Dade shechw
AL L

e
g)
{qui&e i B
‘ww F\ZID \) W{Qg
. O\
V.@y__ﬁ% ‘) QD%T 7(
K (€ Sev ey VM’
—] =

LT
‘ @SP)

“/

PNV

(26T ()

Mnede W

GG

—

Qoo

v\:? V\@&M LQJ;'E 7
? W. Q“(\Cewk ; Q‘\S

wﬁ@

<D< n gu@q\ﬂtg

?< n. LS

A
el o

Ady
bz shachi s Hasl 1ehles, €% trees Sky (
| ftw)ﬁ‘éjrf@?

Madres (bast dables)

Aode = (key, |
(ke , (00) pars [rall= vl Yok
(larse ¢) -

ke = (Weec
\,\ d’)eﬁz = 2l ‘l\l\k | ‘

e P “"“’SZ yy geir i
(o] et 20

(Weed ﬂ\ +
Y /an
i
V7S AV

(c;\r(;:z\\ | &L/m»&pw\a\cc@%
(W bfj — \}Jve N
O@M \.(Q;DO\rCSS Dzé X/ﬂw (uﬁ

ot hosh fuchn b & fost

_Wd = oWne C""UL(SHD\AQ

V\l | V= ™M AX QQ;\AQ. e |20
000,
wond Collision (et A2 ’i L“Efﬁ"d(omo
%) N
“3 oA=L [list s

OIMRLE UNIFORM HAstive | awd key ke equally
\ledy ds be haded ke wny of 1 AR

pm%@msmc) = ,:] AT

MAK WA
o Unsuesstal Lo mEEmm:
sy uetdond) ikatic u&ﬁ{a >)x.
o Guceess (@(@t\mo\) Sy o ()

é&sﬂ\ o UN Suclegs (tQ_/ et jg\wg

Uﬂ\wﬁ < ok w it ok~ |

= €[se-of _ Iy _L} = A = —%\
aQuecess K& \-(ac‘r\ | «E\:\m Sg(w\c@‘f iyl leys

\ (wserbed aﬁ@wﬁ(g’ | Lok-Ce
\}Eﬁcﬂ %’9\@&@;—? D I Dl LLSionJ
i \Q\/\ i -)\L () =b(1)
(“‘53 = b (L) = pey, AR RN
Loker o \1 %}Q)“f L\O\QL\ML i Lt (43»@# (*bb Ll l\;\

Yot cla e = EC (’7\ z‘ C i T\Z)4\1\ \Q]\C D st fﬁh
= J:[+\ BAAM O
N A &6&{0 &9{ ti
. Y (€8@> o =
= + 2 Sl 1
y\z\)=t i J\?\ b J?:(H

=1 ot [+2 .+

= «z/&% "I - o)euy

H&cL\ 4Cw\c‘\w S . @\(u@f) = wdixe 21 1 AK
ks Dbeger

IR w , (w1 g {/\ \ Qo
[x> iw kng > vl T o

\a&ﬁ“C \/\(,H =Ty \,\;_ool rac (o emar1)

Aty QR VU
)= (@ [t (65]

et)

[

7A<Z ﬁ‘(‘c« Q[;bovu\-!é of %_ \WN = Lis kejl/w\&l

[bas Iy — b chom § ~ wmivkrsed —set
T lesary s dwors wewy lays W)= sane.
iﬂMM 0 Q\MQOQ ' = Lm\j (\34‘2‘%

lher . Sablak hudo) il

o AR losh otaled = \/\Qg Fqbw at Gundln
(9\\/3{2@ QQM/‘S ek O_L f’;MACJ“EY\Q

ewor{ Llags ke \3\‘(N\fﬂm
[hes | hw =@ < k|

@ %&\r\?saw\f st creale long Ust o <ol

Binary Search Trees - Recap

® cach node has at @ 6
most two children P
® any node value is (6% 18
— not smaller than any value S
N the left subtree c &) 17

— not larger than than any

value ift the right subtree (2) (4) (©s) &

— h = height of tree 0
@ Operations:

— Search, min, max,
successor, predecessor,
insert, delete

— runtime O(h)

Binary Search Trees - Recap

® cach node has at
most two children

@ any node value is

— not smaller than any valug
in the left subtree ;

— not larger than than any"
value in the right sub‘rree“

— h = height of tree .
@ Operations:

— Search, min, max,
successor, predecessor, left subtree

insert, deletfe values<15
— runtime O(h)

Binary Search Trees - Recap

right subtree

® cach node has at values=15

most two children

@ any node value is '

— not smaller than any valuq'

in the left subtree ;

