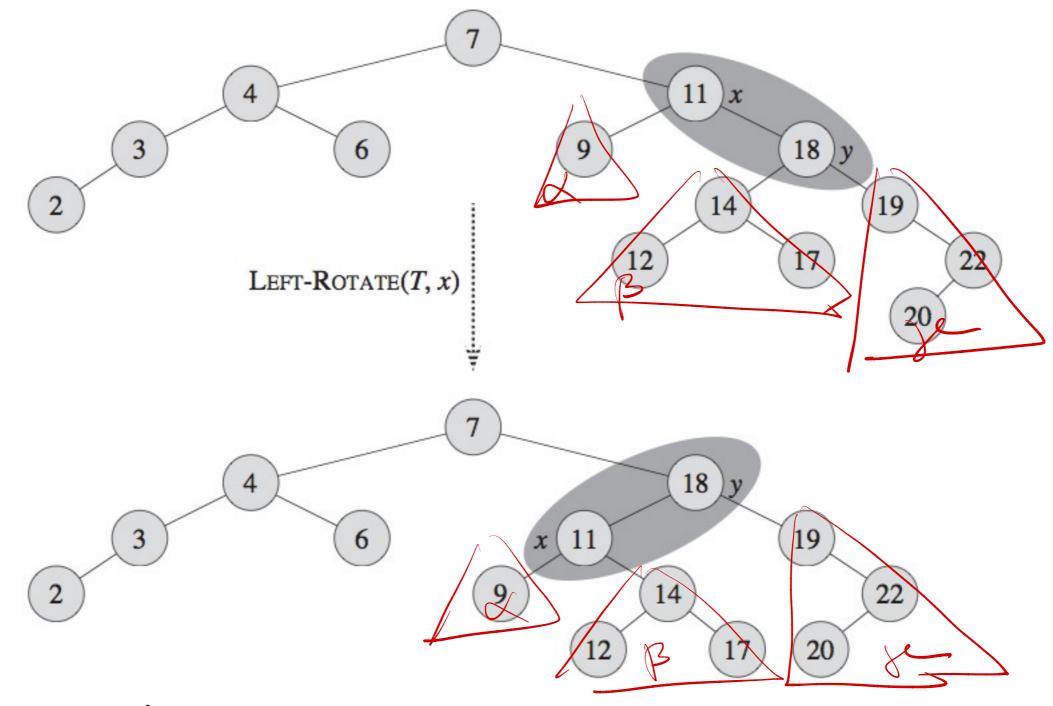
Red-Black Trees - Rotation

- Rotation is a utility operation that facilitates maintenance of red-black properties
 - during insert and delete, the tree might temporarily violate the red-black properties
 - using rotation we can fix the tree so it satisfies red-black.

- Rotate-left at node x
 - x is replaced by its right child y
 - $\beta = \text{left subtree of y becomes right}$ subtree of x
 - x becomes the left child of y
- Rotate-right at y symmetric



