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Adv Data structures : flash Tables , RB trees, skip lists , RED Hop

flashes (hash tables )
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flash functors
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Hash-functions - universal -set

- adversary : chooses many keys h(k)= same
-because = feed .

→ long
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• every hash created → -hes picked at random

191 -_size of the set of functions
UNIVERSAL

every 2 keys helhES/hod=Ke)}-•l*
⑦ Adversary cannot create loup list of collisions.



Binary Search Trees - Recap

• each node has at 
most two children

• any node value is
- not smaller than any value 

in the left subtree
- not larger than than any 

value in the right subtree
- h = height of tree

• Operations: 
- search, min, max, 

successor, predecessor, 
insert, delete 

- runtime O(h)
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Balanced Trees

• a) balanced tree: depth is about log(n) - logarithmic

• b) unbalanced tree : depth is about n - linear



Red-Black Trees
• binary search tree

• want to enforce balancing of the tree
- height logarithmic in  n=number of nodes in the tree
- height = longest path root->leaf 

• extra: each node stores a color
- color can be either red or black
- color can change during operations

• red-black properties
- root is black
- leafs (terminals) are black
- if a node is red, then both children are black
- for any given node, all paths to leaves (node->leaf) have the same 

number of black nodes 
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Red-Black Trees

• Theorem: a red-black tree with n nodes has height 
at most 2*log(n+1)
- or logarithmic height
- thus enforcing the balancing of the tree
- and so the all operations can be implemented in O(log n) time. 
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Tree operations

• insert, delete - need to account for colors
- rest of the lecture: insert and delete in red-black trees

• search, min, max, successor, predecessor - same as 
for regular binary search trees



Red-Black Trees - Rotation

• Rotation is a utility 
operation that facilitates 
maintenance of red-black 
properties
- during insert and delete, the 

tree might temporarily violate 
the red-black properties

- using rotation we can fix the 
tree so it satisfies red-black.

• Rotate-left at node x 
- x is replaced by its right child y

- β = left subtree of y becomes right 
subtree of x

- x becomes the left child of y 

• Rotate-right at y symmetric 
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Red-Black Trees - Rotation

• Example
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Red-Black Trees - Insertion
• add node “z” as a leaf
- like usual in a binary search tree

• color z red, add terminal “NIL” nodes

• check red-black conditions
- most conditions are still satisfied or easy to fix
- the real problem might be the condition that requires children of 

red nodes to be black.
- start fixing at the new node z, and as we proceed more fixes might 

be necessary
- three “fixing cases”
- overall still O(log n) time.

• RB-INSERT-FIXUP procedure in the textbook

•
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Fixing insertion case 1

• z.p = z.parent and 
y=z.uncle are red

• fix: 
- make z.p and y black 
- make z.p.p red
- advance z to z.p.p
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Fixing insertion case 2

• z.p is red, y is black, 
z is the right child

• fix:
- rotate left at z.p
- z advances to its old 

parent (now his left 
child)
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Fixing insertion case 3

• z.p red, y black, 
z is left child

• fix:
- rotate right at z.p.p
- color z.p black
- color old z.p.p (now 

z brother) red
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Red-Black Trees - Deletion

• delete “z” as we usually delete from a binary search 
tree
- maintain search property: left values⩽ node value ⩽ right values

• additionally keep track of 
- y= the node to replace z
- y original color (its color might change in the process)

• Fix-up the tree red-black properties, if they are 
violated
- a procedure with 4 cases
- RB-DELETE-FIXUP procedure in the textbook



Fixing deletion case 1

• case 1: x is black, brother w red

• fix : 
- rotate left at x.p; 
- color x.p red; 
- color w (now x.p.p) black



Fixing deletion case 2

• case2: brother w is black, and w children also black

• fix:
- color w red
- advance x to its parent



Fixing deletion case 3

• case3: brother w is black; w’s left child is red; w’s 
right child is black

• fix:
- rotate right at w
- color the new brother from red to black
- color the old brother from black to red



Fixing deletion case 4

• case4: brother w is black, w’s right child is red

• fix:
- rotate left at x.p
- color old w’s right child from red to black
- color x.p from red to black
- color old w from black to red 



Running time

• most BST operations same running time as BST trees
- search, min, max, successor, predecessor
- these dont affect RB colors

• Insertion including fixup O(log n)

• Deletion including fixup O(log n)