— not larger than than any"
value it the right sub’rreye“ 2 @

— h = height of tree .
. R
@® Operations: Yoo e
~ Ny m
— Search, min, max,
successor, predecessor, left subtree
insert, delete values<15

— runtime O(h)

Balanced Trees

(3 -'

- / \ | \ \!’7\.
~ - 2 7))
'\E/" \>/ /“ <

/"""{\‘ X— o
':\ 5_/2' '.__8._/.'
G5
N2

® a) balanced tree: depth is about log(n) - logarithmic

@® b) unbalanced tree : depth is about n - linear

Red-Black Trees

@® binary search tree

® want to enforce balancing of the tree
— height logarithmic in n=number of nodes in the tree

— height = longest path root->leaf

@® extra: each node stores a color

— color can be either red or black /-

— color can change during operations (,UCLCQJ K%QL\
® red-black properties

— root is black

— W(’rermin@are black
—{—Hmﬁe—rfred, fhen both children are black)

— for any given node, all paths to leaves (node->leaf) have the same

number of black nodes
=) gﬁ«w on Llacl acdos

Red-Black Trees

@ Theorem: a red-black tree with n nodes has height
at most 2*log(n+1)

— or logarithmic height
— thus enforcing the balancing of the tree

— and so the all operations can be implemented in O(log n) time.

Tree operations

® insert delete - need to account for colors
— rest of the lecture: insert and delete in red-black trees

@® search, min, max, successor, predecessor - same as
for regular binary search trees

Red-Black Trees - Rotation

® Rotation is a ufility _
operation that facllitates @ Rotate-left at node x
maintenance of red-black — X is replaced by its right child y
Properhes — B = left subtree of y becomes right

— during insert and delefe, the subtree of x
tree mcljgh’r temporarily violate

the red-black properties — X becomes the left child of y

— using rotation we can fix the : :
frec'so it satisfies red-black. @ Rotate-right at y symmetric

| @/\g

EFT-ROTATE(T, x)
&) (

p /\Z‘i& IACGE NG ﬁfzﬁﬁi\ Jﬁ

B N aesaaaasia
= RIGHT-ROTATE(T, y)

Jel B N = B

Red-Black Trees - Rotation

@ Example

Red-Black Trees - Insertion

® add node s a leaf

— like usual in a binary search tree

@® <olor z red, add terminal "NIL' nodes

@® check red-black conditions
— most conditions are still satisfied or easy to fix

% the real problem might be the condition that requires children of
red nodes to be black.

— start fixing at the new node z, and as we proceed more fixes might
be necessary

— three “fixing cases”
— overadll still O(log n) time.

® RB-INSERT-FIXUP procedure in the textbook

Fixing insertion case 1

@ z.p = z.parent and
y=z.uncle are red

® fix:

— make z.p and y black

— make z.p.p red

—GM

k\Q@A Kp(p&(“) ol U (

Fixing Insertion case 2

@ zpis red, v is black,
z is the right child

® fix:
— rotate left at z.p

— z advances fto its old

parent (now his left
chid) —

Fixing Insertion case 3

20 f

=0
2(2] / é\ @
O O
(;Y

: Case 3

@® z.p red, vy black,
z is left child

® fix: “ -‘G R
~ Trofate right of zpp

— color z.p black

— color old zp.p (now
Z brother) red

Red-Black Trees - Deletion

® delete "z” as we usuadlly delete from a binary search
tree

— maintain search property: left values< node value < right values

@® additionally keep track of
— Y= the node to replace z
— y original color (its color might change in the process)

@® Fix-up the tree red-black properties, if they are
violated

— a procedure with 4 cases
— RB-DELETE-FIXUP procedure in the textbook

Fixing deletion case 1

ﬂ

® case 1: x is black, brother w red
® fix:

— rotfate left at x.p;
— color x.p red;
— color w (now x.p.p) black

Fixing deletion case 2

® case?2: brother w is black, and w children also black
® fix:

— color w red
— advance x to its parent

Fixing deletion case 3

@® case3: brother w is black; ws left child is red; ws
right child is black

® fix:
— rofate right at w
— color the new brother from red to black
— color the old brother from black to red

Fixing deletion case 4

///\-— ¢ el - /.:\ ?/3(’-\
x A w
a0 N
; | C (E63)
A=A A
Y 0 € o ¥y)

@ case4: brother w is black, ws right child is red
® fix:

— rotate left at xp
— color old ws right child from red to black
— color x.p from red to black

— color old w from black to red

Running time

@ most BST operations same running time as BST trees

— Search, min, max, successor, predecessor
— these dont affect RB colors

® Insertion including fixup O(log n)
® Deletion including fixup O(log n)