Red-Black Trees - Rotation



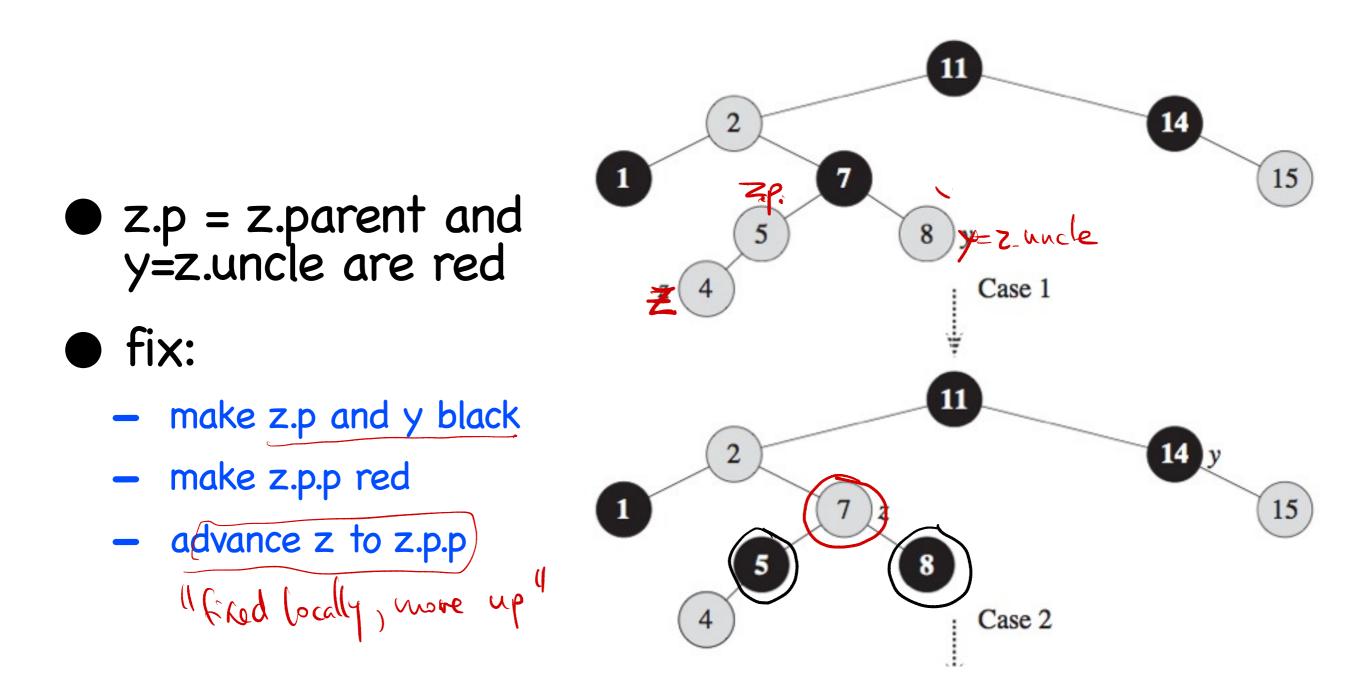
Red-Black Trees - Insertion

- add node "z" as a leaf
 - like usual in a binary search tree
- Color z red, add terminal "NIL" nodes
- check red-black conditions
 - most conditions are still satisfied or easy to fix

the real problem might be the condition that requires children of red nodes to be black.

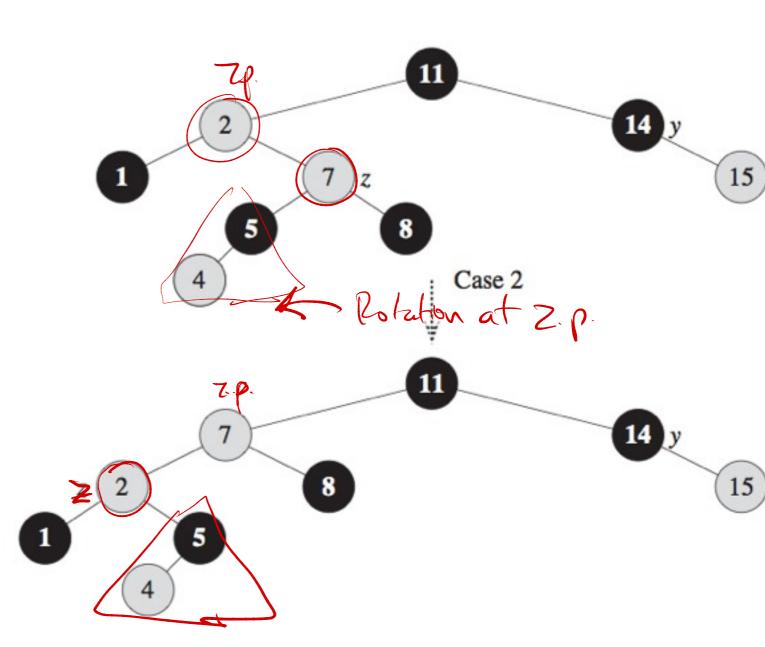
- start fixing at the new node z, and as we proceed more fixes might be necessary
- three "fixing cases"
- overall still O(log n) time.
- RB-INSERT-FIXUP procedure in the textbook

