Dynamic Programming Solution to the
Discrete Knapsack Problem

Cheng Li, Virgil Pavlu, Javed Aslam

Discrete Knapsack Problem

Given a set of items, labelled with 1,2, ...,n, each with a weight w; and a value v;, determine the items to
include in a knapsack so that the total weight is less than or equal to a given limit W and the total value is
as large as possible.

Example
item 1 item 2 item 3 item 4 knapsack
10 20 30 50 50
$ 60 $ 100 $ 120 $ 150

Greedy Algorithm?

Can we solve it with a greedy algorithm? Let’s try three different greedy strategies for this example:

1. largest to smallest $/1b
We pick items 1 and 2. Value=160.

2. largest to smallest value
We pick item 4. Value=150.

3. smallest to largest weight
We pick items 1 and 2. Value=160.

However, if we pick items 2 and 3, we get value=220. So greedy algorithms do not work. We can use dynamic
programming to solve this problem.

Dynamic Programming Methodology

(1) Characterize the Structure of an Optimal Solution. The Discrete knapsack problem exhibits
optimal substructure in the following manner.



Claim 1 Let i be the highest-numbered item in an optimal solution S for W pounds and item 1..n.Then
S' =8 —{i} is an optimal solution for W — w; pounds and items 1..i — 1.

Proof: By contradiction, suppose that there was a better solution for W — w; pounds and items 1..i — 1
than S’. Then S’ could be replaced with this better solution, yielding a valid solution for W pounds and
item 1..n with larger value than the solution being considered. But this contradicts the supposed optimality
of the given solution, —<—. O

Thus, the optimal solution to knapsack problem is composed of optimal solutions to smaller subproblems.

(2) Recursively Define the Value of the Optimal Solution. First, we define in English the quantity
we shall later define recursively. Let c[i, w] be the largest value for items 1..i and maximum weight w. Then
the optimal solution for items 1..7 either include item 4, in which case it is v; plus a subproblem solution
for items 1..s — 1 and the weight excluding w;, or doesn’t include item ¢, in which case it is a a subproblem
solution for items 1..2 — 1 and the same weight. That is, if we pick item i, we take v; value, and we can
choose from items 1..i — 1 up to the weight limit w — w;, and get c[i — 1,w — w;] additional value. On the
other hand, if we decide not to take item i, we can choose from items ¢..; — 1 up to the weight limit w, and
get c[i — 1, w] value. The better of these two choices should be made. We thus have the following recurrence.

0 ifi=0orw=0,
Claim 2 ci,w] = { c[i — 1, w] if w; > w,
max(v; + cfi — 1,w — w;], cfi — 1,w]) ifi>0 and w > w;.

Proof: The correctness of this recursive definition is embodied in the paragraph which precedes it. O

There is another way to recursively define the value of the optimal solution. Suppose in the solution for
items 1..2 and maximum weight w, the highest-numbered item picked is item j. Then the optimal solution
for items 1..7 is v; plus a subproblem solution for items 1..j — 1 and the weight excluding w;. We don’t know
what the highest-numbered item picked is, so we try all possibilities for j < i¢. We thus have the following
recurrence.

o0 if i=0o0r w=0,
U] =\ i, <ufvs +clj — Lw—w,]) other.

Compared with the previous recursive formula, this formula checks more possibilities, and thus introduces
more computation. In fact, the time complexity of the first approach is ©(nW), while the second is ©(n2W).
So we will implement the first formula.

(3) Compute the Value of the Optimal Solution Bottom-up. The algorithm takes as inputs the max-
imum weight W, the number of items n, and the two sequences v = (v1,v2, ...,v,) and w = (w1, wa, ..., Wy).
It stores the cli, j] values in a table ¢[0..n, 0..W] whose entries are computed in row-major order. (That is, the
first row of ¢ is filled in from left to right, then the second row, and so on.) At the end of the computation,
¢[n, W] contains the maximum value we can take.



DYNAMIC-DISCRETE-KNAPSACK (v, w, n, W)
1 forw+ 0toW
do c[0,w] <+ 0
3 fori«+ 1ton
4 do ¢[;,0]+ 0
5 for w <+ 1to W
6 do if w; <w
7
8
9
1

[\]

then if v; + c[i — L, w — w;] > cfi — 1,w]
then c[i,w] + v; + cfi — 1, w — w;]
else cli, w] < c[i — 1,w]

0 else c[i, w] + c[i — 1, w]

Claim 3 When the above procedure terminates, for all 0 < i,w <mn, c[i,w] will contain the largest value for
items 1..i and mazximum weight w.

Proof: The correctness of the above procedure is based on the fact that it correctly implements the recursive
definition given above. The base case is properly handled in Lines 1 to 4, and the recursive case is properly
handled in Lines 3 to 10. Note that since the loop defined in Line 3 goes from 1 to n, no element of ¢ is
accessed in Lines 7-10 before it has been computed. a

(4) Construct the Optimal Solution from the Computed Information. Consider the following
piece of pseudocode, where ¢ is the matrix computed above, w is the weight sequence, n is the number of
items, and W is the maximum weight.

ITEMS(¢c,w,n, W)

1 whilen>0and W >0
2 if ¢[n, W] > ¢n — 1, W]
3 print n

4 W+ W — win|

5 n<n-—1

Claim 4 The above procedure correctly outputs an optimal set of items picked.

Proof: The set of items to take can be deduced from the ¢ table by starting at c[n, W] and tracing where the
optimal value came from. If ¢[i, w] = ¢[i — 1, w], item 4 is not part of the solution, and we continue tracing
with ¢[i — 1, w]. Otherwise item i is part of the solution, and we continue tracing with ¢[i — 1,w — w;]. O

(5) Running Time and Space Requirements. The DYNAMIC-DISCRETE-KNAPSACK proce-
dure runs in ©(nW) due to the nested loops (Lines 3 and 5), and it uses ©(n?) additional space in the form
of the matrix c¢. The ITEM procedure runs in time O(n) to trace the solution (since it starts in row n of the
table and moves up 1 row at each step). It uses no additional space beyond the inputs given. Thus, the
total running time is ©(nW) and the total space requirement is ©(n?).