Fixing insertion case 1

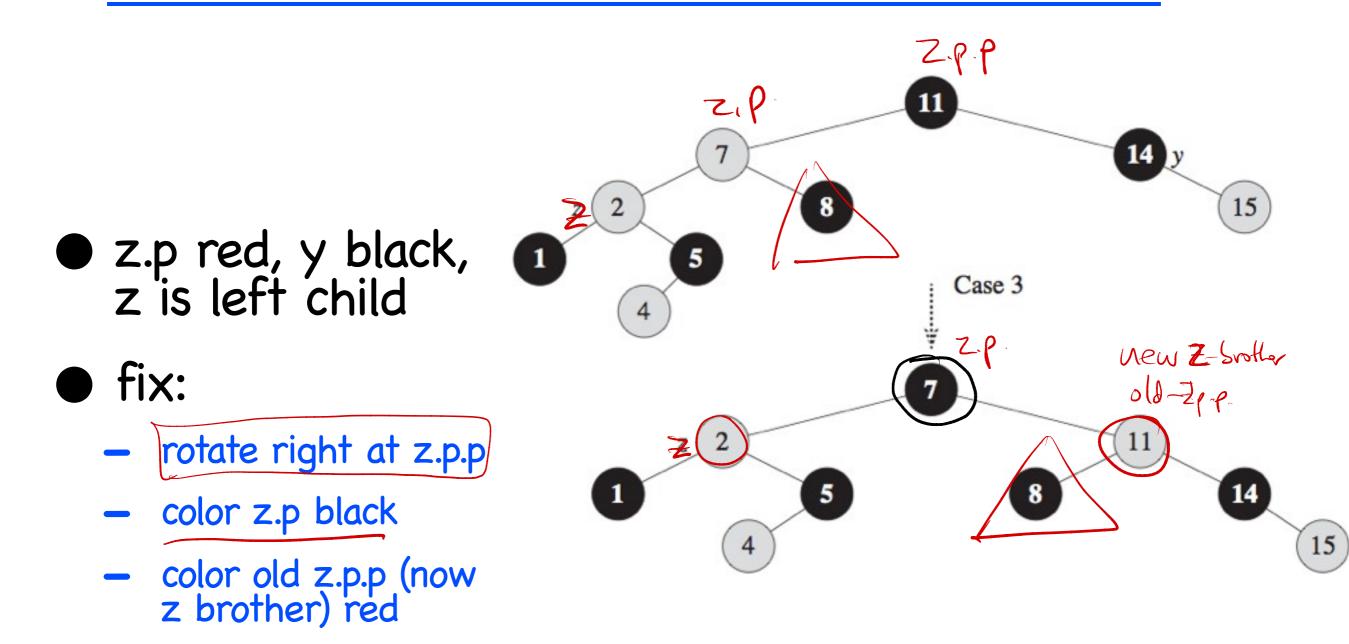


Fixing insertion case 2

- z.p is red, y is black,
 z is the right child
- fix:
 - rotate left at z.p
 - z advances to its old parent (now his left child)

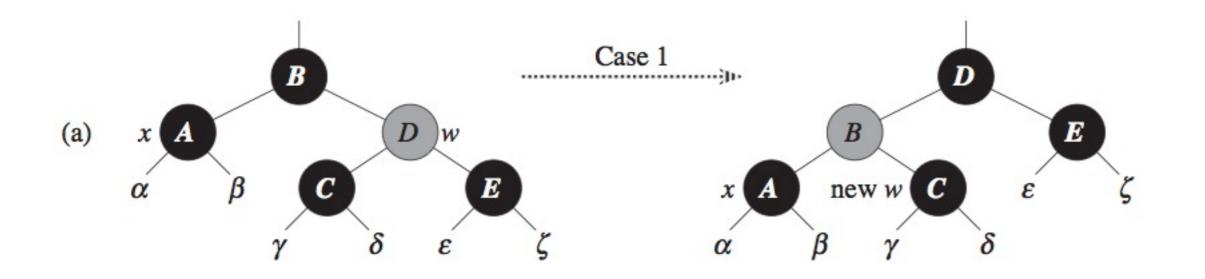


Fixing insertion case 3



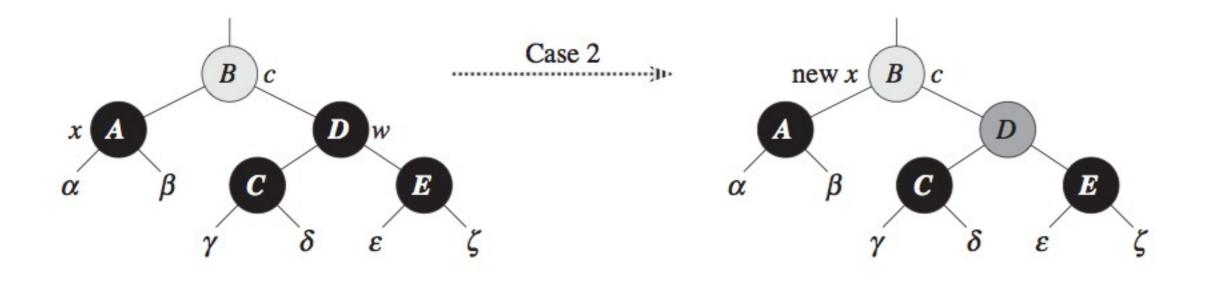
Red-Black Trees - Deletion

- delete "z" as we usually delete from a binary search tree
 - maintain search property: left values < node value < right values</p>
- additionally keep track of
 - y= the node to replace z
 - y original color (its color might change in the process)
- Fix-up the tree red-black properties, if they are violated
 - a procedure with 4 cases
 - RB-DELETE-FIXUP procedure in the textbook



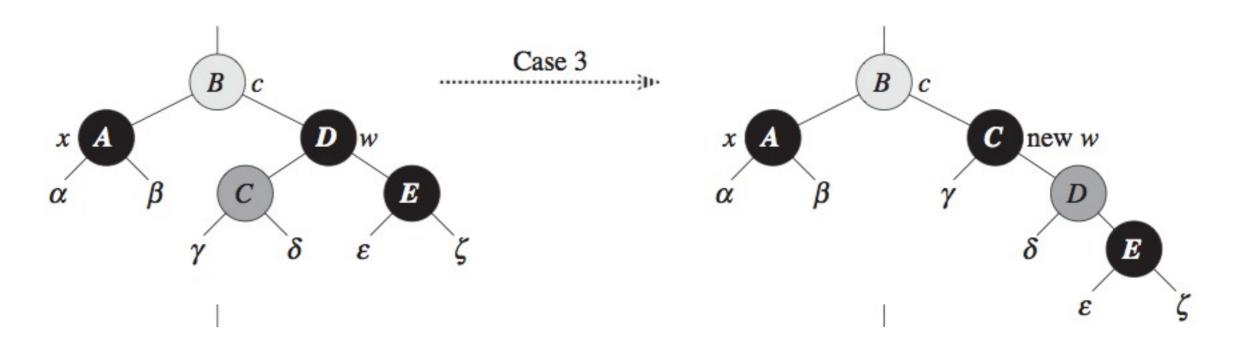
case 1: x is black, brother w red

- fix :
 - rotate left at x.p;
 - color x.p red;
 - color w (now x.p.p) black

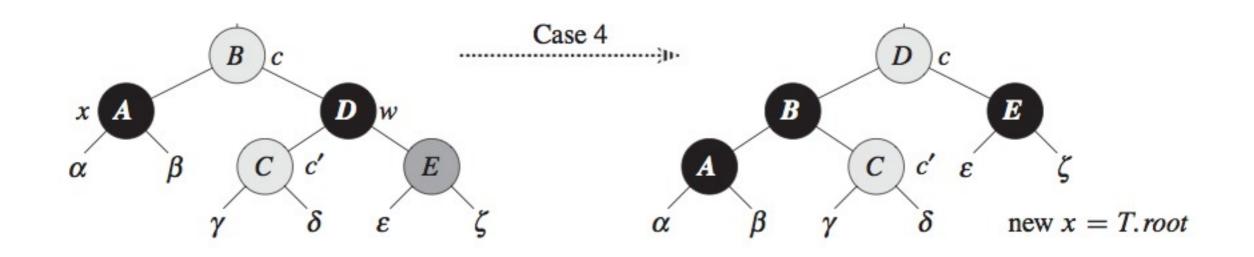


• case2: brother w is black, and w children also black

- fix:
 - color w red
 - advance x to its parent



- case3: brother w is black; ws left child is red; ws right child is black
- fix:
 - rotate right at w
 - color the new brother from red to black
 - color the old brother from black to red



case4: brother w is black, w's right child is red

• fix:

- rotate left at x.p
- color old w's right child from red to black
- color x.p from red to black
- color old w from black to red

Running time

most BST operations same running time as BST trees

- search, min, max, successor, predecessor
- these dont affect RB colors
- Insertion including fixup O(log n)
- Deletion including fixup O(log n)